首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 655 毫秒
1.
Glucagon-like peptide-1 (GLP-1) is an important incretin produced in the L cells of the intestine. It is essential in the regulation of insulin secretion and glucose homeostasis. Systemic GLP-1 concentrations are typically low in rodents, so it can be difficult to assay physiological levels or detect changes in response to nutrients. We have established a method of assaying GLP-1 in response to nutrients using the intestinal lymph fistula model. Intraduodenal infusion of Intralipid (4.43 kcal/3 ml) induced a significant increase of lymphatic GLP-1 concentration compared with saline control at the peak of 30 min. (P < 0.001). Isocaloric and isovolumetric treatment with dextrin, a glucose polymer, also caused a significant fourfold increase in peak concentration at 60 min (P = 0.001). These findings indicate that intestinal lymph contains high concentrations of postprandial GLP-1. Second, they reveal that GLP-1 secretion into lymph occurs in response to both enteral carbohydrate and fat, but the response to dextrin occurs later than to Intralipid with peak times at 60 and 30 min, respectively. Third, the combination of Intralipid plus dextrin demonstrated an additive effect in the stimulation of GLP-1 with peak at 30 min. These results indicate that assessment of levels in lymph is a novel and powerful means of studying the secretion of GLP-1 and potentially other gastrointestinal hormones in vivo. Furthermore, the lymph fistula rat model provides insight into the gut hormone concentrations to which the neurons and cells in the lamina propria of the gut are likely exposed.  相似文献   

2.
INTRODUCTION: Ghrelin is an orexigenic peptide predominantly secreted by the stomach. Ghrelin plasma levels rise before meal ingestion and sharply decline afterwards, but the mechanisms controlling ghrelin secretion are largely unknown. Since meal ingestion also elicits the secretion of the incretin hormone glucagon-like peptide 1 (GLP-1), we examined whether exogenous GLP-1 administration reduces ghrelin secretion in humans. PATIENTS AND METHODS: 14 healthy male volunteers were given intravenous infusions of GLP-1(1.2 pmol x kg(-1) min(-1)) or placebo over 390 min. After 30 min, a solid test meal was served. Venous blood was drawn frequently for the determination of glucose, insulin, C-peptide, GLP-1 and ghrelin. RESULTS: During the infusion of exogenous GLP-1 and placebo, GLP-1 plasma concentrations reached steady-state levels of 139+/-15 pmol/l and 12+/-2 pmol/l, respectively (p<0.0001). During placebo infusion, ghrelin levels were significantly reduced in the immediate postprandial period (p<0.001), and rose again afterwards. GLP-1 administration prevented the initial postprandial decline in ghrelin levels, possibly as a result of delayed gastric emptying, and significantly reduced ghrelin levels 150 and 360 min after meal ingestion (p<0.05). The patterns of ghrelin concentrations in the experiments with GLP-1 and placebo administration were inversely related to the respective plasma levels of insulin and C-peptide. CONCLUSIONS: GLP-1 reduces the rise in ghrelin levels in the late postprandial period at supraphysiological plasma levels. Most likely, these effects are indirectly mediated through its insulinotropic action. The GLP-1-induced suppression of ghrelin secretion might be involved in its anorexic effects.  相似文献   

3.
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are the two key incretin hormones released from the gastrointestinal tract that regulate blood glucose homeostasis through potent insulin secretion. The rapid degradation of GIP and GLP-1 by the ubiquitous enzyme dipeptidyl peptidase IV (DPP IV) renders both peptides noninsulinotropic. However, DPP IV stable agonists, such as N-AcGIP and (Val8)GLP-1, have now been developed. The present study has examined and compared the metabolic effects of subchronic administration of daily i.p. injections of N-AcGIP, (Val8) GLP-1 and a combination of both peptides (all at 25 nmol/kg bw) in obese diabetic (ob/ob) mice. Initial in vitro experiments confirmed the potent insulinotropic properties of N-AcGIP and (Val8)GLP-1 in the clonal pancreatic BRIN BD11 cell line. Subchronic administration of N-AcGIP, (Val8)GLP-1 or combined peptide administration had no significant effects on the body weight, food intake and plasma insulin concentrations. However, all treatment groups had significantly (p < 0.05) decreased plasma glucose levels and improved glucose tolerance by day 14. The effectiveness of the peptide groups was similar, and glucose concentrations were substantially reduced following injection of insulin to assess insulin sensitivity compared to control. These results provide evidence for an improvement of glucose homeostasis following treatment with enzyme-resistant GIP and GLP-1 analogues.  相似文献   

4.
Physiological secretion of bile acids has previously been linked to the regulation of blood glucose. GLP-1 is an intestinal peptide hormone with important glucose-lowering actions, such as stimulation of insulin secretion and inhibition of glucagon secretion. In this investigation, we assessed the ability of several bile acid compounds to secrete GLP-1 in vitro in STC-1 cells. Bile acids stimulated GLP-1 secretion from 3.3- to 6.2-fold but some were associated with cytolytic effects. Glycocholic and taurocholic acids were selected for in vivo studies in normal and GLP-1R(-/-) mice. Oral glucose tolerance tests revealed that glycocholic acid did not affect glucose excursions. However, taurocholic acid reduced glucose excursions by 40% in normal mice and by 27% in GLP-1R(-/-) mice, and plasma GLP-1 concentrations were significantly elevated 30 min post-gavage. Additional studies used incretin receptor antagonists to probe involvement of GLP-1 and GIP in taurocholic acid-induced glucose lowering. The findings suggest that bile acids partially aid glucose regulation by physiologically enhancing nutrient-induced GLP-1 secretion. However, GLP-1 secretion appears to be only part of the glucose-lowering mechanism and our studies indicate that the other major incretin GIP is not involved.  相似文献   

5.
IntroductionGLP-1 is secreted from the gut upon nutrient intake and stimulates insulin secretion. The lymph draining the intestine may transport high levels of GLP-1 to the systemic circulation before it is metabolized by DPP-4. The aims of this study were to investigate to what extent the lymphatic system might contribute to the final level(s) of systemic circulating intact GLP-1 and, in addition, whether secretory profiles in intestinal lymph might reflect lamina propria levels of GLP-1 i.e. before capillary uptake and degradation by endothelial dipeptidyl peptidase-4 (DPP-4).Method7 pigs of the YDL-strain were catheterized in the portal vein, carotid artery and cisterna chyli (lymph). Neuromedin C (NC) was infused through an ear vein catheter, before and after injection of a selective DPP-4 inhibitor (vildagliptin). Total and intact GLP-1 levels were measured throughout the 150 min experiments using specific sandwich ELISAs. DPP-4 activity was measured spectrophotometrically.ResultsConcentrations of both total and intact GLP-1 were markedly lower in lymph compared to plasma samples, and did not increase significantly in response to stimulation with NC in the absence/presence of vildagliptin. In contrast, total and intact GLP-1 levels increased significantly in the portal vein and carotid artery. DPP-4 activity was lower in lymph than plasma, and was reduced further by vildagliptin.ConclusionOur observations indicate that the lymphatic system does not transport high levels of intact GLP-1 to the systemic circulation, and that GLP-1 levels in cisternal lymph do not reflect the hormone levels in the intestinal lamina propria.  相似文献   

6.
Exogenous glucagon-like peptide 1(GLP-1) bioactivity is preserved in type 2 diabetic patients, resulting the peptide administration in a near-normalization of plasma glucose mainly through its insulinotropic effect. GLP-1 also reduces meal-related insulin requirement in type 1 diabetic patients, suggesting an impairment of the entero-insular axis in both diabetic conditions. To investigate this metabolic dysfunction, we evaluated endogenous GLP-1 concentrations, both at fasting and in response to nutrient ingestion, in 16 type 1 diabetic patients (age = 40.5 +/- 14yr, HbA1C = 7.8 +/- 1.5%), 14 type 2 diabetics (age = 56.5 +/- 13yr, HbA1C = 8.1 +/- 1.8%), and 10 matched controls. In postabsorptive state, a mixed breakfast (230 KCal) was administered to all subjects and blood samples were collected for plasma glucose, insulin, C-peptide and GLP-1 determination during the following 3 hours. In normal subjects, the test meal induced a significant increase of GLP-1 (30', 60': p < 0.01), returning the peptide values towards basal concentrations. In type 2 diabetic patients, fasting plasma GLP-1 was similar to controls (102.1 +/- 1.9 vs. 97.3 +/- 4.01 pg/ml), but nutrient ingestion failed to increase plasma peptide levels, which even decreased during the test (p < 0.01). Similarly, no increase in postprandial GLP-1 occurred in type 1 diabetics, in spite of maintained basal peptide secretion (106.5 +/- 1.5 pg/ml). With respect to controls, the test meal induced in both diabetic groups a significant increase in plasma glucagon levels at 60' (p < 0.01). In conclusion, either in condition of insulin resistance or insulin deficiency chronic hyperglycemia, which is a common feature of both metabolic disorders, could induce a progressive desensitization of intestinal L-cells with consequent peptide failure response to specific stimulation.  相似文献   

7.
Glucagon-like peptide-1 (GLP-1) is an intestinal hormone that stimulates insulin secretion and decreases glucagon release. It has been hypothesized that GLP-1 also reduces glycemia independent of its effect on islet hormones. Based on preliminary evidence that GLP-1 has independent actions on endogenous glucose production, we undertook a series of experiments that were optimized to address this question. The effect of GLP-1 on glucose appearance (Ra) and glucose disposal (Rd) was measured in eight men during a pancreatic clamp that was performed by infusing octreotide to suppress secretion of islet hormones, while insulin and glucagon were infused at rates adjusted to maintain blood glucose near fasting levels. After stabilization of plasma glucose and equilibration of [3H]glucose tracer, GLP-1 was given intravenously for 60 min. Concentrations of insulin, C-peptide, and glucagon were similar before and during the GLP-1 infusion (115 +/- 14 vs. 113 +/- 11 pM; 0.153 +/- 0.029 vs. 0.156 +/- 0.026 nM; and 64.7 +/- 11.5 vs. 65.8 +/- 13.8 ng/l, respectively). With the initiation of GLP-1, plasma glucose decreased in all eight subjects from steady-state levels of 4.8 +/- 0.2 to a nadir of 4.1 +/- 0.2 mM. This decrease in plasma glucose was accounted for by a significant 17% decrease in Ra, from 22.6 +/- 2.8 to 19.1 +/- 2.8 micromol. kg-1. min-1 (P < 0.04), with no significant change in Rd. These findings indicate that, under fasting conditions, GLP-1 decreases endogenous glucose production independent of its actions on islet hormone secretion.  相似文献   

8.
The incretin glucagon-like peptide-1 (GLP-1)-(7---36) amide is an important factor in prandial glucose homeostasis. Findings that GLP-1 is rapidly inactivated led to the hypothesis that the target of GLP-1 is close to the site of release. To investigate whether the target tissue is located in the hepatoportal system, we administered GLP-1 with glucose into the portal vein of rats and compared this with peripheral GLP-1 administration (jugular vein) and studied the effects of blockers of the nervous system. Portal GLP-1 augmented the insulin response to a portal glucose bolus by 81% (P < 0.01) and markedly improved the glucose disposal rate (P < 0.05). Peripheral administration of GLP-1 produced a similar augmentation of the insulin response (88%) and of the glucose disposal rate. However, only the effect of portal GLP-1 on insulin secretion was blocked by the ganglionic blocker chlorisondamine. The data suggest that prandial beta-cell stimulation by GLP-1 is evoked via a neural reflex triggered in the hepatoportal system. Because absorbed nutrients and GLP-1 first appear in the portal system, this mechanism may constitute a major pathway of GLP-1 action during meals.  相似文献   

9.
Glucagon-like peptide-1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP), and glucagon bind to related members of the same receptor superfamily and exert important effects on glucose homeostasis, insulin secretion, and energy regulation. The present study assessed the biological actions and therapeutic utility of novel GIP/glucagon/GLP-1 hybrid peptides. Nine novel peptides were synthesized and exhibited complete DPP-IV resistance and enhanced in vitro insulin secretion. The most promising peptide, [dA2]GLP-1/GcG, stimulated cAMP production in GIP, GLP-1, and glucagon receptor-transfected cells. Acute administration of [dA2]GLP-1/GcG in combination with glucose significantly lowered plasma glucose and increased plasma insulin in normal and obese diabetic (ob/ob) mice. Furthermore, [dA2]GLP-1/GcG elicited a protracted glucose-lowering and insulinotropic effect in high fat-fed mice. Twice daily administration of [dA2]GLP-1/GcG for 21 days decreased body weight and nonfasting plasma glucose and increased circulating plasma insulin concentrations in high fat-fed mice. Furthermore, [dA2]GLP-1/GcG significantly improved glucose tolerance and insulin sensitivity by day 21. Interestingly, locomotor activity was increased in [dA2]GLP-1/GcG mice, without appreciable changes in aspects of metabolic rate. Studies in knock-out mice confirmed the biological action of [dA2]GLP-1/GcG via multiple targets including GIP, GLP-1, and glucagon receptors. The data suggest significant promise for novel triple-acting hybrid peptides as therapeutic options for obesity and diabetes.  相似文献   

10.
The insulinotropic intestinal hormone GLP-1 is thought to exert one of its effects by direct action on the pancreatic beta-cell receptors. GLP-1 is rapidly degraded in plasma, such that only a small amount of the active form reaches the pancreas, making it questionable whether this amount is sufficient to produce a direct incretin effect. The aim of our study was to assess, in a dog model, the putative incretin action of GLP-1 acting directly on the beta-cell in the context of postprandial rises in GLP-1 and glucose. Conscious dogs were fed a high-fat, high-carbohydrate meal, and insulin response was measured. We also infused systemic glucose plus GLP-1, or glucose alone, to simulate the meal test values of these variables and measured insulin response. The results were as follows: during the meal, we measured a robust insulin response (52 +/- 9 to 136 +/- 14 pmol/l, P < 0.05 vs. basal) with increases in portal glucose and GLP-1 but only limited increases in systemic glucose (5.3 +/- 0.1 to 5.7 +/- 0.1 mmol/l, P = 0.1 vs. basal) and GLP-1 (6 +/- 0 to 9 +/- 1 pmol/l, P = 0.5 vs. basal). Exogenous infusion of systemic glucose and GLP-1 produced a moderate increase in insulin (43 +/- 5 to 84 +/- 15 pmol/l, 43% of the meal insulin). However, infusion of glucose alone, without GLP-1, produced a similar insulin response (37 +/- 6 to 82 +/- 14 pmol, 53% of the meal insulin, P = 0.7 vs. glucose and GLP-1 infusion). In conclusion, in dogs with postprandial rises in systemic glucose and GLP-1, the hormone might not have a direct insulinotropic effect and could regulate glycemia via indirect, portohepatic-initiated neural mechanisms.  相似文献   

11.
After a meal, glucagon-like peptide-1 (GLP-1) levels in the hepatic portal vein are elevated and are twice those in peripheral blood. The aim of this study was to determine whether any of GLP-1's acute metabolic effects are initiated within the hepatic portal vein. Experiments consisted of a 40-min basal period, followed by a 240-min experimental period, during which conscious 42-h-fasted dogs received glucose intraportally (4 mgxkg(-1)xmin(-1)) and peripherally (as needed) to maintain arterial plasma glucose levels at approximately 160 mg/dl. In addition, saline was given intraportally (CON; n = 8) or GLP-1 (1 pmolxkg(-1)xmin(-1)) was given into the hepatic portal vein (POR; n = 11) or the hepatic artery (HAT; n = 8). Portal vein plasma GLP-1 levels were basal in CON, 20x basal in POR, and 10x basal in HAT, whereas levels in the periphery and liver were the same in HAT and CON. The glucose infusion rate required to maintain hyperglycemia was significantly greater in POR (8.5 +/- 0.7 mgxkg(-1)xmin(-1), final 2 h) than in either CON or HAT (6.0 +/- 0.5 or 6.7 +/- 1.0 mgxkg(-1)xmin(-1), respectively). There were no differences among groups in either arterial plasma insulin (24 +/- 2, 23 +/- 3, and 23 +/- 3 microU/ml for CON, POR, and HAT, respectively) or glucagon (23 +/- 2, 30 +/- 3, and 25 +/- 2 pg/ml) levels during the experimental period. The increased need for glucose infusion reflected greater nonhepatic as opposed to liver glucose uptake. GLP-1 infusion increased glucose disposal independently of changes in pancreatic hormone secretion but only when the peptide was delivered intraportally.  相似文献   

12.
Glucagon-like peptide 1 (GLP-1) is a gastrointestinal hormone secreted in response to meal ingestion by enteroendocrine L cells located predominantly in the lower small intestine and large intestine. GLP-1 inhibits the secretion and motility of the upper gut and has been suggested to play a role in the "ileal brake." In this study, we investigated the effect of recombinant GLP-1-(7-36) amide (rGLP-1) on lipid absorption in the small intestine in intestinal lymph duct-cannulated rats. In addition, the effects of rGLP-1 on intestinal production of apolipoprotein (apo) B and apo A-IV, two apolipoproteins closely related to lipid absorption, were evaluated. rGLP-1 was infused through the jugular vein, and lipids were infused simultaneously through a duodenal cannula. Our results showed that infusion of rGLP-1 at 20 pmol.kg(-1).min(-1) caused a dramatic and prompt decrease in lymph flow from 2.22 +/- 0.15 (SE) ml/h at baseline (n = 6) to 1.24 +/- 0.06 ml/h at 2 h (P < 0.001). In contrast, a significant increase in lymph flow was observed in the saline (control) group: 2.19 +/- 0.20 and 3.48 +/- 0.09 ml/h at baseline and at 6 h of lipid infusion, respectively (P < 0.001). rGLP-1 also inhibited intestinal triolein absorption (P < 0.05) and lymphatic apo B and apo A-IV output (P < 0.05) but did not affect cholesterol absorption. In conclusion, rGLP-1 dramatically decreases intestinal lymph flow and reduces triglyceride absorption and apo B and apo A-IV production. These findings suggest a novel role for GLP-1 in lipid absorption.  相似文献   

13.
By applying a newly developed ELISA technique for determining biologically active intact glucagon-like peptide [GLP-1, GLP-1-(7-36)amide] in mouse, plasma baseline GLP-1 in normal NMRI mice was found to be normally distributed (4.5 +/- 0.3 pmol/l; n = 72). In anesthetized mice, gastric glucose (50 or 150 mg) increased plasma GLP-1 levels two- to threefold (P < 0.01). The simultaneous increase in plasma insulin correlated to the 10-min GLP-1 levels (r = 0.36, P < 0.001; n = 12). C57BL/6J mice deleted of the gastrin-releasing peptide (GRP) receptor by genetic targeting had impaired glucose tolerance (P = 0.030) and reduced early (10 min) insulin response (P = 0.044) to gastric glucose compared with wild-type controls. Also, the GLP-1 response to gastric glucose was significantly lower in the GRP receptor-deleted mice than in the controls (P = 0.045). In conclusion, this study has shown that 1) plasma levels of intact GLP-1 increase dose dependently on gastric glucose challenge in correlation with increased insulin levels in mice, and 2) intact GRP receptors are required for normal GLP-1 and insulin responses and glucose tolerance after gastric glucose in mice.  相似文献   

14.
Glucose-dependent insulinotropic polypeptide (GIP) is an important incretin produced in the K cells of the intestine and secreted into the circulating blood following ingestion of carbohydrate- and fat-containing meals. GIP contributes to the regulation of postprandial insulin secretion and is essential for normal glucose tolerance. We have established a method of assaying GIP in response to nutrients using the intestinal lymph fistula model. Administration of Ensure, a mixed-nutrient liquid meal, stimulated a significant increase in intestinal lymphatic GIP levels that were approximately threefold those of portal plasma. Following the meal, lymph GIP peaked at 60 min (P < 0.001) and remained elevated for 4 h. Intraduodenal infusions of isocaloric and isovolumetric lipid emulsions or glucose polymer induced lymph GIP concentrations that were four and seven times the basal levels, respectively. The combination of glucose plus lipid caused an even greater increase of lymph GIP than either nutrient alone. In summary, these findings demonstrated that intestinal lymph contains high concentrations of GIP that respond to both enteral carbohydrate and fat absorption. The change in lymphatic GIP concentration is greater than the change observed in the portal blood. These studies allow the detection of GIP levels at which they exert their local physiological actions. The combination of glucose and lipid has a potentiating effect in the stimulation of GIP secretion. We conclude from these studies that the lymph fistula rat is a novel approach to study in vivo GIP secretion in response to nutrient feeding in conscious rats.  相似文献   

15.
Glucagon-like peptide 1 (GLP-1) lowers glycemia by modulating gastric emptying and endocrine pancreatic secretion. Rapidly after its secretion, GLP-1-(7-36) amide is degraded to the metabolite GLP-1-(9-36) amide. The effects of GLP-1-(9-36) amide in humans are less well characterized. Fourteen healthy volunteers were studied with intravenous infusion of GLP-1-(7-36) amide, GLP-1-(9-36) amide, or placebo over 390 min. After 30 min, a solid test meal was served, and gastric emptying was assessed. Blood was drawn for GLP-1 (total and intact), glucose, insulin, C-peptide, and glucagon measurements. Administration of GLP-1-(7-36) amide and GLP-1-(9-36) amide significantly raised total GLP-1 plasma levels. Plasma concentrations of intact GLP-1 increased to 21 +/- 5 pmol/l during the infusion of GLP-1-(7-36) amide but remained unchanged during GLP-1-(9-36) amide infusion [5 +/- 3 pmol/l; P < 0.001 vs. GLP-1-(7-36) amide administration]. GLP-1-(7-36) amide reduced fasting and postprandial glucose concentrations (P < 0.001) and delayed gastric emptying (P < 0.001). The GLP-1 metabolite had no influence on insulin or C-peptide concentrations. Glucagon levels were lowered by GLP-1-(7-36) amide but not by GLP-1-(9-36) amide. However, the postprandial rise in glycemia was reduced significantly (by approximately 6 mg/dl) by GLP-1-(9-36) amide (P < 0.05). In contrast, gastric emptying was completely unaffected by the GLP-1 metabolite. The GLP-1 metabolite lowers postprandial glycemia independently of changes in insulin and glucagon secretion or in the rate of gastric emptying. Most likely, this is because of direct effects on glucose disposal. However, the glucose-lowering potential of GLP-1-(9-36) amide appears to be small compared with that of intact GLP-1-(7-36) amide.  相似文献   

16.
17.
BACKGROUND: The physiological inhibitory control of glucagon-like Peptide 1 (GLP-1) on gastric emptying and the contribution of this peptide in the regulation of food intake as a satiety factor suggest that impaired secretion and/or activity of GLP-1 may be involved in the pathogenesis of obesity. We investigated food-mediated GLP-1 secretion as well as plasma activity of dipeptidyl-peptidase IV (DPP-IV), the enzyme responsible for rapid inactivation of the circulating peptide, in morbidly obese patients, before and after weight loss resulting from biliopancreatic diversion. METHODS: Twenty-two morbidly obese non-diabetic patients (BMI = 47.5 +/- 1.8) and 9 age-matched healthy volunteers were studied. A mixed meal (700 kcal) was administered to all subjects and blood samples were collected at 0, 15, 30, 60, 120 min for the determination of circulating glucose, insulin, GLP-1 (7 - 36 amide) concentrations and plasma DPP-IV activity. The patients repeated the test meal after 50 % overweight reduction resulting from surgical treatment (BMI = 33.8 +/- 1.1). RESULTS: While nutrient ingestion significantly increased plasma GLP-1 levels in the control group (30', 60': p < 0.01), the test-meal failed to modify basal peptide values in the obese patients, and an overall reduction in circulating GLP-1 occurred during the observation period (p < 0.001). Plasma DPP-IV activity in the same patients resulted as being significantly higher than controls, both at fasting and in response to the meal (p < 0.05). With respect to preoperative values, an overall increase in circulating GLP-1 levels occurred in all patients following biliopancreatic diversion (p < 0.001). Plasma DPP-IV activity, on the other hand, continued to be abnormally increased, even after considerable weight loss (p < 0.05 vs. controls). CONCLUSIONS: First: In morbid obesity, the accelerated inactivation of circulating GLP-1 could at least partially account for plasma peptide levels lower than normal, the defective availability of such a satiety factor possibly contributing to eating behaviour abnormalities; Second: plasma DPP-IV hyperactivity in the obese did not seem to be affected by the overweight degree, the increase in postoperative GLP-1 levels mainly resulting from hyperstimulation of GLP-1 secretory cells due to surgical manipulation of gastrointestinal tract. If the abnormally accelerated degradation of GLP-1 in obesity is confirmed, selective DPP-IV inhibitors could actually represent an ideal approach to obesity management.  相似文献   

18.
We have previously reported that the absence of leptin signaling in β-cells enhances glucose-stimulated insulin secretion and improves glucose tolerance in vivo. To investigate the relevance of β-cell leptin signaling in the context of postprandial or therapeutic insulin secretion, we examined the cross talk between leptin and glucagon-like peptide (GLP)-1 and sulfonylurea actions. Single and size-matched islets isolated from control or pancreas-specific leptin receptor knockout (pancreas-ObR-KO) mice were treated either with GLP-1 or with glibenclamide. Leptin suppressed GLP-1-stimulated intracellular Ca(2+) concentrations ([Ca(2+)](i)) increase that paralleled the decrease in insulin secretion in controls. In contrast, and as expected, the ObR-KO islets were nonresponsive to leptin, and instead, showed a 2.8-fold greater GLP-1-stimulated [Ca(2+)](i) increase and a 1.7-fold greater insulin secretion. Phosphorylation of cAMP-responsive element binding protein was enhanced, and phosphodiesterase enzymatic activity was suppressed in MIN6 β-cells with ObR knockdown compared with controls. The ObR-KO islets also showed significantly higher glibenclamide-induced insulin secretion compared with control islets, whereas [Ca(2+)](i) was similar to the controls. These data support enhanced insulinotropic effects of glucose, GLP-1, and sulfonylureas in the islets lacking leptin signaling with potential therapeutic implications.  相似文献   

19.
The prevalence of type 2 diabetes (T2D) is rapidly increasing worldwide. Effective therapies, such as insulin and Glucagon-like peptide-1 (GLP-1), require injections, which are costly and result in less patient compliance. Here, we report the identification of a tripeptide with significant potential to treat T2D. The peptide, referred to as Diapin, is comprised of three natural L-amino acids, GlyGlyLeu. Glucose tolerance tests showed that oral administration of Diapin effectively lowered blood glucose after oral glucose loading in both normal C57BL/6J mice and T2D mouse models, including KKay, db/db, ob/ob mice, and high fat diet-induced obesity/T2D mice. In addition, Diapin treatment significantly reduced casual blood glucose in KKay diabetic mice in a time-dependent manner without causing hypoglycemia. Furthermore, we found that plasma GLP-1 and insulin levels in diabetic models were significantly increased with Diapin treatment compared to that in the controls. In summary, our findings establish that a peptide with minimum of three amino acids can improve glucose homeostasis and Diapin shows promise as a novel pharmaceutical agent to treat patients with T2D through its dual effects on GLP-1 and insulin secretion.  相似文献   

20.
Whether glucagon-like peptide (GLP)-1 requires the hepatic portal vein to elicit its insulin secretion-independent effects on glucose disposal in vivo was assessed in conscious dogs using tracer and arteriovenous difference techniques. In study 1, six conscious overnight-fasted dogs underwent oral glucose tolerance testing (OGTT) to determine target GLP-1 concentrations during clamp studies. Peak arterial and portal values during OGTT ranged from 23 to 65 pM and from 46 to 113 pM, respectively. In study 2, we conducted hyperinsulinemic-hyperglycemic clamp experiments consisting of three periods (P1, P2, and P3) during which somatostatin, glucagon, insulin and glucose were infused. The control group received saline, the PePe group received GLP-1 (1 pmol.kg(-1).min(-1)) peripherally, the PePo group received GLP-1 (1 pmol.kg(-1).min(-1)) peripherally (P2) and then intraportally (P3), and the PeHa group received GLP-1 (1 pmol.kg(-1).min(-1)) peripherally (P2) and then through the hepatic artery (P3) to increase the hepatic GLP-1 load to the same extent as in P3 in the PePo group (n = 8 dogs/group). Arterial GLP-1 levels increased similarly in all groups during P2 ( approximately 50 pM), whereas portal GLP-1 levels were significantly increased (2-fold) in the PePo vs. PePe and PeHa groups during P3. During P2, net hepatic glucose uptake (NHGU) increased slightly but not significantly (vs. P1) in all groups. During P3, GLP-1 increased NHGU in the PePo and PeHa groups more than in the control and PePe groups (change of 10.8 +/- 1.3 and 10.6 +/- 1.0 vs. 5.7 +/- 1.0 and 5.4 +/- 0.8 micromol.kg(-1).min(-1), respectively, P < 0.05). In conclusion, physiological GLP-1 levels increase glucose disposal in the liver, and this effect does not involve GLP-1 receptors located in the portal vein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号