首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Ethanolamine Kinase Activity in Purified Myelin of Rat Brain   总被引:1,自引:1,他引:0  
Highly purified rat brain myelin showed a significant level of ethanolamine kinase, amounting to 17% of the specific activity of whole brain homogenate. This kinase level in myelin was an order of magnitude higher than that of lactate dehydrogenase, a marker for cytosol. Subcellular distribution studies revealed that in addition to myelin, this kinase was present in the P1, P2, P3, and cytosolic fractions with highest relative specific activity in the latter. The possibility that myelin activity resulted from adsorption of the soluble enzyme was unlikely since activity was retained in myelin that had been washed with buffered sodium chloride or taurocholate. Mixing experiments and repeated purification further indicated that the enzyme is intrinsic to myelin. Kinetic studies indicated similar Km values for ethanolamine in the microsomal, cytosolic, and myelin fractions but a significantly lower apparent Km for ATP in myelin. This and other differences suggested the possible existence of isozymes. Establishment of the presence of this kinase completes the list of phospholipid synthesizing enzymes needed to synthesize phosphatidylethanolamine from diacylglycerol within the myelin membrane.  相似文献   

2.
Further Evidence for an Intrinsic Neuraminidase in CNS Myelin   总被引:4,自引:4,他引:0  
An intrinsic neuraminidase activity in rat brain CNS myelin has been demonstrated and compared with the neuraminidase activity in rat brain microsomes. With use of ganglioside GM3 as a substrate, the myelin-associated neuraminidase exhibited a shallow pH curve with an optimum at pH 4.8 whereas the microsomal activity had a marked optimum at pH 4-4.3. Neuraminidase activity in both fractions was optimized in 0.3% Triton CF-54 but activation was much greater in the microsomes. When the neuraminidase activities were examined at 60 degrees C, the myelin neuraminidase activity was more than sevenfold of that observed at 37 degrees C and was linear for at least 2 h; the microsomal activity increased only fivefold initially and exhibited a continual loss in activity. Addition of excess microsomes to the total homogenate prior to myelin isolation resulted in no change in myelin neuraminidase activity. When the two membrane fractions were examined at equivalent protein concentrations in the presence of additional cations or EDTA (1 mM), similar but not identical effects on neuraminidase activity were seen. The microsomal neuraminidase was considerably more susceptible to inhibition by divalent copper ion. Activity in both fractions was markedly inhibited by Hg2+ and Ag+ whereas EDTA had no effect on either activity. The myelin-associated neuraminidase activity was the highest in cerebral hemispheres, followed by brainstem, cerebellum, and spinal cord and was extremely low in sciatic nerve. In fact, the myelin neuraminidase activity was higher than the microsomal enzyme activity in the cerebral hemispheres.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Highly purified rat brain myelin isolated by two different procedures showed appreciable activity for CDP-ethanolamine: 1,2-diacyl-sn-glycerol ethanolaminephosphotransferase (EC 2.7.8.1). Specific activity was close to that of total homogenate and approximately 12-16% that of brain microsomes. Three other lipid-synthesizing enzymes, cerebroside sulfotransferase, lactosylceramide sialyltransferase, and serine phospholipid exchange enzyme, were found to have less than 0.5% the specific activity in myelin compared with microsomes. Washing the myelin with buffered salt or taurocholate did not remove the phosphotransferase, but activity was lost from both myelin and microsomes by treatment with Triton X-100. It resembled the microsomal enzyme in having a pH optimum of 8.5 and a requirement for Mn2+ and detergent, but differed in showing no enhancement with EGTA. The diolein Km was similar for the two membranes (2.5-4 x 10(-4) M), but the CDP-ethanolamine Km was lower for myelin (3-4 x 10(-5) M) than for microsomes (11 - 13 x 10(-5 M). Evidence is reviewed that this enzyme is able to utilize substrate from the axon in situ.  相似文献   

4.
Is Na + K ATPase a Myelin-Associated Enzyme?   总被引:6,自引:4,他引:2  
The Na + K ATPase activity associated with purified myelin has been investigated. On the basis of marker enzyme studies, the Na + K ATPase activity of myelin was higher than could be accounted for by microsomal contamination. Fractions prepared from white matter-enriched areas of rat brain showed a threefold enrichment in Na + K ATPase activity in myelin as compared with the white matter homogenate. The ATPase activity in myelin was stimulated fourfold by treatment with sodium deoxycholate, but the activity in the whole brain homogenate and the microsomal fraction was only doubled. This discontinuity temperature for Na + K ATPase activity was significantly higher for the myelin fraction (29 degrees C) than for the microsomal fraction (21 degrees C), but the energies of activation, both above and below the discontinuity temperature, were the same for both fractions, Myelin Na + K ATPase had a lower affinity for strophanthidin than the microsomal enzyme, but both fractions were inhibited to the same extent by 10-3 M-strophanthidin. The evidence thus indicated that much of the ATPase activity of myelin is not the result of microsomal contamination. Although the possibility of axolemmal contamination cannot be ruled out conclusively, indirect evidence suggest that this is not a significant factor and that Na + K ATPase may be a myelin-associated enzyme.  相似文献   

5.
Abstract: Rats that Received intracranial injections of [3H]leucine at 14 days of age were killed on days 17, 24, 38, 55, and 89 post-injection. Brains were homogenized and the myelin membranes separated in a sucrose density gradient. At day 17 sodium dodecylsulfate polyacrylamide gels of water-shocked, delipidated membrane fractions showed a difference in the specific activity of myelin proteins across the gradient. A decrease in specific activity was found in all of the proteins in the denser fractions, compared with the lighter fractions. As time after injection progressed, the difference became more pronounced; a two- to threefold decrease in specific activity was seen across the gradient in the various myelin proteins. The proteins of the lightest membrane fractions retained their high specific activity throughout the experiment in spite of extensive new myelin synthesis. Taking this new myelin into account, the decrease in specific activity in the denser myelin fractions could be explained by isotope dilution. Therefore, proteins present in at least some of the myelin are essentially stable.  相似文献   

6.
5''-Nucleotidase in Rat Brain Myelin   总被引:11,自引:9,他引:2  
Rat brain myelin showed substantial activity of 5'-nucleotidase. The specific activity in myelin was enriched two- to threefold over that in rat brain homogenates, and the total activity in myelin accounted for approximately 24% of the activity in the homogenates. The 5'-nucleotidase in the homogenates and in isolated myelin had optimum activity at pH 7.5--9.0, was stimulated by Mg2+ and Mn2+, and was inhibited by Co2+, Zn2+, EDTA, and EGTA. 5'-AMP, 5'-UMP, and 5'-CMP were the preferred substrates, and 5'-GMP was hydrolyzed at approximately one-half the rate of the other mononucleotides. The very low rates of cleavage of beta-glycerophosphate and 2'-AMP ruled out any significant contribution of nonspecific phosphatase to the observed 5'-nucleotidase activity in myelin. The 5'-nucleotidase was inhibited by concanavalin A and was protected by alpha-methyl-D-mannoside against inhibited by that lectin, suggesting that this enzyme in the CNS is a glycoprotein. It is concluded from these data, and from histochemical observations made in other laboratories, that the myelin sheath is one major locus of 5'-nucleotidase in the rat brain.  相似文献   

7.
GTP has been found to markedly enhance the formation of CDP-diacylglycerol in rat liver microsomes. Neither GDP, GMP nor the nonhydrolyzable analogues of GTP increased the synthesis of the liponucleotide. The GTP stimulation of phosphatidate cytidylyltransferase activity is inhibited by EDTA and NaF. GTP enhances the activity of the enzyme in a concentration-, time-, and temperature-dependent manner and preincubation of rat liver microsomes with GTP produces a persistently activated phosphatidate cytidylyltransferase. GTP reduces the Km for phosphatidic acid, but has no effect on either the Km for CTP or the Vmax of the reaction. GTP, by stimulating the activity of the phosphatidate cytidylyltransferase, enhances the formation of phosphatidylinositol from CTP, phosphatidic acid, and inositol. Evidence is presented suggesting that the mechanism by which GTP stimulates the activity of the phosphatidate cytidylyltransferase involves a covalent modification of the enzyme itself or a protein intimately associated with the phosphatidate cytidylyltransferase.  相似文献   

8.
Okadaic acid, a specific inhibitor of protein phosphatase 1 and 2A, inhibited the synthesis of phosphatidylethanolamine via the CDPethanolamine pathway in isolated hepatocytes. Pulse-chase experiments and measurement of the enzyme activity demonstrated that the inhibition of phosphatidylethanolamine synthesis was not caused by an inhibition of CTP:phosphoethanolamine cytidylyltransferase, the putative regulatory enzyme. However, okadaic acid decreased the cellular diacylglycerol level to 30% of that in control cells. The data suggest that the availability of diacylglycerol limits phosphatidylethanolamine synthesis in okadaic acid-treated hepatocytes.  相似文献   

9.
Tsang  D.  Tsang  Y. S.  Ho  W. K. K.  Wong  R. N. S. 《Neurochemical research》1997,22(7):811-819
The zinc-binding proteins (ZnBPs) in porcine brain were characterized by the radioactive zinc-blot technique. Three ZnBPs of molecular weights about 53 kDa, 42 kDa, and 21 kDa were identified. The 53 kDa and 42 kDa ZnBPs were found in all subcellular fractions while the 21 kDa ZnBP was mainly associated with particulate fractions. This 21 kDa ZnBP was identified by internal protein sequence data as the myelin basic protein. Further characterization of its electrophoretic properties and cyanogen bromide cleavage pattern with the authentic protein confirmed its identity. The zinc binding properties of myelin basic protein are metal specific, concentration dependent and pH dependent. The zinc binding property is conferred by the histidine residues since modification of these residues by diethyl-pyrocarbonate would abolish this activity. Furthermore, zinc ion was found to potentiate myelin basic protein-induced phospholipid vesicle aggregation. It is likely that zinc plays an important role in myelin compaction by interacting with myelin basic protein.  相似文献   

10.
11.
Hydrolysis of Inositol Trisphosphate by Purified Rat Brain Myelin   总被引:1,自引:0,他引:1  
Abstract: Highly purified rat brain myelin was found to hydrolyze inositol 1,4,5-trisphosphate to inositol 1.4-bisphosphate, but subsequent hydrolysis of the latter, characteristic of whole brainstem, did not occur. Inositol 1,4,5-trisphosphate 5-phosphatase in myelin was ∼ 33% of the level in microsomes and 127% that of the cytosolic fraction from brainstem. The myelin and microsomal enzymes had similar properties, as follows: activation by saponin, requirement for Mg2+ and similar Kact (0.16 and 0.13 mM), Km (8.7 ± 2.5 and 7.0 ± 1.0 μM), and pH optima (6.6-6.8). Vmax values were 11.2 ± 1.0 and 26.3 ± 2.0 nmol/mg/min for myelin and microsomes, respectively. A possible role for this enzyme in phosphoinositide-mediated signal transduction within myelin and its subcompartments is discussed.  相似文献   

12.
We have purified CTP:phosphorylcholine cytidylyltransferase from rat liver cytosol 2180-fold to a specific activity of 12,250 nmol/min/mg of protein. The purified enzyme was stable at -70 degrees C in the presence of Triton X-100 and 0.2 M phosphate. The purified enzyme gave a single protein and activity band on nondenaturing polyacrylamide electrophoresis. Separation by sodium dodecyl sulfate-polyacrylamide electrophoresis indicated that the purified enzyme contained subunits with Mr of 39,000 and 48,000. Gel filtration analysis indicated that the native enzyme was a tetramer containing two 39,000 and two 48,000 subunits. The purified enzyme appeared to bind to Triton X-100 micelles, one molecule of tetramer/micelle. Maximal activity was obtained with 100 microM phosphatidylcholine-oleic acid vesicles (8-10-fold stimulation). Phosphatidylglycerol produced a 4-5-fold increase in activity at 10 microM. The pH optimum and true Km values for CTP and phosphorylcholine were similar to those reported previously for crude preparations of cytidylyltransferase. The overall behavior of cytidylyltransferase during purification and subsequent analysis suggested that it has hydrophobic properties similar to those exhibited by membrane proteins.  相似文献   

13.
Incubation of myelin purified from rat spinal cord with CaCl2 (1-5 mM) in 10-50 mM Tris-HCl buffer at pH 7.6 containing 2 mM dithiothreitol resulted in the loss of both the large and small myelin basic proteins (MBPs), whereas incubation of myelin with Triton X-100 (0.25-0.5%) and 5 mM EGTA in the absence of calcium produced preferential extensive loss of proteolipid protein (PLP) relative to MBP. Inclusion of CaCl2 but not EGTA in the medium containing Triton X-100 enhanced degradation of both PLP and MBPs. The Ca2+-activated neutral proteinase (CANP) activity is inhibited by EGTA (5 mM) and partially inhibited by leupeptin and/or E-64c. CANP is active at pH 5.5-9.0, with the optimum at 7-8. The threshold of Ca2+ activation is approximately 100 microM. The 150K neurofilament protein (NFP) was progressively degraded when incubated with purified myelin in the presence of Ca2+. These results indicate that purified myelin is associated with and/or contains a CANP whose substrates include MBP, PLP, and 150K NFP. The degradation of PLP (trypsin-resistant) in the presence of detergent suggests either release of enzyme from membrane and/or structural alteration in the protein molecule rendering it accessible to proteolysis. The myelin-associated CANP may be important not only in the turnover of myelin proteins but also in myelin breakdown in brain diseases.  相似文献   

14.
The specificity of CTP:phosphocholine cytidylyltransferase from rat liver for phosphorylated bases has been investigated. The apparent Km for phosphocholine was 0.17 mM. As the number of methyl substituents on the phospho-base decreased, the apparent Km increased: 4.0 mM for phosphodimethylethanolamine, 6.9 for phosphomonomethylethanolamine and 68.4 for phosphoethanolamine. The Vmax for the reaction was similar for phosphocholine (12.6 mumol/min per mg protein), phosphomonomethylethanolamine (13.5 mumol/min per mg protein) and phosphoethanolamine (9.2 mumol/min per mg protein). When phosphodimethylethanolamine was the substrate, the Vmax was 3-fold higher (40.3 mumol/min per mg protein). Phosphoethanolamine, phosphomonomethylethanolamine and phosphodimethylethanolamine were competitive inhibitors of the cytidylyltransferase when phosphocholine was used as substrate with Ki values of 18.5 mM, 9.3 mM and 1.5 mM, respectively. The results show that the cytidylyltransferase is highly specific for phosphocholine.  相似文献   

15.
The present study compared the properties of cholesterol ester hydrolase(s) in myelin and microsomes from rat, mouse and human brain. The results indicated that the enzyme activity in both myelin and microsomes from rat, mouse and human brain was optimal at pH 6.5 and required Triton X-100 for optimal activity. The enzyme activity in myelin was 3- to 4-fold higher in the presence of Trition X-100 than taurocholate. Addition of phosphatidyl serine enhanced (2 to 4 fold) the hydrolase activity in both myelin and microsomes. The properties of the enzyme in solubilized preparation of myelin were also similar to the properties of the enzyme in partially delipidated and solubilized preparations of microsomes. The activity was again optimal at pH 6.5, required Triton X-100 for optimal activity and was stimulated by phosphatidyl serine. These results indicate that the properties of cholesterol ester hydrolase in myelin are similar to those of the microsomal enzyme and that this is true for the fractions from both human and rodent brain. The data thus lead us to believe that the hydrolase activity in mammalian brain myelin and microsomes may reflect the distribution of a single enzyme in the two fractions rather than two distinct enzymes, one being specific to each fraction.  相似文献   

16.
CTP:phosphocholine cytidylyltransferase was located in both the cytosolic and particulate fractions from Chinese hamster ovary cells. The activity of the cytosolic form of the enzyme was greatly enhanced by incubation with sonicated preparations of several different lipids, although incubations with either phosphatidylcholine or 1,2-sn-diolein did not increase activity. The activation of the cytidylyltransferase in Chinese hamster ovary cells treated with phospholipase C from Clostridium perfringens occurred with a concomitant shift in the subcellular distribution of the enzyme from cytosolic to particulate fractions. This shift was rapid and did not require protein synthesis. Removal of phospholipase C from the cell cultures resulted in a return to basal levels of incorporation of [3H]choline into phosphatidylcholine, a decrease in the activity of cytidylyltransferase, and a loss of the membrane-bound form of the enzyme. Similar experiments with LM cells, which are resistant to exogenous phospholipase C, showed no change in subcellular distribution of cytidylyltransferase, suggesting that the activation of CTP:phosphocholine cytidylyltransferase required a change in membrane phospholipid composition. The results presented are discussed in terms of a mechanism of regulation of phosphatidylcholine production involving monitoring of membrane phospholipid composition.  相似文献   

17.
A new model system for the study of phosphatidylcholine biosynthesis is presented. Young rats were fed a diet that contained 5% cholesterol and 2% cholate. After 6 days there was a 2-fold increase in the concentration of plasma phospholipid (243 mg/dl compared to 132 mg/dl for control animals) and a 3-fold increase in the concentration of plasma phosphatidylcholine. The rate of phosphatidylcholine biosynthesis was measured after injection of [Me-3H]choline into the portal veins. The incorporation of tritium into choline, phosphocholine and betaine by liver was similar for experimental and control animals, whereas there was a 3-fold increased incorporation into phosphatidylcholine of the cholesterol/cholate-fed rats. The activities of the enzymes of phosphatidylcholine biosynthesis in cytosol and microsomes were assayed. The only change detected was in the cytosolic and microsomal activities of CTP: phosphocholine cytidylyltransferase which were increased more than 2-fold in specific activity. When total cytidylyltransferase activity per liver was determined, a dramatic translocation of the enzyme to microsomes was observed. The control livers had 24% of the cytidylyltransferase activity associated with microsomes, whereas this value was 61% in the livers from cholesterol/cholate-fed rats. When the cytosolic cytidylyltransferase was assayed in the presence of phospholipid, the enzyme was stimulated several-fold and the difference in specific activity between control and cholesterol/cholate-fed rats was abolished. The increased activity in cytosol appears to be the result of a 2-fold increase in the amount of phospholipid in the cytosol from cholesterol/cholate-fed rats. The data strongly support the hypothesis that the special diet stimulates phosphatidylcholine biosynthesis by causing a translocation of the cytidylyltransferase from cytosol to microsomes where it is activated.  相似文献   

18.
CTP:phosphoethanolamine cytidylyltransferase (ECT) is a key enzyme in the CDP-ethanolamine branch of the Kennedy pathway, which is the primary pathway of phosphatidylethanolamine (PE) synthesis in mammalian cells. Here, the enzymatic properties of recombinant human ECT (hECT) were characterized. The catalytic reaction of hECT obeyed Michaelis–Menten kinetics with respect to both CTP and phosphoethanolamine. hECT is composed of two tandem cytidylyltransferase (CT) domains as ECTs of other organisms. The histidines, especially the first histidine, in the CTP-binding motif HxGH in the N-terminal CT domain were critical for its catalytic activity in vitro, while those in the C-terminal CT domain were not. Overexpression of the wild-type hECT and hECT mutants containing amino acid substitutions in the HxGH motif in the C-terminal CT domain suppressed the growth defect of the Saccharomyces cerevisiae mutant of ECT1 encoding ECT in the absence of a PE supply via the decarboxylation of phosphatidylserine, but overexpression of hECT mutants of the N-terminal CT domain did not. These results suggest that the N-terminal CT domain of hECT contributes to its catalytic reaction, but C-terminal CT domain does not.  相似文献   

19.
The reaction catalyzed by CTP:choline-phosphate cytidylyltransferase (EC 2.7.7.15) has been postulated to be a control reaction in the synthesis of phosphatidylcholine (PtdCho) in many animal tissues and some plants. In 3-day-old castor bean (Ricinus communis L. var. Hale) endosperm the majority of cytidylyltransferase activity resided in a 12,000gav 10-min pellet. Following density-gradient fractionation, 60 to 70% of the enzyme activity was associated with the endoplasmic reticulum (ER) fraction, with the remainder in the particulate fraction being in an unidentified membrane band (band A), less than occurred in the soluble fractions. The properties and kinetics of the forward and reverse reactions are described. About 40% of the total ER activity could be solubilized by treatment of the fraction with 0.32 M KCl, which resulted in a threefold increase in the specific activity of the enzyme. The Michaelis constants of the solubilized enzyme were similar to those of the ER activity. The activity of the solubilized enzyme was stimulated 35% by addition of phosphatidylglycerol or phosphatidylinositol to the assay. Addition of a number of other phospholipids to the incubation medium caused only a small change in activity (+/- 10%) but the enzyme could be stimulated up to 60% by the addition of 0.01-1 mM sodium oleate. A combination of 0.25 mM PtdCho with oleate in the assay resulted in additional stimulation at all concentrations of oleate. Oleate had no effect on the ER activity. These results are discussed in relation to the regulation of cytidylyltransferase activity in plants.  相似文献   

20.
A number of previous studies using in vivo and cultured fetal lung models have shown that the activity of choline-phosphate cytidylyltransferase, the enzyme which catalyzes a rate-limiting reaction in de novo phosphatidylcholine synthesis, is increased by glucocorticoids and other hormones which accelerate fetal lung maturation. To examine the mechanism of this glucocorticoid action further, we examined the effect of dexamethasone on cytidylyltransferase activity in cultured fetal rat lung explants and related it to specific dexamethasone binding. Dexamethasone stimulated cytidylyltransferase activity in the homogenate, microsomal and 105,000 X g supernatant fractions. The hormone did not alter the subcellular distribution of the enzyme, however; the bulk of the activity was in the supernatant fraction in both the control and dexamethasone-treated cultures. The dose-response curves for stimulation of cytidylyltransferase activity in the supernatant fraction and specific nuclear binding of dexamethasone were similar and both plateaued at approx. 20 nM. The EC50 for cytidylyltransferase stimulation was 6.6 nM and the Kd for dexamethasone binding was 6.8 nM. The relative potencies of various steroids for stimulating choline-phosphate cytidylyltransferase and for specific nuclear glucocorticoid binding were the same: dexamethasone greater than cortisol = corticosterone = dihydrocorticosterone greater than progesterone. The stimulation by dexamethasone of cytidylyltransferase activity and of choline incorporation into phosphatidylcholine were both abolished by actinomycin D. These data show that the stimulatory effect of dexamethasone on fetal rat lung choline-phosphate cytidylyltransferase activity is largely on the enzyme in the supernatant fraction and does not involve enzyme translocation to the microsomes as has been reported for cytidylyltransferase activation in some other systems. This effect of dexamethasone is a receptor-mediated process dependent on RNA and protein synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号