首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Attenuated baroreflex-mediated increases in renal sympathetic nerve activity (RSNA) in hindlimb unloaded (HU) rats apparently are due to changes within the central nervous system. We hypothesized that GABA(A) receptor-mediated inhibition of the rostral ventrolateral medulla (RVLM) is increased after hindlimb unloading. Responses to bilateral microinjection of the GABA(A) antagonist (-)-bicuculline methiodide (BIC) into the RVLM were examined before and during caudal ventrolateral medulla (CVLM) inhibition in Inactin-anesthetized control and HU rats. Increases in mean arterial pressure (MAP), heart rate (HR), and RSNA in response to BIC in the RVLM were significantly enhanced in HU rats. Responses to bilateral CVLM blockade were not different. When remaining GABA(A) inhibition in the RVLM was blocked by BIC during CVLM inhibition, the additional increases in MAP and RSNA were significantly greater in HU rats. These data indicate that GABA(A) receptor-mediated inhibition of RVLM neurons is augmented after hindlimb unloading. Effects of input from the CVLM were unaltered. Thus, after cardiovascular deconditioning in rodents, the attenuated increase in sympathetic nerve activity in response to hypotension is associated with greater GABA(A) receptor-mediated inhibition of RVLM neurons originating at least in part from sources other than the CVLM.  相似文献   

2.
Adenosine is a known inhibitor of respiratory output during early life. In this study we investigated the developmental changes in adenosine A2A-receptor activation on respiratory timing, as well as the relationship between adenosine and GABA. The specific adenosine A2A-receptor agonist CGS-21680 (CGS) or vehicle control was injected into the fourth ventricle of 14-day (n = 9), 21-day (n = 9), and adult (n = 5) urethane-anesthetized rats while diaphragm electromyogram was monitored as an index of respiratory neural output. CGS injection resulted in a decrease in frequency and/or apnea in all 14-day-old rats and in 66% of 21-day-old rats. There was no effect of CGS injection on respiratory timing in adult rats. Prior injection of the GABA(A)-receptor blocker bicuculline at 14 and 21 days eliminated the CGS-induced decrease in frequency and apnea. We conclude from these studies that the inhibitory effect of A2A-receptor activation on respiratory drive is age dependent and is mediated via GABAergic inputs to the inspiratory timing neural circuitry. These findings demonstrate an important mechanism by which xanthine therapy alleviates apnea of prematurity.  相似文献   

3.
A kainate receptor increases the efficacy of GABAergic synapses   总被引:5,自引:0,他引:5  
Jiang L  Xu J  Nedergaard M  Kang J 《Neuron》2001,30(2):503-513
Brain functions are based on the dynamic interaction of excitatory and inhibitory inputs. Spillover of glutamate from excitatory synapses may diffuse to and modulate nearby inhibitory synapses. By recording unitary inhibitory postsynaptic currents (uIPSCs) from cell pairs in CA1 of the hippocampus, we demonstrated that low concentrations of Kainate receptor (KAR) agonists increased the success rate (P(s)) of uIPSCs, whereas high concentrations of KAR agonists depressed GABAergic synapses. Ambient glutamate released by basal activities or stimulation of the stratum radiatum increases the efficacy of GABAergic synapses by activating presynaptic KARs, which facilitate Ca(2+)-dependent GABA release. The results suggest that glutamate released from excitatory synapses may also function as an intermediary between excitatory and inhibitory synapses to protect overexcitation of local circuits.  相似文献   

4.
Functional neural circuit formation during development involves massive elimination of redundant synapses. In the cerebellum, one-to-one connection from excitatory climbing fiber (CF) to Purkinje cell (PC) is established by elimination of early-formed surplus CFs. This process depends on glutamatergic excitatory inputs, but contribution of GABAergic transmission remains unclear. Here, we demonstrate impaired CF synapse elimination in mouse models with diminished GABAergic transmission by mutation of a single allele for the GABA synthesizing enzyme GAD67, by conditional deletion of GAD67 from PCs and GABAergic interneurons or by pharmacological inhibition of cerebellar GAD activity. The impaired CF synapse elimination was rescued by enhancing GABA(A) receptor sensitivity in the cerebellum by locally applied diazepam. Our electrophysiological and Ca2+ imaging data suggest that GABA(A) receptor-mediated inhibition onto the PC soma from molecular layer interneurons influences CF-induced Ca2+ transients in the soma and regulates CF synapse elimination from postnatal day 10 (P10) to around P16.  相似文献   

5.
The fundamental role and corollary effects of neuropeptides that govern cardiorespiratory control in the brain stem are poorly understood. One such regulatory peptide, catestatin [Cts, human chromogranin A-(352-372)], noncompetitively inhibits nicotinic-cholinergic-stimulated catecholamine release. Previously, we demonstrated the presence of chromogranin A mRNA in brain stem neurons that are important for the maintenance of arterial pressure. In the present study, using immunofluorescence histochemistry, we show that Cts immunoreactivity is colocalized with tyrosine hydroxylase in C1 neurons of the rostral ventrolateral medulla (RVLM, n = 3). Furthermore, we investigated the effects of Cts on resting blood pressure, splanchnic sympathetic nerve activity, phrenic nerve activity, heart rate, and adaptive reflexes. Cts (1 mM in 50 nl or 100 μM in 50-100 nl) was microinjected into the RVLM in urethane-anesthetized, vagotomized, ventilated Sprague-Dawley rats (n = 19). Cardiovascular responses to stimulation of carotid baroreceptors, peripheral chemoreceptors, and the sciatic nerve (somatosympathetic reflex) were analyzed. Cts (1 mM in 50 nl) increased resting arterial pressure (28 ± 3 mmHg at 2 min postinjection), sympathetic nerve activity (15 ± 3% at 2 min postinjection), and phrenic discharge amplitude (31 ± 4% at 10 min postinjection). Cts increased sympathetic barosensitivity 40% (slope increased from -0.05 ± 0.01 before Cts to -0.07 ± 0.01 after Cts) and attenuated the somatosympathetic reflex [1st peak: 36% (from 132 ± 32.1 to 84.0 ± 17.0 μV); 2nd peak: 44% (from 65.1 ± 21.4 to 36.6 ± 14.1 μV)] and chemoreflex (blood pressure response to anoxia decreased 55%, sympathetic response decreased 46%). The results suggest that Cts activates sympathoexcitatory bulbospinal neurons in the RVLM and plays an important regulatory role in adaptive reflexes.  相似文献   

6.
GTP cyclohydrolase 1 is the rate-limiting enzyme in production of tetrahydrobiopterin, a necessary cofactor for endothelial nitric oxide synthase. We tested the hypothesis that inhibition of tetrahydrobiopterin synthesis impairs endothelium-dependent relaxation and increase blood pressure in rats. 2,4-Diamino-6-hydroxypyrimidine (DAHP), a GTP cyclohydrolase 1 inhibitor, was given in drinking water (approximately 120 mg.kg(-1).day(-1)) to male Sprague-Dawley rats for 3 days. Systolic blood pressures were measured (tail-cuff procedure) for 3 days before and each day during DAHP treatment. Blood pressure was significantly increased after DAHP treatment (122 +/- 2 vs. 154 +/- 3 mmHg before and after DAHP, respectively; P < 0.05). Endothelium-intact aortic segments from pentobarbital sodium-anesthetized rats were isolated and hung in organ chambers for measurement of isometric force generation. Aortas from DAHP-treated rats exhibited a decreased maximal relaxation to ACh compared with controls [% relaxation from phenylephrine (10-7 M)-induced contraction: DAHP 57 +/- 6% vs. control 79 +/- 4%; P < 0.05]. Relaxation responses to A-23187 were also decreased in aortas from DAHP-treated rats compared with controls. Incubation with sepiapterin (10-4 M, 1 h), which produces tetrahydrobiopterin via a salvage pathway, restored relaxation to ACh in aortas from DAHP-treated rats. Superoxide dismutase significantly increased ACh-induced relaxation in aortas from DAHP-treated rats, whereas catalase had no effect. Endothelium-independent relaxation to sodium nitroprusside in aortas from DAHP-treated rats was not different from control rats; however, nitric oxide synthase inhibition increased sensitivity to sodium nitroprusside in aortas from DAHP-treated rats. These results support the hypothesis that GTP cyclohydrolase 1 inhibition decreases relaxation and increases blood pressure in rats.  相似文献   

7.
The transgenic rats TGR(ASrAOGEN) (TGR) with low levels of brain angiotensinogen were analyzed for cardiovascular reactivity to microinjections of ANG II and angiotensin receptor (AT(1)) antagonists [CV-11974, AT(1) specific; A-779, ANG-(1--7) selective; sarthran, nonspecific] into the rostral ventrolateral medulla (RVLM) of conscious rats. Microinjection of ANG II resulted in a significantly higher increase in the mean arterial pressure (MAP) of TGR than control [Sprague-Dawley (SD)] rats, suggesting an upregulation of ANG II receptors in TGR. CV-11974 produced an increase in MAP of SD but not in TGR rats. A-779 produced a depressor response in SD but not in TGR rats. Conversely, sarthran produced a similar decrease of MAP in both rat groups. The pressor effect of the AT(1) antagonist may indicate an inhibitory role of AT(1) receptors in the RVLM. On the other hand, ANG-(1--7) appears to have a tonic excitatory role in this region. The altered response to specific angiotensin antagonists in TGR further supports the functionally relevant decrease in angiotensins in the brains of TGR and corroborates the importance of the central renin-angiotensin system in cardiovascular homeostasis.  相似文献   

8.
Chen S  He RR 《生理学报》1998,50(6):629-635
在28只切断双侧缓冲神经的Sprague-Dawley大鼠,应用细胞外记录方法,观察了72个自发放电单位中颈动脉注射腺苷对延髓腹外侧头端(RVLM)区神经元自发放电活动的影响。所得结果如下:(1)颈动脉注射腺苷(25μg/kg),31个单位的放电频率由23.5±3.0下降至(16.5±2.6)spikes/s(P<0.001),血压和心率无明显变化(P>0.05);(2)在24个单位中,应用非选择性腺苷受体拮抗剂8-苯茶碱(8-phenyltheophylline,15μg/kg)和选择性腺苷A1受体持抗剂8-环戊-1,3-二丙基黄嘌呤(8-cyclopentyl-1,3-dipropylxanthine,50μg/kg)均可完全阻断腺苷的抑制效应;(3)在应用ATP敏感性钾通道阻断剂格列苯脲(500μg/kg)的12个单位中,腺苷的上述效应亦被消除。以上结果提示,腺苷对RVLM区神经元自发放电有抑制作用,而此作用与A1受体介导的ATP敏感性钾通道开放有关。  相似文献   

9.
We hypothesized that gene transfer of neuronal nitric oxide synthase (nNOS) into the rostral ventrolateral medulla (RVLM) improves baroreflex function in rats with chronic heart failure (CHF). Six to eight weeks after coronary artery ligation, rats showed hemodynamic signs of CHF. A recombinant adenovirus, either Ad.nNOS or Ad.beta-Gal, was transfected into the RVLM. nNOS expression in the RVLM was confirmed by Western blot analysis, NADPH-diaphorase, and immunohistochemical staining. We studied baroreflex control of the heart rate (HR) and renal sympathetic nerve activity (RSNA) in the anesthetized state 3 days after gene transfer by intravenous injections of phenylephrine and nitroprusside. Baroreflex sensitivity was depressed for HR and RSNA regulation in CHF rats (2.0 +/- 0.3 vs. 0.8 +/- 0.2 beats.min-1.mmHg-1, P < 0.01 and 3.8 +/- 0.3 vs. 1.2 +/- 0.1% max/mmHg, P < 0.01, respectively). Ad.nNOS transfer into RVLM significantly increased the HR and RSNA ranges (152 +/- 19 vs. 94 +/- 12 beats/min, P < 0.05 and 130 +/- 16 vs. 106 +/- 5% max/mmHg, P < 0.05) compared with the Ad.beta-Gal in CHF rats. Ad.nNOS also improved the baroreflex gain for the control of HR and RSNA (1.8 +/- 0.2 vs. 0.8 +/- 0.2 beats.min-1.mmHg-1, P < 0.01 and 2.6 +/- 0.2 vs. 1.2 +/- 0.1% max/mmHg, P < 0.01). In sham-operated rats, we found that Ad.nNOS transfer enhanced the HR range compared with Ad.beta-Gal gene transfer (188 +/- 15 vs. 127 +/- 14 beats/min, P < 0.05) but did not alter any other parameter. This study represents the first demonstration of altered baroreflex function following increases in central nNOS in the CHF state. We conclude that delivery of Ad.nNOS into the RVLM improves baroreflex function in rats with CHF.  相似文献   

10.
Smith  DV; Li  CS 《Chemical senses》1998,23(2):159-169
The effects of gamma-aminobutyric acid (GABA) and the GABAA receptor antagonist bicuculline methiodide (BICM) on the activity of taste- responsive neurons in the nucleus of the solitary tract (NST) were examined electrophysiologically in urethane-anesthetized hamsters. Single neurons in the NST were recorded extracellularly and drugs (21 nl) were microinjected into the vicinity of the cell via a multibarrel pipette. The response of each cell was recorded to lingual stimulation with 0.032 M NaCl, 0.032 M sucrose, 0.0032 M citric acid and 0.032 M quinine hydrochloride (QHCl). Forty-six neurons were tested for the effects of GABA; the activity of 29 cells (63%) was inhibited by 5 mM GABA. Whether activity was elicited in these cells by repetitive anodal current stimulation (25 microA, 0.5 s, 0.1 Hz) of the tongue (n = 13 cells) or the cells were spontaneously active (n = 13 cells), GABA produced a dose-dependent (1, 2 and 5 mM) decrement in activity. Forty- seven NST neurons were tested for the effects of BICM on their responses to chemical stimulation of the tongue; the responses of 28 cells (60%) were enhanced by 10 mM BICM. The gustatory responses of 26 of these cells were tested with three concentrations (0.2, 2 and 10 mM) of BICM, which produced a dose-dependent increase in both spontaneous activity and taste-evoked responses. Nine of these neurons were sucrose- best, seven were NaCl-best, eight were acid-best and two responded best to QHCl. The responses to all four tastants were enhanced, with no difference among neuron types. For 18 cells that were tested with two or more gustatory stimuli, BICM increased their breadth of responsiveness to their two most effective stimuli. These data show that approximately 60% of the taste-responsive neurons in the rostral NST are inhibited by GABA and/or subject to a tonic inhibitory influence, which is mediated by GABAA receptors. The modulation of these cells by GABA provides a mechanism by which the breadth of tuning of the cell can be sharpened. Modulation of gustatory activity following a number of physiological changes could be mediated by such a GABAergic circuit.   相似文献   

11.
The purpose of the present study was to examine the effects of an acute dose of the dual dopamine (DA) and norepinephrine (NE) reuptake inhibitor bupropion (Bup) on brain (T(brain)), body core (T(core)), and tail skin (T(tail)) temperature in freely moving rats and to simultaneously monitor the extracellular neurotransmitter concentrations in the preoptic area and anterior hypothalamus (PO/AH). A microdialysis probe was inserted in the PO/AH, and samples for NE, DA, and serotonin (5-HT) were collected every 20 min before and after the injection of 17 mg/kg of Bup, for a total sampling time of 180 min. T(core) was monitored using a biotelemetry system. T(brain) and T(tail), an index of heat loss response, were also measured. Both NE and DA levels in the PO/AH significantly increased after Bup injection compared with the baseline levels, reaching approximately 450 and 230%, respectively, 40 min after injection. There was no effect on 5-HT release. The neurotransmitter changes were accompanied by a significant decrease in T(tail) and an increase in both T(brain) and T(core) compared with the baseline levels. The present results demonstrate that inhibition of NE and DA reuptake suppresses heat loss mechanisms and elevates T(brain) and T(core) in freely moving rats.  相似文献   

12.
13.
The acceleratory and inhibitory cardio-regulatory nerves of hermit crabs (Aniculus aniculus, Dardanus crassimanus) were studied using histochemical, immunocytochemical and pharmacological tests. Glyoxylic acid-induced fluorescence was observed in two of three axons of the dorsal cardiac nerve. One axon of the nerve showed gamma-aminobutyric acid-like immunoreactivity. Effects of stimulation of cardio-acceleratory axons were blocked by the dopaminergic antagonists, haloperidol and chlorpromazine, but not by cholinergic, adrenergic or serotonergic blockers, suggesting that dopamine is the primary potential candidate for the neurotransmitter of cardio-accelerator neurons. Picrotoxin antagonized inhibition of the cardiac ganglion induced by gammaam-inobutyric acid and by cardio-inhibitory axons. Both small and large ganglionic cells may receive dopaminergic and GABAergic extrinsic neural control.Abbreviations ACh acetylcholine - CA cardio-accelerator - CA1 and CA2 first and second cardio-accelerators - CI cardio-inhibitor - EJP excitatory junction potential - GABA gamma-aminobutyric acid - EPSP excitatory postsynaptic potential - IPSP inhibitory postsynaptic potential - LGC large ganglionic cell - SGC small ganglionic cell - 5-HT serotonin  相似文献   

14.
The administration of diazepam 1.0 mg/kg decreased the level of plasma corticosterone in female but not in male Wistar rats. Picrotoxin, another drug affecting GABAergic transmission, also brought about an increase of plasma corticosterone in both sexes. However, in order to achieve a plasma corticosterone increase of similar magnitude (more than 500%) a threefold higher dose of picrotoxin had to be given to males. When the convulsive properties of picrotoxin were tested, it became evident that the dose of picrotoxin (2.5 mg/kg) which was subconvulsive in male was almost 100% convulsive in female rats. The existing sex differences in the response of rats to drugs affecting GABAergic transmission might have possible implications in the treatment of GABA system dysfunction.  相似文献   

15.
GABAergic brain system is an important link in the pathological circuits of rodent audiogenic epilepsy (AE). The number of GABAergic neurons in the inferior colliculi of KM strain rats (AE prone) was not different from that of the control non-prone strain. At the same time, the glutamate decarboxylase mRNA expression (the key enzyme of GABA synthesis) was 5 times higher than in control. The data evidence that the GABAergic system does play an important role in AE proneness.  相似文献   

16.
Prenatal stress is associated with altered behavioral, cognitive, and psychiatric outcomes in offspring. Due to the importance of GABAergic systems in normal development and in psychiatric disorders, prenatal stress effects on these neurons have been investigated in animal models. Prenatal stress delays GABAergic progenitor migration, but the significance of these early developmental disruptions for the continued development of GABAergic cells in the juvenile brain is unclear. Here, we examined effects of prenatal stress on populations of GABAergic neurons in juvenile and adult medial frontal cortex (mFC) and hippocampus through stereological counting, gene expression, and relevant anxiety‐like and social behaviors. Postnatally, the total GABAergic cell number that peaks in adolescence showed altered trajectories in mFC and hippocampus. Parvalbumin neuron proportion in juvenile brain was altered by prenatal stress, but parvalbumin gene expression showed no differences. In adult brain, parvalbumin neuron proportions were altered by prenatal stress with opposite gene expression changes. Adult prenatally stressed offspring showed a lack of social preference on a three‐chambered task, increased anxiety‐like behavior on the elevated plus maze, and reduced center time in an open field. Despite a lack of significant group differences in adult total GABAergic cell populations, performance of these tasks was correlated with GABAergic populations in mFC and hippocampus. In conclusion, prenatal stress resulted in a delay in GABAergic cell number and maturation of the parvalbumin subtype. Influences of prenatal stress on GABAergic populations during developmentally dynamic periods and during adulthood may be relevant to the anxiety‐like behaviors that occur after prenatal stress. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 76: 1078–1091, 2016  相似文献   

17.
18.
Nonspiking local interneurons in the terminal abdominal ganglion of the crayfish Procambarus clarkii receive inhibitory inputs from mainly glutamatergic spiking local interneurons and GABAergic nonspiking interneurons. In this study, the inhibitory responses of nonspiking interneurons to local application of glutamate and GABA into the neuropil were compared. Glutamate and GABA injection mediated the hyperpolarization of the nonspiking interneurons with an increase in membrane conductance. The glutamate-mediated membrane hyperpolarization was reversed by injection of 1 or 2 nA hyperpolarizing current. By contrast, more than 3 nA hyperpolarizing current was frequently necessary to reverse the GABA-mediated hyperpolarization. Bath application of a chloride channel blocker, 50 microM picrotoxin (PTX), reduced the glutamate-mediated hyperpolarization, but had no effect on the GABA-mediated hyperpolarization. The GABA-mediated hyperpolarization was not consistently affected by bath application of low chloride solution. These results suggest that the glutamate-mediated inhibition was related to the gating of a Cl(-) conductance, while the GABA-mediated inhibition was not. Electrical stimulation of sensory afferents innervating the exopodite elicited ipsps in uropod opener motor neurons. These sensory-evoked ipsps were also PTX-insensitive, suggesting GABAergic nonspiking interneurons could be the predominant premotor elements in organizing the uropod motor control system.  相似文献   

19.
Long-term treatment with dipeptidyl peptidase IV inhibitors (DPPIV-I) or glucagon-like peptide (GLP)-1 analogs may potentially affect intestinal growth by down- or upregulating the intestinotrophic hormone GLP-2. This study compared the intestinotrophic effects of 12-wk administration of vehicle, exendin-4 (Ex-4; 5 nmol/kg bid sc), or DPPIV-I (NN-7201, 10 mg/kg qd orally) in GK rats. Some animals were observed additionally for 9 wk after the end of treatment. Both treatments lowered glycated hemoglobin A1c at wk 12 vs. control (Ex-4, -0.8%; DPPIV-I, -0.4%). Body weight was reduced by Ex-4 compared with control (361 +/- 4 vs. 399 +/- 5 g; P < 0.001) because of reduced food intake, whereas neither parameter was affected by DPPIV-I. Linear bone growth was unaffected by either treatment. After treatment end, food intake in Ex-4 animals increased, and, by wk 21, body weight was identical in all groups. The small intestine of Ex-4-treated animals was larger at wk 12 compared with control (length, 135.6 +/- 1.6 vs. 124.5 +/- 2.3 cm, P < 0.001; absolute weight, 8.4 +/- 0.2 vs. 6.4 +/- 0.4 g, P < 0.001), being most pronounced proximally, where the absolute cross-sectional area related to body weight increased by 24% because of increased mucosal thickness. These effects were reversible, and 9 wk after the end of treatment, no differences between Ex-4 and control were apparent. Plasma GLP-2 concentrations were unaltered by either treatment, and Ex-4 had no agonistic or antagonistic effects on the transfected GLP-2 receptor. DPPIV-I had no intestinal effects. In conclusion, the continued presence of Ex-4 is necessary to maintain weight loss in GK rats. Effective antihyperglycemic treatment with Ex-4 increases intestinal mass reversibly, whereas DPPIV-I lacks intestinal effects.  相似文献   

20.
Although experience-dependent changes in neural circuits are commonly assumed to be mediated by synaptic plasticity, modifications of intrinsic excitability may serve as a complementary mechanism. In whole-cell recordings from spontaneously firing vestibular nucleus neurons, brief periods of inhibitory synaptic stimulation or direct membrane hyperpolarization triggered long-lasting increases in spontaneous firing rates and firing responses to intracellular depolarization. These increases in excitability, termed firing rate potentiation, were induced by decreases in intracellular calcium and expressed as reductions in the sensitivity to the BK-type calcium-activated potassium channel blocker iberiotoxin. Firing rate potentiation is a novel form of cellular plasticity that could contribute to motor learning in the vestibulo-ocular reflex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号