首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Type 1 plasminogen activator inhibitor binds to fibrin via vitronectin   总被引:2,自引:0,他引:2  
Type 1 plasminogen activator inhibitor (PAI-1), the primary inhibitor of tissue-type plasminogen activator (t-PA), circulates as a complex with the abundant plasma glycoprotein, vitronectin. This interaction stabilizes the inhibitor in its active conformation In this report, the effects of vitronectin on the interactions of PAI-1 with fibrin clots were studied. Confocal microscopic imaging of platelet-poor plasma clots reveals that essentially all fibrin-associated PAI-1 colocalizes with fibrin-bound vitronectin. Moreover, formation of platelet-poor plasma clots in the presence of polyclonal antibodies specific for vitronectin attenuated the inhibitory effects of PAI-1 on t-PA-mediated fibrinolysis. Addition of vitronectin during clot formation markedly potentiates PAI-1-mediated inhibition of lysis of (125)I-labeled fibrin clots by t-PA. This effect is dependent on direct binding interactions of vitronectin with fibrin. There is no significant effect of fibrin-associated vitronectin on fibrinolysis in the absence of PAI-1. The binding of PAI-1 to fibrin clots formed in the absence of vitronectin was characterized by a low affinity (K(d) approximately 3.5 micrometer) and rapid loss of PAI-1 inhibitory activity over time. In contrast, a high affinity and stabilization of PAI-1 activity characterized the cooperative binding of PAI-1 to fibrin formed in the presence of vitronectin. These findings indicate that plasma PAI-1.vitronectin complexes can be localized to the surface of fibrin clots; by this localization, they may modulate fibrinolysis and clot reorganization.  相似文献   

2.
The "serpin" plasminogen activator inhibitor 1 (PAI-1) is the fast acting inhibitor of plasminogen activators (tissue-type (t-PA) and urokinase type-PA) and is an essential regulatory protein of the fibrinolytic system. Its P1-P1' reactive center (R346 M347) acts as a "bait" for tight binding to t-PA/urokinase-type PA. In vivo, PAI-1 is encountered in complex with vitronectin, an interaction known to stabilize its activity but not to affect the second-order association rate constant (k1) between PAI-1 and t-PA. Nevertheless, by using PAI-1 reactive site variants (R346M, M347S, and R346M M347S), we show that the binding of vitronectin to the PAI-1 mutant proteins improves plasminogen activator inhibition. In the absence of vitronectin the PAI-1 R346M mutants are virtually inactive toward t-PA (k1 less than 1 x 10(3) M-1 s-1). In contrast, in the presence of vitronectin the rate of association increases about 1,000-fold (k1 of 6-8 x 10(5) M-1 s-1). This inhibition coincides with the formation of serpin-typical, sodium dodecyl sulfide-stable t-PA.PAI-1 R346M (R346M M347S) complexes. As evidenced by amino acid sequence analysis, the newly created M346-M/S347 peptide bond is susceptible to attack by t-PA, similar to the wild-type R346-M347 peptide bond, indicating that in the presence of vitronectin M346 functions as an efficient P1 residue. In addition, we show that the inhibition of t-PA and urokinase-type PA by PAI-1 mutant proteins is accelerated by the presence of the nonprotease A chains of the plasminogen activators.  相似文献   

3.
J M Edelberg  S V Pizzo 《Biochemistry》1990,29(25):5906-5911
Heparin sulfate and the less sulfated glycosaminoglycan heparan sulfate enhance human plasminogen (Pg) conversion to plasmin by tissue-type plasminogen activator (t-PA). Kinetic studies indicate that both heparin and heparan increase the kcat of t-PA-mediated Pg activation by 25- and 3.5-fold, respectively. The Km of plasmin formation is unaltered by the presence of either heparin or heparan. Both heparin and heparan stimulate the activity of t-PA by interacting with the finger domain of t-PA, with association constants of 1 microM and 200 nM, respectively. Additionally, the lipoproteins lipoprotein(a) [Lp(a)] and low-density lipoprotein (LDL) inhibit the heparin enhancement of Pg activation. Lp(a) is a competitive inhibitor and LDL is a mixed inhibitor of t-PA-mediated Pg activation, with inhibition constants of 30 and 70 nM, respectively. The inhibition constants correspond to physiologic concentrations of these lipoproteins. These data suggest that heparin, heparan, and lipoproteins may play an important in vivo role in regulating cell surface associated activation of the fibrinolytic system.  相似文献   

4.
J M Edelberg  H E Conrad  S V Pizzo 《Biochemistry》1991,30(45):10999-11003
The rate of plasminogen (Pg) activation by tissue-type Pg activator (t-PA) is enhanced by heparin-derived oligosaccharides. Kinetic analysis of the effects of heparin oligosaccharides, ranging in size from di- to dodecasaccharides, on Pg activation demonstrates that stimulation of the reaction is dependent on the size of the heparin oligosaccharides. Di- and tetrasaccharides enhance the activation through 2-fold increases in kcat and 4-fold decreases in Km. Hexasaccharide and larger oligosaccharides stimulate the reaction by increasing the kcat by as much as 4-fold, but do not affect the Km. Previous experiments have shown that lipoprotein(a) [Lp(a)] inhibits Pg activation by t-PA, but only in the presence of a template which enhances t-PA activity such as fibrinogen fragments or intact heparin. Similiarly, Lp(a) inhibits the enhancement of t-PA activity by the larger heparin oligosaccharides but has no effect on t-PA activity in the presence of di- and tetrasaccharides. The results of this study when considered with our previous observations (Edelberg & Pizzo, 1990) suggest that the enhancement in Pg activation by the smaller oligosaccharides is mediated exclusively via binding to t-PA while the larger oligosaccharides may interact with both t-PA and Pg. Furthermore, studies of Pg activation in the presence of both heparin oligosaccharides and fibrinogen fragments demonstrate that t-PA is stimulated preferentially by fibrinogen fragments.  相似文献   

5.
Elevated levels of lipoprotein(a) [Lp(a)] are associated with an increased risk of atherothrombotic disease, but the mechanism(s) by which Lp(a) potentiates atherogenesis is unknown. The extensive homology of apolipoprotein(a) [apo(a)] to plasminogen has led us and others to postulate that Lp(a) may impair fibrinolysis. We have previously shown that Lp(a) inhibits fibrin stimulation of plasminogen activation by tissue-type plasminogen activator (t-PA); however, we and other investigators have been unable to demonstrate direct inhibition of t-PA by Lp(a) in solution. We now report that t-PA binds reversibly and saturably to surface-bound Lp(a) and to low-density lipoprotein (LDL) and that as a result of this binding activation of plasminogen by t-PA is inhibited. The catalytic efficiency (kcat/Km) of t-PA when bound to polystyrene surface-bound fibrinogen increased 2.9-fold compared to t-PA bound to control wells. When bound to surface-bound Lp(a), however, the catalytic efficiency of t-PA was reduced 9.5-fold compared to t-PA bound to control wells; likewise, by binding to surface-bound LDL, the catalytic efficiency of t-PA was reduced 16-fold compared to the control. Studies with defined monoclonal antibodies suggest that major determinants of t-PA binding are its active site, the LDL receptor binding domain of apolipoprotein B-100 (apoB-100), and apo(a). These data suggest a unique mechanism by which Lp(a) and LDL incorporated in an atheroma can inhibit endogenous fibrinolysis and thereby contribute to the genesis of atherothrombotic disease.  相似文献   

6.
Plasminogen activator inhibitor type 1 (PAI-1), the fast-acting inhibitor of tissue-type plasminogen activator (t-PA) and urokinase (u-PA), is a member of the serpin superfamily of proteins. Both in plasma and in the growth substratum of cultured endothelial cells, PAI-1 is associated with its binding protein vitronectin, resulting in a stabilization of active PAI-1. Recently, it has been demonstrated that the PAI-1-binding site on vitronectin is adjacent to a heparin-binding site (Preissner et al., 1990). Furthermore, it can be deduced that the amino acid residues, proposed to mediate heparin binding in the serpins antithrombin III and heparin cofactor II, are conserved in PAI-1. Consequently, here we have investigated whether PAI-1 also interacts with heparin. At pH 7.4, PAI-1 quantitatively binds to heparin-Sepharose and can be eluted with increasing [NaCl]. Binding of PAI-1 to heparin-Sepharose can be efficiently competed with heparin in solution (IC50, 7 microM). In the presence of heparin, the protease specificity of PAI-1 toward thrombin is substantially increased. This is shown by (i) quenching of thrombin activity of PAI-1 in the presence of heparin and (ii) induction of the formation of SDS-stable complexes between thrombin and PAI-1 by heparin. In a dose response curve, both effects reached a maximum at approximately 1 unit/mL and then diminished again upon further increasing the heparin concentration, strongly suggesting a template mechanism as an explanation for the observed effect. In contrast to vitronectin, heparin does not stabilize the active conformation of PAI-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The kinetics of inhibition of tissue-type plasminogen activator (t-PA) by the fast-acting plasminogen activator inhibitor-1 (PAI-1) was investigated in homogeneous (plasma) and heterogeneous (solid-phase fibrin) systems by using radioisotopic and spectrophotometric analysis. It is demonstrated that fibrin-bound t-PA is protected from inhibition by PAI-1, whereas t-PA in soluble phase is rapidly inhibited (K1 = 10(7) M-1.s-1) even in the presence of 2 microM-plasminogen. The inhibitor interferes with the binding of t-PA to fibrin in a competitive manner. As a consequence the Kd of t-PA for fibrin (1.2 +/- 0.4 nM) increases and the maximal velocity of plasminogen activation by fibrin-bound t-PA is not modified. From the plot of the apparent Kd versus the concentration of PAI-1 a Ki value of 1.3 +/- 0.3 nM was calculated. The quasi-similar values for the dissociation constants between fibrin and t-PA (Kd) and between PAI-1 and t-PA (Ki), as well as the competitive type of inhibition observed, indicate that the fibrinolytic activity of human plasma may be the result of an equilibrium distribution of t-PA between both the amount of fibrin generated and the concentration of circulating inhibitor.  相似文献   

8.
Serine protease inhibitors ("serpins") are highly homologous proteins which inhibit selected "target" serine proteases by acting as a pseudo-substrate. Their specificity is primarily determined by the amino acid sequence around the carboxyl-terminally located reactive center (P1-P1'). In addition, the association rate constant between a serpin and a serine protease can be dramatically increased by non-protein cofactors, such as heparin in the case of thrombin inhibition by antithrombin III. In an attempt to alter the specificity of PAI-1 from an inhibitor of the fibrinolytic system to an inhibitor of coagulation, we replaced P1-P1' or P3 through P3' of the reactive center of PAI-1 by the corresponding residues of antithrombin III and assessed whether the mutant proteins, purified from lysates of transformed Escherichia coli cells, had acquired thrombin inhibitory properties. The experiments were performed in the presence and absence of vitronectin, a multifunctional protein which has been shown to bind PAI-1 in plasma and in the matrix of endothelial cells. The second-order rate constants for t-PA inhibition of "wild-type" PAI-1 and PAI P1-P1'ATIII, irrespective of the presence of vitronectin, were similar, whereas replacing P3-P3' resulted in a 40-fold decrease of the second-order rate constant towards t-PA, again independent of vitronectin. In the absence of vitronectin, reactivity of PAI-1 and its "antithrombin III-like" variants towards thrombin was slow; however, PAI-1 P3-P3' ATIII had a 10-fold higher k1 than wild-type PAI-1 (1.3 x 10(4) M-1 s-1 versus 1.1 x 10(3) M-1 s-1). In contrast, in the presence of vitronectin, PAI-1 and even more rapidly PAI-1 P3-P3'ATIII were found to be effective thrombin inhibitors, with k1 values of 2.2 x 10(5) M-1s-1 and 1.8 x 10(6) M-1 s-1, respectively. Thus, in the presence of vitronectin, PAI-1 P3-P3'ATIII displays a 3-fold higher k1 with thrombin than with t-PA. It is shown that vitronectin enhances, in a dose-dependent manner, the formation of sodium dodecyl sulfate-resistant complexes between PAI-1 or mutants thereof and thrombin. Therefore, vitronectin is the first protein described to function as a cofactor for serpin specificity. PAI-1 is proposed to be a versatile inhibitor which, in the presence of vitronectin, can modulate both coagulation and fibrinolysis.  相似文献   

9.
Interaction of plasminogen activator inhibitor (PAI-1) with vitronectin   总被引:14,自引:0,他引:14  
Immobilized vitronectin was found to bind both purified plasminogen activator inhibitor type 1 (PAI-1) and the PAI-1 in conditioned culture medium of human sarcoma cells. Similarly, immobilized PAI-1 bound both purified vitronectin and vitronectin from normal human serum. These interactions were demonstrated using both enzyme immunoassay and radioiodinated proteins. Solid-phase vitronectin bound PAI-1 with Kd 1.9 x 10(-7) M, and the reverse interaction gave a Kd 5.5 x 10(-8) M. Evidence was also found for a second type of binding with a Kd below 10(-10) M. The molar ratios of the two proteins in the complex at the saturation levels were approximately one molecule of soluble PAI-1 bound per three molecules of immobilized vitronectin and approximately one molecule of soluble vitronectin being bound per one molecule of immobilized PAI-1. Binding of PAI-1 to vitronectin did not lead to an irreversible loss of the ability of PAI-1 to inhibit urokinase (u-PA) and tissue-type plasminogen activator (t-PA). Active u-PA released vitronectin-bound 125I-labeled PAI-1 radioactivity, suggesting that u-PA interacts with the complex. The Mr 50,000 urokinase cleavage product of PAI-1 also bound to vitronectin, but this bound fragment did not inhibit u-PA. Binding of PAI-1 to vitronectin did not interfere with the ability of vitronectin to promote the adhesion and spreading of cells. These results suggest that the interaction between vitronectin and PAI-1 may serve to confine pericellular u-PA activity to focal contact sites where cells use proteolysis in regional detachment.  相似文献   

10.
Thrombo-occlusive diseases are major causes of morbidity and mortality, and tissue-type plasminogen activator (t-PA) is recommended for the treatment of the maladies. However, both t-PA and u-PA are rapidly inactivated by plasminogen activator inhibitor-1 (PAI-1). Here, we show that longistatin, a novel plasminogen activator isolated from the ixodid tick, Haemaphysalis longicornis is resistant to PAI-1. Longistatin was relatively less susceptible to the inhibitory effect of SDS-treated platelet lysate than physiologic PAs. Platelet lysate inhibited t-PA and tcu-PA with the IC50 of 7.7 and 9.1 μg/ml, respectively, whereas for longistatin inhibition IC50 was 20.1 μg/ml (p < 0.01). Similarly, activated PAI-1 (20 nM) inhibited only 21.47% activity of longistatin but almost completely inhibited t-PA (99.17%) and tcu-PA (96.84%). Interestingly, longistatin retained 76.73% initial activity even after 3 h of incubation with 20 nM of PAI-1. IC50 of PAI-1 during longistatin inhibition was 88.3 nM while it was 3.9 and 3.2 nM in t-PA and tcu-PA inhibition, respectively. Longistatin completely hydrolyzed fibrin clot by activating plasminogen efficiently in the presence of 20 nM of PAI-1. Importantly, unlike t-PA, longistatin did not form complex with PAI-1. Collectively, our results suggest that longistatin is resistant to PAI-1 and maybe an interesting tool for the development of a PAI-1 resistant effective thrombolytic agent.  相似文献   

11.
We have previously demonstrated that plasminogen activator inhibitor (PAI-1) is associated with the extracellular matrix of cultured bovine smooth muscle cells (Knudsen, B.S., Harpel, P.C., Nachman, R.L. (1987) J. Clin. Invest. 80, 1082-1089). In this report we describe the physiologic role of PAI-1 during the interaction of the tissue plasminogen activator (t-PA) secreting Bowes human melanoma cell line with endothelial extracellular matrices. In addition we have characterized the t-PA.PAI complexes formed during this interaction in the presence and absence of plasminogen. In the absence of plasminogen, a 104-kDa complex between Bowes t-PA and PAI-1 appears in the supernatant. In the presence of plasminogen, PAI initially prevents plasmin formation on the matrix and protects the matrix from degradation by plasmin. The 104-kDa t-PA.PAI complex is degraded into a 68 and a 47-kDa complex by small amounts of plasmin generated from secreted Bowes t-PA and plasminogen. Analysis of these complexes revealed that t-PA is rapidly cleaved by plasmin within the complex whereas complexed PAI-1 is not further degraded. Matrix-associated PAI-1 may play an important role in the protection of extracellular matrices from remodeling and degradation by cellular t-PA and plasminogen.  相似文献   

12.
Plasminogen activator inhibitor 1 (PAI-1) was purified from medium conditioned by cultured bovine aortic endothelial cells by successive chromatography on concanavalin A Sepharose, Sephacryl S-200, Blue B agarose, and Bio-Gel P-60. As shown previously for conditioned media (C. M. Hekman and D. J. Loskutoff (1985) J. Biol. Chem. 260, 11581-11587) the purified PAI-1 preparation contained latent inhibitory activity which could be stimulated 9.4-fold by sodium dodecyl sulfate and 45-fold by guanidine-HCl. The specific activity of the preparation following treatment with 0.1% sodium dodecyl sulfate was 2.5 X 10(3) IU/mg. The reaction between purified, guanidine-activated PAI-1 and both urokinase and tissue plasminogen activator (tPA) was studied. The second-order rate constants (pH 7.2, 35 degrees C) for the interaction between guanidine-activated PAI-1 and urokinase (UK), and one- and two-chain tPA are 1.6 X 10(8), 4.0 X 10(7), and 1.5 X 10(8) M-1 S-1, respectively. The presence of CNBr fibrinogen fragments had no affect on the rate constants of either one- or two-chain tPA. Steady-state kinetic analysis of the effect of PAI-1 on the rate of plasminogen activation revealed that the initial UK/PAI-1 interaction can be competed with plasminogen suggesting that the UK/PAI-1 interaction may involve a competitive type of inhibition. In contrast, the initial tPA/PAI-1 interaction can be competed only partially with plasminogen, suggesting that the tPA/PAI-1 interaction may involve a mixed type of inhibition. The results indicate that PAI-1 interacts more rapidly with UK and tPA than any PAI reported to date and suggest that PAI-1 is the primary physiological inhibitor of single-chain tPA. Moreover, the interaction of PAI-1 with tPA differs from its interaction with UK, and may involve two sites on the tPA molecule.  相似文献   

13.
The inactivation of plasminogen activator inhibitor-1 (PAI-1) by the small molecule PAI-1 inhibitor PAI-039 (tiplaxtinin) has been investigated using enzymatic analysis, direct binding studies, site-directed mutagenesis, and molecular modeling studies. Previously PAI-039 has been shown to exhibit in vivo activity in various animal models, but the mechanism of inhibition is unknown. PAI-039 bound specifically to the active conformation of PAI-1 and exhibited reversible inactivation of PAI-1 in vitro. SDS-PAGE indicated that PAI-039 inactivated PAI-1 predominantly through induction of PAI-1 substrate behavior. Preincubation of PAI-1 with vitronectin, but not bovine serum albumin, blocked PAI-039 activity while analysis of the reciprocal experiment demonstrated that preincubation of PAI-1 with PAI-039 blocked the binding of PAI-1 to vitronectin. Together, these data suggest that the site of interaction of the drug on PAI-1 is inaccessible when PAI-1 is bound to vitronectin and may overlap with the PAI-1 vitronectin binding domain. This was confirmed by site-directed mutagenesis and molecular modeling studies, which suggest that the binding epitope for PAI-039 is localized adjacent to the previously identified interaction site for vitronectin. Thus, these studies provide a detailed characterization of the mechanism of inhibition of PAI-1 by PAI-039 against free, but not vitronectin-bound PAI-1, suggesting for the first time a novel pool of PAI-1 exists that is vulnerable to inhibition by inactivators that bind at the vitronectin binding site.  相似文献   

14.
Vitronectin endows plasminogen activator inhibitor 1 (PAI-1), the fast-acting inhibitor of both tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), with additional thrombin inhibitory properties. In view of the apparent association between PAI-1 and vitronectin in the endothelial cell matrix (ECM), we analyzed the interaction between PAI-1 and thrombin in this environment. Upon incubating 125I-labeled alpha-thrombin with endothelial cell matrix (ECM), the protease formed SDS-stable complexes exclusively with PAI-1, with subsequent release of these complexes into the supernatant. Vitronectin was required as a cofactor for the association between PAI-1 and thrombin in ECM. Metabolic labeling of endothelial cell proteins, followed by incubation of ECM with t-PA, u-PA, or thrombin, indicated that all three proteases depleted PAI-1 from ECM by complex formation and proteolytic cleavage. Proteolytically inactive thrombin as well as anticoagulant thrombin, i.e., thrombin in complex with its endothelial cell surface receptor thrombomodulin, did not neutralize PAI-1, emphasizing that the procoagulant moiety of thrombin is required for a functional interaction with PAI-1. A physiological implication of our findings may be related to the mutual neutralization of both PAI-1 and thrombin, providing a new link between plasminogen activation and the coagulation system. Evidence is provided that in ECM, procoagulant thrombin may promote plasminogen activator activity by inactivating PAI-1.  相似文献   

15.
T Mizuta  C Imai 《Life sciences》1988,43(12):955-963
The effects of tissue-type plasminogen activator (t-PA) on the platelet aggregation were studied using citrated whole blood and platelet-rich plasma (PRP) obtained from human donors. t-PA suppressed adenosine 5'-diphosphate (ADP)- or collagen-induced platelet aggregation in a dose-dependent manner. The 50% inhibitory concentration (IC50) for t-PA was lower by one order of magnitude than that for urokinase (UK) in whole blood and PRP. The suppression of platelet aggregation was not completely inhibited by alpha-2-antiplasmin. t-PA did not cause the degradation of fibrinogen or fibrin in PRP, whereas UK caused the reduction of fibrinogen and fibrin, and the increase of fibrinogen- and fibrin-degradation products (FDP). These results suggest that the mode of action of t-PA in inhibiting platelet aggregation may be different from that of UK.  相似文献   

16.
The interaction between type 1 plasminogen activator inhibitor (PAI-1), a serine protease inhibitor, and the three serine proteases generated during contact activation of plasma was studied using functional and immunologic approaches. Incubation of Factor XIIa, Factor XIa, and plasma kallikrein with either purified PAI-1 or platelet-derived PAI-1 resulted in the formation of sodium dodecyl sulfate-stable complexes as revealed by immunoblotting techniques. Functional assays indicated that Factor XIa and, to a lesser extent, Factor XIIa and plasma kallikrein neutralized the ability of purified PAI-1 to bind to immobilized tissue-type plasminogen activator (t-PA). Immunoblotting demonstrated that these enzymes also neutralized the ability of PAI-1 to form complexes with fluid-phase t-PA. Clot lysis assays employing purified proteins and 125I-fibrinogen were used to investigate the profibrinolytic effect of these contact activation enzymes. At enzyme concentrations that did not result in direct activation of plasminogen, only Factor XIa was capable of stimulating the lysis of clots supplemented with both t-PA and PAI-1. As a consequence of their interactions with PAI-1, the amidolytic activity of Factor XIIa, Factor XIa, and plasma kallikrein was neutralized by this inhibitor in a time-dependent and concentration-dependent manner. Minimum values estimated for the apparent second-order rate constant of inhibition were 1.6 x 10(4), 2.1 x 10(5), and 6.0 x 10(4) M-1 s-1 for Factor XIIa, Factor XIa, and plasma kallikrein, respectively. These data define new reactions between coagulation and fibrinolysis proteins and suggest that a major mechanism for stimulation of the intrinsic fibrinolytic pathway may involve neutralization of PAI-1 by Factor XIa.  相似文献   

17.
We prepared heparin-inserted phospholipid liposomes as a functional model of heparan sulfate present on the vascular surface and examined tissue plasminogen activator (t-PA) catalyzed plasminogen activation on the liposome surface. Kinetic analyses showed a marked increase in the affinity of t-PA for Lys-plasminogen in the presence of heparin-inserted phosphatidylcholine (PC) liposomes. The catalytic efficiency (kcat/Km) of t-PA for the plasminogen activation on the surface of heparin-inserted PC liposomes was 5.4 times that on the surface of heparin-free PC liposomes. This stimulatory action of immobilized heparin was apparently affected by changing the phospholipid component of liposomes. Phosphatidylethanolamine or stearylamine, having a positively charged group, reduced the catalytic efficiency of t-PA by raising its Km value (10-fold), whereas negatively charged phospholipids, phosphatidylserine and phosphatidylinositol, did not affect the efficiency. t-PA and generated plasmin bound to the liposome surface heparin were protected from inhibition by plasminogen activator inhibitor type 1 and alpha 2-plasmin inhibitor, respectively. t-PA-induced clot lysis of euglobulin or whole plasma, which contained native (Glu-) plasminogen and the above inhibitors, was also accelerated by addition of heparin-inserted PC liposomes. These results suggest that the vascular surface heparin-like molecules may play an important role in modulating fibrinolytic events. The principles of conjugation of t-PA with a biologically active liposome will be applied to the construction of better thrombolytic agents.  相似文献   

18.
Type 1 plasminogen activator inhibitor (PAI-1), the primary inhibitor of tissue-type plasminogen activator (t-PA), is found in plasma and platelets. PAI-1 circulates in complex with vitronectin (Vn), an interaction that stabilizes PAI-1 in its active conform. In this study, we examined the binding of platelet-derived Vn and PAI-1 to the surface of isolated platelets. Flow cytometry indicate that, like P-selectin, PAI-1, and Vn are found on the surface of thrombin- or calcium ionophore-activated platelets and platelet microparticles. The binding of PAI-1 to the activated platelet surface is Vn-dependent. Vn mediates the binding of PAI-1 to platelet surfaces through a high affinity (K(d) of 80 nm) binding interaction with the NH(2) terminus of vimentin, and this Vn-binding domain is expressed on the surface of activated platelets and platelet microparticles. Immunological and functional assays indicate that only -5% of the total PAI-1 in platelet releasates is functionally active, and it co-precipitates with Vn, and the vimentin-enriched cytoskeleton fraction of activated platelet debris. The remaining platelet PAI-1 is inactive, and does not associate with the cytoskeletal debris of activated platelets. Confocal microscopic analysis of platelet-rich plasma clots confirm the co-localization of PAI-1 with Vn and vimentin on the surface of activated platelets, and platelet microparticles. These findings suggest that platelet vimentin may regulate fibrinolysis in plasma and thrombi by binding platelet-derived Vn.PAI-1 complexes.  相似文献   

19.
20.
Transgenic mice expressing IGFBP-5 in the mammary gland exhibit increased cell death and plasmin generation. Because IGFBP-5 has been reported to bind to plasminogen activator inhibitor-1 (PAI-1), we determined the effects of this interaction in HC11 cells. PAI-1 prevented plasmin generation from plasminogen and inhibited cleavage of focal adhesions, expression of caspase 3, and cell death. IGFBP-5 could in turn prevent the effects of PAI-1. IGFBP-5 mutants with reduced affinity for IGF-I (N-term) or deficient in heparin binding (HEP- and C-term E and F) were also effective. This was surprising because IGFBP-5 reportedly interacts with PAI-1 via its heparin-binding domain. Biosensor analysis confirmed that, although wild-type IGFBP-5 and N-term both bound to PAI-1, the C-term E had greatly decreased interaction with PAI-1. This suggests that IGFBP-5 does not antagonize the actions of PAI-1 by a direct molecular interaction. In a cell-free system, using tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) to activate plasminogen, PAI-1 inhibited plasmin generation induced by both activators, whereas IGFBP-5 prevented the effects of PAI-1 on tPA but not uPA. Furthermore, we noted that IGFBP-5 activated plasminogen to a greater extent than could be explained solely by inhibition of PAI-1, suggesting that IGFBP-5 could directly activate tPA. Indeed, IGFBP-5 and the C-term E and F were all able to enhance the activity of tPA but not uPA. These data demonstrate that IGFBP-5 can enhance the activity of tPA and that this can result in cell death induced by cleavage of focal adhesions. Thus IGFBP-5 can induce cell death by both sequestering IGF-I and enhancing plasmin generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号