首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Deconvolution algorithms are widely used in conventional fluorescence microscopy, but they remain difficult to apply to deep imaging systems such as confocal and two-photon microscopy, due to the practical difficulty of measuring the system's point spread function (PSF), especially in biological experiments. Since a separate PSF measurement performed under the design optical conditions of the microscope cannot reproduce the true experimental conditions prevailing in situ, the most natural approach to solve the problem is to extract the PSF from the images themselves. We investigate here the approach of cropping an approximate PSF directly from the images, by exploiting the presence of small structures within the samples under study. This approach turns out to be practical in many cases, allowing significantly better restorations than with a design PSF obtained by imaging fluorescent beads in gel. We demonstrate the advantages of this approach with a number of deconvolution experiments performed both on artificially blurred and noisy test images, and on real confocal images taken within an in vitro preparation of the mouse hearing organ.  相似文献   

2.
Three-dimensional imaging by deconvolution microscopy   总被引:26,自引:0,他引:26  
Deconvolution is a computational method used to reduce out-of-focus fluorescence in three-dimensional (3D) microscope images. It can be applied in principle to any type of microscope image but has most often been used to improve images from conventional fluorescence microscopes. Compared to other forms of 3D light microscopy, like confocal microscopy, the advantage of deconvolution microscopy is that it can be accomplished at very low light levels, thus enabling multiple focal-plane imaging of light-sensitive living specimens over long time periods. Here we discuss the principles of deconvolution microscopy, describe different computational approaches for deconvolution, and discuss interpretation of deconvolved images with a particular emphasis on what artifacts may arise.  相似文献   

3.
三维宽场反卷积显微成像技术是应用光学切片方法获取三维标本的二维图像序列,然后通过反卷积图像处理方法进行图像恢复,进而进行三纺重建的一种以光学技术和图像处理技术为核心的业微成橡方法。本讲述了光学切片的基本原理,给出了反卷积处理中点扩展函数的理论模型和实验测试方法,然后对现存的反卷积算法做了对比。对这一领域的发展趋势做了预测。  相似文献   

4.
三维反卷积显微成像技术浅谈   总被引:1,自引:0,他引:1  
三维宽场反应卷积显微成像技术是应用光学切片方法获取三维标本的二维图像序列,然后通过反卷积图像处理方法进行图像恢复,进而进行三维重建的一种以光学技术和图像处理技术为核心的显微成像方法。本文讲述了光学切片的基本原理,给出了反卷积处理中点扩展函数的理论模型和实验测试方法,然后对现存的反卷积算法做了对比。最后,文章对这一领域的发展趋势作了预测。  相似文献   

5.
Photoactivated localization microscopy (PALM) and related fluorescent biological imaging methods are capable of providing very high spatial resolutions (up to 20 nm). Two major demands limit its widespread use on biological samples: requirements for photoactivatable/photoconvertible fluorescent molecules, which are sometimes difficult to incorporate, and high background signals from autofluorescence or fluorophores in adjacent focal planes in three-dimensional imaging which reduces PALM resolution significantly. We present here a high-resolution PALM method utilizing conventional EGFP as the photoconvertible fluorophore, improved algorithms to deal with high levels of biological background noise, and apply this to imaging higher order chromatin structure. We found that the emission wavelength of EGFP is efficiently converted from green to red when exposed to blue light in the presence of reduced riboflavin. The photon yield of red-converted EGFP using riboflavin is comparable to other bright photoconvertible fluorescent proteins that allow <20 nm resolution. We further found that image pre-processing using a combination of denoising and deconvolution of the raw PALM images substantially improved the spatial resolution of the reconstruction from noisy images. Performing PALM on Drosophila mitotic chromosomes labeled with H2AvD-EGFP, a histone H2A variant, revealed filamentous components of ∼70 nm. This is the first observation of fine chromatin filaments specific for one histone variant at a resolution approximating that of conventional electron microscope images (10–30 nm). As demonstrated by modeling and experiments on a challenging specimen, the techniques described here facilitate super-resolution fluorescent imaging with common biological samples.  相似文献   

6.
4Pi-confocal imaging in fixed biological specimens.   总被引:3,自引:0,他引:3       下载免费PDF全文
By combining the wavefronts produced by two high-aperture lenses, two-photon 4Pi-confocal microscopy allows three-dimensional imaging of transparent biological specimens with axial resolution in the 100-140-nm range. We reveal the imaging properties of a two-photon 4Pi-confocal microscope as applied to a fixed cell. We demonstrate that a fast, linear point deconvolution suffices to achieve axially superresolved 3D images in the cytoskeleton. Furthermore, we describe stringent algorithms for alignment and control of the two lenses. We also show how to compensate for the effects of a potential refractive index mismatch of the mounting medium with respect to the immersion system.  相似文献   

7.
Deconvolution enhances contrast in fluorescence microscopy images, especially in low-contrast, high-background wide-field microscope images, improving characterization of features within the sample. Deconvolution can also be combined with other imaging modalities, such as confocal microscopy, and most software programs seek to improve resolution as well as contrast. Quantitative image analyses require instrument calibration and with deconvolution, necessitate that this process itself preserves the relative quantitative relationships between fluorescence intensities. To ensure that the quantitative nature of the data remains unaltered, deconvolution algorithms need to be tested thoroughly. This study investigated whether the deconvolution algorithms in AutoQuant X3 preserve relative quantitative intensity data. InSpeck Green calibration microspheres were prepared for imaging, z-stacks were collected using a wide-field microscope, and the images were deconvolved using the iterative deconvolution algorithms with default settings. Afterwards, the mean intensities and volumes of microspheres in the original and the deconvolved images were measured. Deconvolved data sets showed higher average microsphere intensities and smaller volumes than the original wide-field data sets. In original and deconvolved data sets, intensity means showed linear relationships with the relative microsphere intensities given by the manufacturer. Importantly, upon normalization, the trend lines were found to have similar slopes. In original and deconvolved images, the volumes of the microspheres were quite uniform for all relative microsphere intensities. We were able to show that AutoQuant X3 deconvolution software data are quantitative. In general, the protocol presented can be used to calibrate any fluorescence microscope or image processing and analysis procedure.  相似文献   

8.
The distribution of patterns of activity in different brain structures has been related to the encoding and processing of sensory information. Consequently, it is important to be able to image the distribution of these patterns to understand basic brain functions. The spatial resolution of voltage-sensitive dye (VSD) methods has recently been enhanced considerably by the use of video imaging techniques. The main factor that now hampers the resolution of VSD patterns is the inherent limitation of the optical systems. Unfortunately, the intrinsic characteristics of VSD images impose important limitations that restrict the use of general deconvolution techniques. To overcomes this problem, in this study an image restoration procedure has been implemented that takes into consideration the limiting characteristics of VSD signals. This technique is based on applying a set of imaging processing steps. First, the signal-to-noise (S/N) ratio of the images was improved to avoid an increase in the noise levels during the deconvolution procedures. For this purpose, a new filter technique was implemented that yielded better results than other methods currently used in optical imaging. Second, focal plane images were deconvolved using a modification of the well-known nearest-neighbor deconvolution algorithm. But to reduce the light exposure of the preparation and simplify image acquisition procedures, adjacent image planes were modeled according to the in-focus image planes and the empirical point spread function (PSF) profiles. Third, resulting focal plane responses were processed to reduce the contribution of optical responses that originate in distant image planes. This method was found to be satisfactory under simulated and real experimental conditions. By comparing the restored and unprocessed images, it was clearly demonstrated that this method can effectively remove the out-of-focus artifacts and produce focal plane images of better quality. Evaluations of the tissue optical properties allowed assessment of the maximum practical optical section thickness using this deconvolution technique in the optical system tested. Determination of the three-dimensional PSF permitted the correct application of deconvolution algorithms and the removal of the contaminating light arising from adjacent as well as distant optical planes. The implementation of this deconvolution approach in salamander olfactory bulb allowed the detailed study of the laminar distribution of voltage-sensitive changes across the bulb layer. It is concluded that (1) this deconvolution procedure is well suited to deconvolved low-contrast images and offers important advantages over other alternatives; (2) this method can be properly used only when the tissue optical properties are first determined; (3) high levels of light scattering in the tissue reduce the optical section capabilities of this technique as well as other deconvolution procedures; and (4) use of the highest numerical aperture in the objectives is advisable because this improves not only the light-collecting efficiency to detect poor-contrast images, but also the spatial frequency differences between adjacent image planes. Under this condition it is possible to overcome some of the limitations imposed by the light scattering/birefringence of the tissue.  相似文献   

9.
Summary Fluorescent probes are becoming ever more widely used in the study of subcellular structure, and determination of their three-dimensional distributions has become very important. Confocal microscopy is now a common technique for overcoming the problem of out-of-focus flare in fluorescence imaging, but an alternative method uses digital image processing of conventional fluorescence images — a technique often termed deconvolution or restoration. This review attempts to explain image deconvolution in a non-technical manner. It is also applicable to 3-D confocal images, and can provide a further significant improvement in clarity and interpretability of such images. Some examples of the application of image deconvolution to both conventional and confocal fluorescence images are shown.  相似文献   

10.
科学可视化是指运用计算机图形学和图像处理技术,将科学计算过程中或者是计算结果的数据转换为图形或图像,在屏幕上显示出来并进行交互式处理的理论技术或方法。介绍了用反卷积荧光显微成像技术获得活体大鼠胰腺B细胞三维图像及对其进行科学可视化的主要过程和两种常用可视化算法,并运用这两种方法对所得到的三维图像进行处理以分析和研究细胞内分泌囊泡的空间分布。结果显示,当仅观察细胞三维图像的二维切片时,三维图像中的某些重要信息会被忽略,而使用科学可视化方法则可以从三维角度直观观察活体细胞内分泌囊泡的空间分布,并且可以观察到分泌囊泡的释放趋势和整体分布,从而为细胞生物学研究提供重要的信息。  相似文献   

11.
One important application for three-dimensional microscopy is the determination of the volumes of biological cells. In this paper we investigate the application of three-dimensional deconvolution techniques to the problem of cell volume determination. The theoretical discussion is based on a Fourier sampling condition for reliable image reconstruction and it is shown, using this condition and simulated images, that the cell volume determination is reliable only for cells with a shape and orientation such that their length along the optic axis is much greater than their width.  相似文献   

12.
Widefield deconvolution epifluorescence microscopy (WDEM) combined with fluorescence in situ hybridization (FISH) was performed to identify and characterize single bacterial cells within sections of the mediterranean sponge Chondrosia reniformis. Sponges were embedded in paraffin wax or plastic prior to the preparation of thin sections, in situ hybridization and microscopy. Serial digital images generated by widefield epifluorescence microscopy were visualized using an exhaustive photon reassignment deconvolution algorithm and three-dimensional rendering software. Computer processing of series of images taken at different focal planes with the deconvolution technique provided deblurred three-dimensional images with high optical resolution on a submicron scale. Results from the deconvolution enhanced widefield microscopy were compared with conventional epifluorescent microscopical images. By the application of the deconvolution algorithm on digital image data obtained with widefield epifluorescence microscopy after FISH, the occurrence and spatial arrangement of Desulfovibrionaceae closely associated with micropores of Chondrosia reniformis could be visualized.  相似文献   

13.
Light-sheet microscopy has been developed as a powerful tool for live imaging in biological studies. The efficient illumination of specimens using light-sheet microscopy makes it highly amenable to high-speed imaging. We therefore applied this technology to the observation of amoeboid movements, which are too rapid to capture with conventional microscopy. To simplify the setup of the optical system, we utilized the illumination optics from a conventional confocal laser scanning microscope. Using this set-up we achieved high-speed imaging of amoeboid movements. Three-dimensional images were captured at the recording rate of 40 frames/s and clearly outlined the fine structures of fluorescent-labeled amoeboid cellular membranes. The quality of images obtained by our system was sufficient for subsequent quantitative analysis for dynamics of amoeboid movements. This study demonstrates the application of light-sheet microscopy for high-speed imaging of biological specimens.  相似文献   

14.
BACKGROUND: Spectral imaging, originating from the field of earth remote sensing, is a powerful tool that is being increasingly used in a wide variety of applications for material identification. Several workers have used techniques like linear spectral unmixing (LSU) to discriminate materials in images derived from spectral microscopy. However, many spectral analysis algorithms rely on assumptions that are often violated in microscopy applications. This study explores algorithms originally developed as improvements on early earth imaging techniques that can be easily translated for use with spectral microscopy. METHODS: To best demonstrate the application of earth remote sensing spectral analysis tools to spectral microscopy data, earth imaging software was used to analyze data acquired with a Leica confocal microscope with mechanical spectral scanning. For this study, spectral training signatures (often referred to as endmembers) were selected with the ENVI (ITT Visual Information Solutions, Boulder, CO) "spectral hourglass" processing flow, a series of tools that use the spectrally over-determined nature of hyperspectral data to find the most spectrally pure (or spectrally unique) pixels within the data set. This set of endmember signatures was then used in the full range of mapping algorithms available in ENVI to determine locations, and in some cases subpixel abundances of endmembers. RESULTS: Mapping and abundance images showed a broad agreement between the spectral analysis algorithms, supported through visual assessment of output classification images and through statistical analysis of the distribution of pixels within each endmember class. CONCLUSIONS: The powerful spectral analysis algorithms available in COTS software, the result of decades of research in earth imaging, are easily translated to new sources of spectral data. Although the scale between earth imagery and spectral microscopy is radically different, the problem is the same: mapping material locations and abundances based on unique spectral signatures.  相似文献   

15.
We report that single (or selective) plane illumination microscopy (SPIM), combined with a new deconvolution algorithm, provides a three-dimensional spatial resolution exceeding that of confocal fluorescence microscopy in large samples. We demonstrate this by imaging large living multicellular specimens obtained in a three-dimensional cell culture. The ability to rapidly image large samples at high resolution with minimal photodamage provides new opportunities especially for the study of subcellular processes in large living specimens.  相似文献   

16.
Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as a function of depth obtained from confocal images can be used to determine the presence or stage of epithelial cancers. However, low nuclear to background contrast, low resolution at greater imaging depths, and significant variation in reflectance signal of nuclei complicate segmentation required for quantification of nuclear-to-cytoplasmic ratio. Here, we present an automated segmentation method to segment nuclei in reflectance confocal images using a pulse coupled neural network algorithm, specifically a spiking cortical model, and an artificial neural network classifier. The segmentation algorithm was applied to an image model of nuclei with varying nuclear to background contrast. Greater than 90% of simulated nuclei were detected for contrast of 2.0 or greater. Confocal images of porcine and human oral mucosa were used to evaluate application to epithelial tissue. Segmentation accuracy was assessed using manual segmentation of nuclei as the gold standard.  相似文献   

17.
We show the applicability of 4Pi-confocal microscopy to three-dimensional imaging of the microtubule network in a fixed mouse fibroblast cell. Comparison with two-photon confocal resolution reveals a fourfold better axial resolution in the 4Pi-confocal case. By combining 4Pi-confocal microscopy with Richardson–Lucy image restoration a further resolution increase is achieved. Featuring a three-dimensional resolution in the range 100–150 nm, the 4Pi-confocal (restored) images are intrinsically more detailed than their confocal counterparts. Our images constitute what to our knowledge are the best-resolved three-dimensional images of entangled cellular microtubules obtained with light to date.  相似文献   

18.
《Biophysical journal》2021,120(18):3860-3868
We present a novel fiber finding algorithm (FFA) that will permit researchers to detect and return traces of individual biopolymers. Determining the biophysical properties and structural cues of biopolymers can permit researchers to assess the progression and severity of disease. Confocal microscopy images are a useful method for observing biopolymer structures in three dimensions, but their utility for identifying individual biopolymers is impaired by noise inherent in the acquisition process, including convolution from the point spread function (PSF). The new, iterative FFA we present here 1) measures a microscope’s PSF and uses it as a metric for identifying fibers against the background; 2) traces each fiber within a cone angle; and 3) blots out the identified trace before identifying another fiber. Blotting out the identified traces in each iteration allows the FFA to detect and return traces of single fibers accurately and efficiently—even within fiber bundles. We used the FFA to trace unlabeled collagen type I fibers—a biopolymer used to mimic the extracellular matrix in in vitro cancer assays—imaged by confocal reflectance microscopy in three dimensions, enabling quantification of fiber contour length, persistence length, and three-dimensional (3D) mesh size. Based on 3D confocal reflectance microscopy images and the PSF, we traced and measured the fibers to confirm that colder gelation temperatures increased fiber contour length, persistence length, and 3D mesh size—thereby demonstrating the FFA’s use in quantifying biopolymers’ structural and physical cues from noisy microscope images.  相似文献   

19.
The oral apparatus of the ciliate protozoan Paramecium primaurelia, a single-celled eukaryotic organism, is a highly organized structure whose arrangement is of important taxonomic, phylogenetic and developmental significance. This paper analyses oral structures by means of a confocal laser scanning optical microscope (CLSM), which allows their three-dimensional visualization and measurement. The extraction of the intrinsic three-dimensional information related to the biological objects under investigation can in turn be related to their functional state, according to the classical paradigms of structure to function relationship identification. In our experiments, we acquired different data sets. These are optical slices of the biological sample under investigation, acquired in a confocal situation, through epi-illumination, in reflection. For comparison with conventional microscopy, two-dimensional images were acquired via a standard TV camera coupled to the microscope itself. The volumes obtained by piling up the slices were rendered through different techniques, some of them directly implemented on the workstation controlling the CLSM system, some of them on a SUN SPARCstation 1, where the original data were transferred via an Ethernet link. In this last instance, original software has been developed for the visualization and animation of the three-dimensional structures, under UNIX and X-Window, according to a ray-tracing algorithm.  相似文献   

20.
Although the addition of just the excitation light field at the focus, or of just the fluorescence field at the detector is sufficient for a three- to fivefold resolution increase in 4Pi-fluorescence microscopy, substantial improvements of its optical properties are achieved by exploiting both effects simultaneously. They encompass not only an additional expansion of the optical bandwidth, but also an amplified transfer of the newly gained spatial frequencies to the image. Here we report on the realization and the imaging properties of this 4Pi microscopy mode of type C that also is the far-field microscope with the hitherto largest aperture. We show that in conjunction with two-photon excitation, the resulting optical transfer function displays a sevenfold improvement of axial three-dimensional resolution over confocal microscopy in aqueous samples, and more importantly, a marked transfer of all frequencies within its inner region of support. The latter is present also without the confocal pinhole. Thus, linear image deconvolution is possible both for confocalized and nonconfocalized live-cell 4Pi imaging. Realized in a state-of-the-art scanning microscope, this approach enables robust three-dimensional imaging of fixed and live cells at approximately 80 nm axial resolution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号