首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Ubiquitination and subsequent degradation of critical cell cycle regulators is a key mechanism exploited by the cell to ensure an irreversible progression of cell cycle events. The anaphase-promoting complex (APC) is a ubiquitin ligase that targets proteins for degradation by the 26S proteasome. Here we identify the Hsl1p protein kinase as an APC substrate that interacts with Cdc20p and Cdh1p, proteins that mediate APC ubiquitination of protein substrates. Hsl1p is absent in G(1), accumulates as cells begin to bud, and disappears in late mitosis. Hsl1p is stabilized by mutations in CDH1 and CDC23, both of which result in compromised APC activity. Unlike Hsl1p, Gin4p and Kcc4p, protein kinases that have sequence homology to Hsl1p, were stable in G(1)-arrested cells containing active APC. Mutation of a destruction box motif within Hsl1p (Hsl1p(db-mut)) stabilized Hsl1p. Interestingly, this mutation also disrupted the Hsl1p-Cdc20p interaction and reduced the association between Hsl1p and Cdh1p in coimmunoprecipitation studies. These findings suggest that the destruction box motif is required for Cdc20p and, to a lesser extent, for Cdh1p to target Hsl1p to the APC for ubiquitination. Hsl1p has been previously shown to inhibit Swe1p, a protein kinase that negatively regulates the cyclin-dependent kinase Cdc28p, by promoting Swe1p degradation via SCF(Met30) in a bud morphogenesis checkpoint. Results of the present work indicate that Hsl1p is degraded in an APC-dependent manner and suggest a link between the SCF (Skp1-cullin-F box) and APC-proteolytic systems that may help to coordinate the proper progression of cell cycle events.  相似文献   

3.
Signal transduction mediated by the single yeast isozyme of protein kinase C (Pkc1p) is essential for the maintenance of cellular integrity in this model eukaryote. The past few years have seen a dramatic increase in our knowledge of the upstream regulatory factors that modulate Pkc1p activity (e.g. Tor2p, Rom1p, Rom2p, Rho1p, Slg1p, Mid2p) and of the downstream targets of the MAP kinase cascade triggered by it (e.g. Rlm1p, SBF complex). The picture that has emerged connects this pathway to a variety of other cellular processes, such as cell cycle progression (Cdc28p, Swi4p), mating (Ste20p), nutrient sensing (Ira1p), calcium homeostasis (calcineurin, Mid2p, Fks2p) and the structural dynamics of the cytoskeleton (Spa1p, Bni1p).  相似文献   

4.
The Saccharomyces cerevisiae homologs, Pkh1/2p, of the mammalian 3-phosphoinositide-dependent protein kinase 1 (PDK1) regulate the Pkc1-MAP kinase cascade and the partially parallel Ypk1/2p pathway(s) that control growth and cell integrity. Mammalian PDK1 is regulated by 3-phosphoinositides, whereas Pkh1/2p are regulated by sphingolipid long-chain bases (LCBs). Recently Pkh1/2p were found to complex with two related proteins, Pil1p (Ygr086) and Lsp1p (Ypl004). Because these two proteins are not related to any known protein we sought to characterize their functions. We show that Pkh1p phosphorylates both proteins in vitro in a reaction that is only weakly regulated by LCBs. In contrast, LCBs inhibit phosphorylation of Pil1p by Pkh2p, whereas LCBs stimulate phosphorylation of Lsp1p by Pkh2p. We find that Pil1p and Lsp1p down-regulate resistance to heat stress and, specifically, that they down-regulate the activity of the Pkc1p-MAP and Ypk1p pathways during heat stress. Pil1p and Lsp1p are thus the first proteins identified as regulators of Pkh1/2p. An unexpected finding was that the level of Ypk1p is greatly reduced in pkc1Delta cells, indicating that Pkc1p controls the level of Ypk1p. Homologs of Pil1p and Lsp1p are widespread in nature, and our results suggest that they may be negative regulators of PDK-like protein kinases and their downstream cellular pathways that control cell growth and survival.  相似文献   

5.
Li N  Li Q  Cao X  Zhao G  Xue L  Tong T 《FEBS letters》2011,585(19):3106-3112
  相似文献   

6.
The cyclin-dependent kinase (Cdk) inhibitors p21(Cip1) and p27(Kip1) have been proposed to exert redundant functions in cell cycle progression and differentiation programs, although nonoverlapping functions have also been described. To gain further insights into the relevant mechanisms and to detect possible functional differences between both proteins, we conditionally expressed p21(Cip1) and p27(Kip1) in K562, a multipotent human leukemia cell line. Temporal ectopic expression of either p21(Cip1) or p27(Kip1) arrested proliferation, inhibited Cdk2 and Cdk4 activities, and suppressed retinoblastoma phosphorylation. However, whereas p21(Cip1) arrested cells in both G(1) and G(2) cell cycle phases, p27(Kip1) blocked the G(1)/S-phase transition. Furthermore, although both p21(Cip1) and p27(Kip1) associated with Cdk6, only p27(Kip1) significantly inhibited its activity. Most importantly, each protein promoted differentiation along a distinct pathway; p21(Cip1) triggered megakaryocytic maturation, whereas p27(Kip1) resulted in the expression of erythroid markers. Consistently, p21(Cip1) and p27(Kip1) were rapid and transiently up-regulated when K562 cells are differentiated into megakaryocytic and erythroid lineages, respectively. These findings demonstrate distinct functions of p21(Cip1) and p27(Kip1) in cell cycle regulation and differentiation and indicate that these two highly related proteins possess unique biological activities and are not functionally interchangeable.  相似文献   

7.
We previously reported that the reductive activities of yeast protein-disulfide isomerase (PDI) family proteins did not completely explain their contribution to the viability of Saccharomyces cerevisiae (Kimura, T., Hosoda, Y., Kitamura, Y., Nakamura, H., Horibe, T., and Kikuchi, M. (2004) Biochem. Biophys. Res. Commun. 320, 359-365). In this study, we examined oxidative refolding activities and found that Mpd1p, Mpd2, and Eug1p exhibit activities of 13.8, 16.0, and 2.16%, respectively, compared with Pdi1p and that activity for Eps1p is undetectable. In analyses of interactions between yeast PDI proteins and endoplasmic reticulum molecular chaperones, we found that Mpd1p alone does not have chaperone activity but that it interacts with and inhibits the chaperone activity of Cne1p, a homologue of mammalian calnexin, and that Cne1p increases the reductive activity of Mpd1p. These results suggest that the interface between Mpd1p and Cne1p is near the peptide-binding site of Cne1p. In addition, Eps1p interacts with Pdi1p, Eug1p, Mpd1p, and Kar2p with dissociation constants (KD) in the range of 10(-7) to 10(-6). Interestingly, co-chaperone activities were completely suppressed in Eps1p-Pdi1p and Eps1p-Mpd1p complexes, although only Eps1p and Pdi1p have chaperone activity. The in vivo consequences of these results are discussed.  相似文献   

8.
Xpo1p (Crm1p) is the nuclear export receptor for proteins containing a leucine-rich nuclear export signal (NES). Xpo1p, the NES-containing protein, and GTP-bound Ran form a complex in the nucleus that translocates across the nuclear pore. We have identified Yrb1p as the major Xpo1p-binding protein in Saccharomyces cerevisiae extracts in the presence of GTP-bound Gsp1p (yeast Ran). Yrb1p is cytoplasmic at steady-state but shuttles continuously between the cytoplasm and the nucleus. Nuclear import of Yrb1p is mediated by two separate nuclear targeting signals. Export from the nucleus requires Xpo1p, but Yrb1p does not contain a leucine-rich NES. Instead, the interaction of Yrb1p with Xpo1p is mediated by Gsp1p-GTP. This novel type of export complex requires the acidic C-terminus of Gsp1p, which is dispensable for the binding to importin beta-like transport receptors. A similar complex with Xpo1p and Gsp1p-GTP can be formed by Yrb2p, a relative of Yrb1p predominantly located in the nucleus. Yrb1p also functions as a disassembly factor for NES/Xpo1p/Gsp1p-GTP complexes by displacing the NES protein from Xpo1p/Gsp1p. This Yrb1p/Xpo1p/Gsp1p complex is then completely dissociated after GTP hydrolysis catalyzed by the cytoplasmic GTPase activating protein Rna1p.  相似文献   

9.
10.
Our studies address questions pertaining to the regulation of D cyclin-cdk4 activity, and the following results were obtained. Conditions that increased the abundance of the D cyclins also increased the abundance of enzymatically active D cyclin-cdk4 complexes in mouse embryo fibroblasts (MEFs) lacking both p27(Kip1) and p21(Cip1) (p27/p21(-/-)). Such conditions included ectopic expression of cyclin D1 and inhibition of D cyclin degradation by the proteasome inhibitor MG132. However, as determined by treatment of wild-type MEFs with MG132, maximal accumulation of D cyclin-cdk4 complexes required p27(Kip1) and p21(Cip1) and coincided with the formation of inactive D cyclin-cdk4-p27(Kip1) or -p21(Cip1) complexes. p27(Kip1) or p21(Cip1) also increased the abundance of D cyclin-cdk4 complexes and reduced amounts of cdk4 activity when ectopically expressed in p27/p21(-/-) MEFs. Lastly, increases in the stability of the D cyclins accounted for their greater abundance in wild-type MEFs than in p27/p21(-/-) MEFs. We conclude that (i) D cyclin-cdk4 complexes are formed and become active in the absence of p27(Kip1) and p21(Cip1) and (ii) p27(Kip1) and p21(Cip1) maximize the accumulation but inhibit the activity of D cyclin-cdk4 complexes. We suggest that D cyclin-cdk4 complexes are more stable when bound to p27(Kip1) or p21(Cip1) and that formation of ternary complexes also stabilizes the D cyclins.  相似文献   

11.
12.
13.
14.
15.
We investigated the role of some key regulators of cell cycle in the activation of caspases during apoptosis of insulin-secreting cells after sustained depletion of GTP by a specific inosine 5'-monophosphate dehydrogenase inhibitor, mycophenolic acid (MPA). p21(Waf1/Cip1) was significantly increased following MPA treatment, an event closely correlated with the time course of caspase activation under the same conditions. MPA-induced p21(Waf1/Cip1) was not mediated by p53, since p53 mass was gradually reduced over time of MPA treatment. The increment of p21(Waf1/Cip1) by MPA was further enhanced in the presence of a pan-caspase inhibitor, indicating that the increased p21(Waf1/Cip1) may occur prior to caspase activation. This notion of association of p21(Waf1/Cip1) accumulation with caspase activation and apoptosis was substantiated by using mimosine, a selective p21(Waf1/Cip1) inducer independent of p53. Mimosine, like MPA, also increased p21(Waf1/Cip1), promoted apoptosis and simultaneously increased the activity of caspases. Furthermore, knocking down of p21(Waf1/Cip1) transfection of siRNA duplex inhibited caspase activation and apoptosis due to GTP depletion. In contrast to p21(Waf1/Cip1), a reduction in p27(Kip1) occurred in MPA-treated cells. These results indicate that p21(Waf1/Cip1) may act as an upstream signal to block mitogenesis and activate caspases which in turn contribute to induction of apoptosis.  相似文献   

16.
17.
The Sec1/Munc18 protein family members perform an essential, albeit poorly understood, function in association with soluble n-ethylmaleimide sensitive factor adaptor protein receptor (SNARE) complexes in membrane fusion. The Saccharomyces cerevisiae Sec1p has a C-terminal tail that is missing in its mammalian homologues. Here we show that deletion of the Sec1p tail (amino acids 658-724) renders cells temperature sensitive for growth, reduces sporulation efficiency, causes a secretion defect, and abolishes Sec1p-SNARE component coimmunoprecipitation. The results show that the Sec1p tail binds preferentially ternary Sso1p-Sec9p-Snc2p complexes and it enhances ternary SNARE complex formation in vitro. The bimolecular fluorescence complementation (BiFC) assay results suggest that, in the SNARE-deficient sso2-1 Δsso1 cells, Mso1p, a Sec1p binding protein, helps to target Sec1p(1-657) lacking the C-terminal tail to the sites of secretion. The results suggest that the Mso1p C terminus is important for Sec1p(1-657) targeting. We show that, in addition to Sec1p, Mso1p can bind the Rab-GTPase Sec4p in vitro. The BiFC results suggest that Mso1p acts in close association with Sec4p on intracellular membranes in the bud. This association depends on the Sec4p guanine nucleotide exchange factor Sec2p. Our results reveal a novel binding mode between the Sec1p C-terminal tail and the SNARE complex, and suggest a role for Mso1p as an effector of Sec4p.  相似文献   

18.
Import of proteins containing a classical nuclear localization signal (NLS) into the nucleus is mediated by importin alpha and importin beta. Srp1p, the Saccharomyces cerevisiae homologue of importin alpha, returns from the nucleus in a complex with its export factor Cse1p and with Gsp1p (yeast Ran) in its GTP-bound state. We studied the role of the nucleoporin Nup2p in the transport cycle of Srp1p. Cells lacking NUP2 show a specific defect in both NLS import and Srp1p export, indicating that Nup2p is required for efficient bidirectional transport of Srp1p across the nuclear pore complex (NPC). Nup2p is located at the nuclear side of the central gated channel of the NPC and provides a binding site for Srp1p via its amino-terminal domain. We show that Nup2p effectively releases the NLS protein from importin alpha-importin and beta and strongly binds to the importin heterodimer via Srp1p. Kap95p (importin beta) is released from this complex by a direct interaction with Gsp1p-GTP. These data suggest that besides Gsp1p, which disassembles the NLS-importin alpha-importin beta complex upon binding to Kap95p in the nucleus, Nup2p can also dissociate the import complex by binding to Srp1p. We also show data indicating that Nup1p, a relative of Nup2p, plays a similar role in termination of NLS import. Cse1p and Gsp1p-GTP release Srp1p from Nup2p, which suggests that the Srp1p export complex can be formed directly at the NPC. The changed distribution of Cse1p at the NPC in nup2 mutants also supports a role for Nup2p in Srp1p export from the nucleus.  相似文献   

19.
The 549-amino acid yeast RNA triphosphatase Cet1p catalyzes the first step in mRNA cap formation. Cet1p consists of three domains as follows: (i) a 230-amino acid N-terminal segment that is dispensable for catalysis in vitro and for Cet1p function in vivo; (ii) a protease-sensitive segment from residues 230 to 275 that is dispensable for catalysis but essential for Cet1p function in vivo; and (iii) a catalytic domain from residues 275 to 539. Sedimentation analysis indicates that purified Cet1(231-549)p is a homodimer. Cet1(231-549)p binds in vitro to the yeast RNA guanylyltransferase Ceg1p to form a 7.1 S complex that we surmise to be a trimer consisting of two molecules of Cet1(231-549)p and one molecule of Ceg1p. The more extensively truncated protein Cet1(276-549)p, which cannot support cell growth, sediments as a monomer and does not interact with Ceg1p. An intermediate deletion protein Cet1(246-549)p, which supports cell growth only when overexpressed, sediments principally as a discrete salt-stable 11.5 S homo-oligomeric complex. These data implicate the segment of Ceg1p from residues 230 to 275 in regulating self-association and in binding to Ceg1p. Genetic data support the existence of a Ceg1p-binding domain flanking the catalytic domain of Cet1p, to wit: (i) the ts growth phenotype of 2mu CET1(246-549) is suppressed by overexpression of Ceg1p; (ii) a ts alanine cluster mutation CET1(201-549)/K250A-W251A is suppressed by overexpression of Ceg1p; and (iii) 15 other cet-ts alleles with missense changes mapping elsewhere in the protein are not suppressed by Ceg1p overexpression. Finally, we show that the in vivo function of Cet1(275-549)p is completely restored by fusion to the guanylyltransferase domain of the mouse capping enzyme. We hypothesize that the need for Ceg1p binding by yeast RNA triphosphatase can by bypassed when the triphosphatase catalytic domain is delivered to the RNA polymerase II elongation complex by linkage in cis to the mammalian guanylyltransferase.  相似文献   

20.
Transcriptional activation of p53 by Pitx1   总被引:1,自引:0,他引:1  
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号