首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biological activity and metabolism of applied GA1 and GA4 were studied in leaves of alstroemeria (Alstroemeria hybrida). It appeared that GA4 was 2 orders of magnitude more active in delaying leaf senescence than GA1. GA3-13-OMe, a GA analog that cannot be hydroxylated on the 13-C position, also retarded chlorophyll loss, although less efficiently. Tritiated and deuterated GA1, GA4, and GA9 were applied to leaves, and their metabolites were analyzed. According to high performance liquid chromatography and gas chromatography-mass spectrometry analyses, GA9 was converted into GA4 and GA34, and GA4 was converted into GA34 and more polar components. No evidence was found for the conversion of both GA9 and GA4 into GA1, even at the relatively high concentrations that were taken up by the leaf. The results strongly suggest that GA4 is recognized directly by a receptor involved in regulation of leaf senescence in alstroemeria. Received November 24, 1997; accepted February 17, 1998  相似文献   

2.
The effects of thermo- and photoperiodicity on elongation growth and on endogenous level of gibberellins (GAs) in Begonia x hiemalis during various phases of the day-night cycle have been studied. Plant tissue was harvested during the day and night cycle after temperature and photoperiodic treatments and analyzed for endogenous GAs using combined gas chromatography and mass spectrometry. Elongation growth increased when the difference between day and night temperature (DIF = DT − NT) increased from a negative value (−9.0 and −4.5°C) to zero and with increasing photoperiod from 8 to 16 h. When applied to the youngest apical leaf, gibberellins A1, A4, and A9 increased the elongation of internodes and petioles. GA4 had a stronger effect on elongation growth than GA1 and GA9. In relative values, the effect of these GAs decreased when DIF increased from −9 to 0°C. The time of applying the GAs during a day and night cycle had no effect on the growth responses. In general, endogenous levels of GA19 and GA20 were higher under negative DIF compared with zero DIF. The level of endogenous GA1 in short day (SD)-grown plants was higher under zero DIF than under negative DIF, but this relationship did not appear in long day (LD)-grown plants. The main effects of photoperiod seem to be a higher level of GA19 and GA1 at SD compared with LD, whereas GA20 and GA9 show the opposite response to photoperiod. No significant differences in endogenous level of GA1, GA9, GA19, and GA20 were found for various time points during the diurnal day and night cycle. Endogenous GA20 was higher in petiole and leaf compared with stem, whereas there were no differences of GA1, GA9, and GA19 between plant parts. No clear relationship was found between elongation of internodes and petioles and levels of endogenous GAs. Received December 26 1996; accepted July 1, 1997  相似文献   

3.
The endogenous gibberellin (GA) content of spinach (Spinacia oleracea) was reinvestigated by combined gas chromatography-mass spectrometry analysis. The 13-hydroxy GAs: GA53, GA44, GA19, GA17, GA20, GA5, GA1, GA29, and GA8; the non-3, 13-hydroxy GAs: GA12, GA15, GA9, and GA51; and the 3β-hydroxy GAs: GA4, GA7, and GA34, were identified in spinach extracts by comparing full-scan mass spectra and Kovats retention indices with those of reference GAs. In addition, spinach plants contained GA7-isolactone, 16,17-dihydro-17-hydroxy-GA53, GA29-catabolite, 3-epi-GA1, and 10 uncharacterized GAs with mass spectra indicative of mono- and dihydroxy-GA12, monohydroxy-GA25, dihydroxy-GA24, and dihydroxy-GAg. The effect of light-dark conditions on the GA levels of the 13-hydroxylation pathway was studied by using labeled internal standards in selected ion monitoring mode. In short day, the GA levels were higher at the end of the light period than at the end of the dark period. Levels of GAs at the end of each short day were relatively constant. During the first supplementary light period of long day treatment, GA53 and GA19 declined dramatically, GA44 and GA1 decreased slightly, and GA20 increased. During the subsequent high-intensity light period, the GA20 level decreased and the levels of GA53, GA44, GA19, and GA1 increased slightly. Within 7 days after the beginning of long day treatment, similar patterns for GA53 and GA19 occurred. Furthermore, when these plants were transferred to darkness, an increase in the levels of GA53 and GA19 was observed. These results are compatible with the idea that in spinach, the flow through the GA biosynthetic pathway is much enhanced during the high-intensity light period, although GA turnover occurs also during the supplementary period of long day, both effects being responsible for the increase of GA20 and GA1 in long day.  相似文献   

4.
Stem elongation in Fuchsia × hybrida was influenced by cultivation at different day and night temperatures or in different light qualities. Internode elongation of plants grown at a day (25°C) to night (15°C) temperature difference (DIF+10) in white light was almost twofold that of plants grown at the opposite temperature regime (DIF−10). Orange light resulted in a threefold stimulation of internode elongation compared with white light DIF−10. Surprisingly, internode elongation in orange light was similar for plants grown at DIF−10 and DIF+10. Flower development was accelerated at DIF−10 compared with DIF+10 in both white and orange light. To examine whether the effects of DIF and light quality on shoot elongation were related to changes in gibberellin metabolism or plant sensitivity to gibberellins (GAs), the stem elongation responses of paclobutrazol-treated plants to applied gibberellins were determined. In the absence of applied gibberellins paclobutrazol (>0.32 μmol plant−1) strongly retarded shoot elongation. This inhibition was nullified by the application of about 10–32 nmol of GA1, GA4, GA9, GA15, GA19, GA20, GA24, or GA44. The results are discussed in relation to possible effects of DIF and light quality on endogenous gibberellin levels and gibberellin sensitivity of fuchsia and their effects on stem elongation. Received October 4, 1997; accepted December 17, 1997  相似文献   

5.
The Effect of Gibberellins on Flowering in Roses   总被引:1,自引:0,他引:1  
The gibberellins A1, A3, A5, A8, A19, A20, and A29 were identified in vegetative shoot tips of Rosa canina by comparing their mass spectra and Kovats retention indices with those of standards. Most wild roses have a short flowering season of 2–4 weeks in spring, whereas most modern cultivars flower recurrently. `Félicité et Perpétue' is a short-season hybrid from a cross between a wild rose and a recurrent-flowering rose, whereas its sport, `Little White Pet,' flowers recurrently. The concentrations of gibberellins (GAs) were measured in shoot apices of both cultivars. In March (before floral initiation in spring) the concentrations of GA1 and GA3 were respectively threefold and twofold higher in `Félicité et Perpétue' than in `Little White Pet.' In April (after floral initiation) the concentrations of both gibberellins were substantially greater than in March, and concentrations of GA1 and GA3 were, respectively, 17-fold and 12-fold greater in `Félicité et Perpétue' than in `Little White Pet.' It is postulated that, in `Félicité et Perpétue,' floral initiation occurs when concentrations of GAs are low and is inhibited when concentrations of GAs are high, whereas in `Little White Pet' concentrations of GAs remain at permissive levels throughout the growing season. Applications of GA1 and GA3 to axillary shoots in March inhibited floral development in `Félicité et Perpétue' but not in `Little White Pet.' This suggests that the combined concentration of exogenous and endogenous gibberellins might have been raised to inhibitory levels in the former but not in the latter cultivar. Received January 10, 1999; accepted June 16, 1999  相似文献   

6.
Evidence has been reported that bulb development in onion plants (Allium cepa L.) is controlled by endogenous bulbing and anti-bulbing hormones, and that gibberellin (GA) is a candidate for anti-bulbing hormone (ABH). In this study, we identified a series of C-13-H GAs (GA12, GA15, GA24, GA9, GA4, GA34, and 3-epi-GA4) and a series of C-13-OH GAs (GA44, GA20, GA1 and GA8) from the leaf sheaths including the lower part of leaf blades of onion plants (cv. Senshu-Chuko). These results suggested that two independent GA biosynthetic pathways, the early-non-hydroxylation pathway to GA4 (active GA) and early-13-hydroxylation pathway to GA1 (active GA), exist in onion plants. It was also suggested that GA4 and GA1 have almost the same ability to inhibit bulb development in onion plants induced by treatment with an inhibitor of GA biosynthesis, uniconazole-P. The endogenous levels of GA1 and GA4, and their direct precursors, GA20 and GA9, in leaf blades, leaf sheaths, and roots of 4-week-old bulbing and non-bulbing onion plants were measured by gas chromatography/selected ion monitoring with the corresponding [2H]labeled GAs as internal standards. In most cases, the GA levels in long-day (LD)-grown bulbing onion plants were higher than those of short-day (SD)-grown non-bulbing onion plants, but the GA1 level in leaf blades of SD-grown onion plants was rather higher than that of LD-grown onion plants. Relationship between the endogenous GAs and bulb development in onion plants is discussed.  相似文献   

7.
Plants of early flowering mutant and wild type genotypes of Sorghum bicolor were treated with ring D-modified gibberellins (GAs), and the effects on endogenous GA levels were determined. The growth and timing of floral initiation in 58M plants grown under 18-h days (which significantly delays floral initiation in this short day plant) following treatment with these compounds, relative to GA3 and GA5 treatments, were also investigated. Application of the endo-isomer of C16,17-dihydro-GA5 (endo-DiHGA5), the exo-isomer of C16,17-dihydro-GA5 (exo-DiHGA5), and C16α,17-dichloromethanodihydro-GA5 (DMDGA5) altered GA levels in both genotypes. Each ring D-modified GA significantly inhibited shoot growth while significantly decreasing levels of GA1 and increasing levels of its immediate precursor, GA20. Gibberellin A8 levels also decreased. Tillering was not affected by any treatment. For the early flowering genotype 58M, grown under noninductive long days, both dihydro-GA5 isomers promoted floral initiation while shoot growth was strongly inhibited, and floral development was strongly advanced beyond floral stage 4. Gibberellin A3 and GA5, applied under the same conditions, promoted shoot growth slightly and gave ``floral-like' apical meristems that did not develop past floral stage 1. These results suggest that the reduced shoot growth of sorghum, which follows application of those ring D-modified GAs, is due to their inhibiting the 3β hydroxylation of GA20 to GA1, thereby reducing the GA1 content. That floral initiation was hastened and floral development promoted in genotype 58M by application of both isomers of DiHGA5 are in contrast to the effects of other GA biosynthesis inhibitors, which act earlier in the GA biosynthesis pathway, but are consistent with results seen for long day grasses. This suggests that endo-DiHGA5 and exo-DiHGA5 may be acting directly in promoting floral initiation and subsequent floral apex development of this short day plant under long day conditions. Received October 3, 1996; accepted January 22, 1997  相似文献   

8.
I studied the influence of gibberellic acid (GA3) treatment in a field population of common bean on plant tolerance to leaf removal. Individual bean seedlings were treated with a foliar application of 10 μM GA3 on day 7 and day 14 after emergence, which led to a significant increase in height in GA3-treated plants. Twenty-eight days after emergence, either zero, one, two, or three leaflets from each trifoliate leaf were removed from each of 20 GA3-treated and 20 control plants. All pods were harvested from each plant after plants became senescent 6 weeks later. Multivariate analyses revealed that leaf removal produced significant reductions in several yield components in both GA3-treated and control plants, although the effects were not pronounced until at least two leaflets from each trifoliate leaf (67% of the total leaf area) were removed. However, GA3-treated plants suffered greater reductions in total pod wall mass and total seed number than control plants after 33 and 67% leaf area removal. These results indicate that GA3 treatment may have altered the assimilatory capacity or resource allocation pattern of treated plants in such a way as to decrease their ability to tolerate leaf removal, a negative consequence of the hormonal alteration of traits important to plant compensation for biotic stressors. Received December 6, 1996; accepted March 5, 1997  相似文献   

9.
CCC, uniconazol, ancymidol, prohexadione-calcium (BX-112), and CGA 163′935, which represent three groups of gibberellin (GA) biosynthesis inhibitors, were applied as a soil drench to Sorghum bicolor cultivars 58M (phyB-1, phytochrome B-deficient mutant) and 90M (phyB-2, equivalent phenotypically to wild type, PHYB, except for small differences in flowering dates). The inhibitors that block steps before GA12 (CCC, uniconazol, and ancymidol) lowered the concentrations of all endogenous early-C13α-hydroxylation pathway GAs found in sorghum: GA12, GA53, GA44, GA19, GA20, GA1, and GA8. In contrast, the inhibitors that block the conversion of GA20→ GA1, (CGA 163′935 and BX-112) drastically reduced GA1 and GA8 levels, but they either did not change or caused accumulation of intermediates from GA12 to GA20. Combinations of pre-GA12 inhibitors and GA3 plus GA1 strongly reduced GAs other than GA1 and GA3. Each of these compounds inhibited shoot growth in both cultivars and delayed floral initiation in 90M. Floral initiation of 58M was also delayed by CCC, uniconazol, and ancymidol but not by CGA 163`935 and BX-112. This separation of shoot elongation from floral initiation in sorghum is novel. Both inhibition of shoot growth and delayed floral initiation were almost completely relieved by a mixture of GA3 and GA1 in both 58M and 90M. This observation, plus the much lower levels of endogenous GA3 than of GA1 observed in these experiments, implies that GA1 is the major endogenous GA active in shoot elongation. CGA 163′935 and BX-112 also failed to promote tillering in 58M, whereas inhibitors active before GA12 did so. The possibility that the GA20→ GA1 inhibitors fail to block flowering and promote tillering in 58M because biosynthetic intermediates between GA12 and GA20 accumulate and/or because 58M is altered in GA metabolism in this same region of the biosynthetic pathway is discussed. Received April 7, 1998; accepted July 31, 1998  相似文献   

10.
Effects of Auxin Transport Inhibitors on Gibberellins in Pea   总被引:5,自引:0,他引:5  
The effects of the auxin transport inhibitors 2,3,5-triiodobenzoic acid (TIBA), 9-hydroxyfluorene-9-carboxylic acid (HFCA), and 1-N-naphthylphthalamic acid (NPA) on gibberellins (GAs) in the garden pea (Pisum sativum L.) were studied. Application of these compounds to elongating internodes of intact wild type plants reduced markedly the endogenous level of the bioactive gibberellin A1 (GA1) below the application site. Indole-3-acetic acid (IAA) levels were also reduced, as was internode elongation. The auxin transport inhibitors did not affect the level of endogenous GA1 above the application site markedly, nor that of GA1 precursors above or below it. When plants were treated with [13C,3H]GA20, TIBA reduced dramatically the level of [13C,3H]GA1 recovered below the TIBA application site. The internodes treated with auxin transport inhibitors appeared to be still in the phase where endogenous GA1 affects elongation, as indicated by the strong response to applied GA1 by internodes of a GA1-deficient line at the same stage of expansion. On the basis of the present results it is suggested that caution be exercised when attributing the developmental effects of auxin transport inhibitors to changes in IAA level alone. Received April 13, 1998; accepted April 14, 1998  相似文献   

11.
The endogenous gibberellins (GAs) in leaf tissues of two day-neutral cultivars (Rapella and Selva) of strawberry (Fragaria × ananassa Duch.) were analysed using combined gas chromatography -- mass spectrometry (GC-MS). Seven of the later members of the 13-hydroxylation GA biosynthetic pathway were identified, by comparison of Kovats retention indices and mass spectral data obtained for methyl ester trimethylsilyl ether derivatives, either with data obtained from authentic compounds or literature values. GA1, GA3, GA8, GA17, GA19, GA20 and GA29 were detected in extracts of both cultivars.  相似文献   

12.
GA17, GA19, GA20, GA29, GA44 and 13-hydroxy-GA12, now named GA53, were identified by GC-MS in immature seeds of Vicia faba (broad bean). Also identified were a GA catabolite, two polyhydroxykauranoic acids, and abscisic, phaseic and dihydrophaseic acids. The GAs of Vicia are hydroxylated at C-13, in common with those of other legumes. However the GAs of Vicia are not hydroxylated at C-3, nor do they appear to be readily conjugated. In these respects Vicia resembles Pisum, another member of the tribe Viciae. Vicia differs from Phaseolus and Vigna, of the tribe Phaseoleae, in both these respects.Abbreviations ABA abscisic acid - DPA dihydrophaseic acid - GAn gibberellin An - GC gas chromatography - GC-MS gas chromatography mass spectrometry - KA kauranoic acid - PA phaseic acid - TLC thin layer chromatography  相似文献   

13.
In alstroemeria ( Alstroemeria hybrida ), leaf senescence is effectively retarded by the application of gibberellins and by low fluences of red light. In this study we examined the possible interaction of gibberellins and red light in the regulation of senescence. Determination of endogenous gibberellins revealed that leaf senescence is accompanied by significant changes in the concentrations of non‐ 13‐hydroxylated gibberellins, the onset of senescence coinciding with a dramatic drop in GA4, whereas concentrations of 13‐hydroxylated gibberellins are far less influenced. However, no direct effect of red light on a specific GA‐metabolic step could be determined. When exogenously applied, non‐13‐hydroxylated GAs were more active than the 13‐hydroxylated GAs. It appeared that the effect of red light is additive to that of active GAs. We hypothesise that GA4 and phytochrome control senescence in alstroemeria mainly through separate mechanisms and have independent effects and that the observed differences in gibberellin concentrations are a consequence of delayed leaf senescence rather than a cause for it.  相似文献   

14.
Tanno N  Yokota T  Abe M  Okagami N 《Plant physiology》1992,100(4):1823-1826
It is known that dormancy of the genus Dioscorea is induced by application of gibberellin (GA) A3. To understand the role of GAs in dormancy induction, endogenous GAs have been identified by Kovats retention indices and full mass spectra from capillary gas chromatography-mass spectrometry analysis of purified extract from dormant bulbils of Dioscorea opposita Thunb. These include GA4, GA9, GA12, GA19, GA20, GA24, GA36, and GA53; their presence suggests the occurrence of two biosynthetic pathways in D. opposita bulbils, the early 13-hydroxylation pathway and the non-13-hydroxylation pathway.  相似文献   

15.
The physiologic effect of gibberellins (GA) in seed development is poorly understood. We examined the effect of gibberellic acid (GA3) on growth, protein secretion, and starch accumulation in cultured maize (Zea mays L.) endosperm suspension cells. GA3 (5 and 30 μm) increased the fresh weight, dry weight, and protein content of the cultured cells, but the effect of GA3 at 50 μm was not significantly different. However, the protein content in the culture medium was increased by these three concentrations of GA3. The effect of GA3 on the amount of cellular structural polysaccharides was not significant, but GA3 had a dramatic effect on the starch content. At 5 μm, GA3 caused an increase in the starch content, but at 50 μm the starch accumulation was reduced. Chlorocholine chloride (CCC), an inhibitor of GA biosynthesis, significantly increased the starch content and decreased the structural polysaccharide content of the cultured cells. The effects of CCC at 500 μm on the starch and polysaccharide content were partially reversed by 5 μm GA3 applied exogenously. Based on these results we suggest that GA does not favor starch accumulation in the cell cultures and that the addition of lower concentrations of GA3 in the medium may provide an improved balance among the endogenous GA in the cultured cells. Received October 31, 1995; accepted March 25, 1997  相似文献   

16.
Four gibberelJins (GAs), GA19, GA20, GA24, and GA53, were identified by gas chromatography-mass spectrometry (GC-MS) from the dormant bulbils of Dioscorea japonica Thunb. ex Murray (Japanese yam), suggesting that two biosynthetic pathways of GAs, early 13- and non-13-hydroxylation pathways, are operating in the bulbils. Abscisic acid was also identified by GC-MS.  相似文献   

17.
Eight gibberellins (GAs) were identified in extracts of buds of Aralia cordata by full scan GC/MS and by Kovats retention indices. These GAs comprised five GAs on the early-13-hydroxylation pathway [GA1, GA19, GA20, GA44, and GA53] and three other GAs [GA4, GA15, and GA37]. The major GAs were GA19 and GA44.  相似文献   

18.
The endogenous gibberellins (GAs) from shoots of the GA-insensitive mutant,gai, ofArabidopsis thaliana were analyzed and compared with the GAs from the Landsberg erecta (Ler) line. Twenty GAs were identified in Ler plants by full-scan gas chromatography-mass spectrometry (GC-MS) and Kovats retention indices (KRI's). These GAs are members of the early-13-hydroxylation pathway (GA53, GA44, GA19, GA17, GA20, GA1, GA29, and GA8), the non-3,13-hydroxylation pathway (GA12, GA15, GA24, GA25, GA9, and GA51), and the early-3-hydroxylation pathway (GA37, GA27, GA36, GA13, GA4, and GA34). The same GAs, except GA53, GA44, GA37, and GA29 were detected in thegai mutant by the same methods. In addition, extracts fromgai plants contained GA41 and GA71. Both lines also contained several unknown GAs. In Ler plants these were mainly hydroxy-GA12 derivatives, whereas in thegai mutant hydroxy-GA24, hydroxy-GA25, and hydroxy-GA9 compounds were detected. Quantification of seven GAs by GC-selected ion monitoring (SIM), using internal standards, and comparisons of the ion intensities in the SIM chromatograms of the other thirteen GAs, demonstrated that thegai mutant had reduced levels of all C20-dicarboxylic acids (GA53, GA44, GA19, GA12, GA15, GA24, GA37, GA27, and GA36). In contrast,gai plants had increased levels of C20-tricarboxylic acid GAs (GA17, GA25, and GA41) and of all C19-GAs (GA20, GA1, GA8, GA9, GA51, GA4, GA34, and GA71) except GA29. The 3β-hydroxylated GAs, GA1 and GA4, and their respective 2β-hydroxylated derivatives, GA8 and GA34, were the most abundant GAs found in shoots of thegai mutant. Thus, thegai mutation inArabidopsis results in a phenotype that resembles GA-deficient mutants, is insensitive to both applied and endogenous GAs, and contains low levels of C20-dicarboxylic acid GAs and high levels of C19-GAs. This indicates that theGAI gene controls a step beyond the synthesis of an active GA. Thegai mutant is presumably a GA-receptor mutant or a mutant with a block in the transduction pathway between the receptor and stem elongation. We thank Dr. L.N. Mander, Australian National University, Canberra, for providing [2H]gibberellins, Dr. B.O. Phinney, University of California, Los Angeles, USA for [13C]GA8, and Dr. D.A. Gage, MSU-NIH Mass Spectrometry Facility (grant No. DRR00480), for advice with mass spectrometry. This work was supported by a fellowship from the Spanish Ministry of Agriculture (I.N.I.A.) to M.T., by the U.S. Department of Energy under Contract DE-ACO2-76ERO-1338, and by U.S. Department of Agriculture grant No. 88-37261-3434 to J.A.D.Z.  相似文献   

19.
Endogenous gibberellins (GAs) were extracted from flushing (expanding) vegetative buds of river alder (Alnus tenuifolia), European white birch (Betula pendula), and aspen (Populus tremuloides) and identified by gas chromatography-mass spectrometry with full scans and/or selected ion monitoring. Five 13-hydroxylated GAs were detected from the three trees: GA1, 8, and 20 from alder, GA1, 8, 19 and 20 from aspen and GA1, 8, 19, 20, and 29 from birch. Thirteen other GAs previously detected in Salix or common in other plants were specifically investigated but not detected. The presence of GA1, its probable precursors GA19 and GA20, and its probable metabolite, GA8, suggests that the early 13-hydroxylated GA biosynthetic pathway is dominant in vegetative buds of these trees. Abundant endogenous GAs of these trees are similar to the principal GAs of willows (various Salix spp.) and poplars (various Populus spp.). This suggests similarities in the GA physiology and is consistent with a common role of GA1 as a regulator of shoot growth in woody angiosperms.  相似文献   

20.
Identification of endogenous gibberellins in navel orange shoots   总被引:1,自引:1,他引:0       下载免费PDF全文
Eight gibberellins (GAs) were identified from vegetative shoots of navel orange trees (Citrus sinensis L. Osbeck cv Washington) after sequential purification by reverse-phase C18 high performance liquid chromatography, Nucleosil 5N(CH3)2 high performance liquid chromatography, and capillary gas chromatography-mass spectrometry. GA1, GA17, GA19, GA20, GA29, and iso-GA3 were identified based on the full scan mass spectra and Kovats retention indices. GA8 was tentatively identified based on the comparison of the full scan mass spectra with the published spectra. GA44 was tentatively identified from the characteristic masses at the correct Kovats retention index.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号