首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Shao D  Zheng W  Qiu W  Ouyang Q  Tang C 《Biophysical journal》2006,91(11):3986-4001
The mating pathway in Saccharomyces cerevisiae is one of the best understood signal transduction pathways in eukaryotes. It transmits the mating signal from plasma membrane into the nucleus through the G-protein coupled receptor and the mitogen-activated protein kinase (MAPK) cascade. According to current understanding of the mating pathway, we construct a system of ordinary differential equations to describe the process. Our model is consistent with a wide range of experiments, indicating that it captures some main characteristics of the signal transduction along the pathway. Investigation with the model reveals that the shuttling of the scaffold protein and the dephosphorylation of kinases involved in the MAPK cascade cooperate to regulate the response upon pheromone induction and to help preserve the fidelity of the mating signaling. We explored factors affecting the dose-response curves of this pathway and found that both negative feedback and concentrations of the proteins involved in the MAPK cascade play crucial roles. Contrary to some other MAPK systems where signaling sensitivity is being amplified successively along the cascade, here the mating signal is transmitted through the cascade in an almost linear fashion.  相似文献   

2.
A walk-through of the yeast mating pheromone response pathway   总被引:2,自引:0,他引:2  
Bardwell L 《Peptides》2004,25(9):1465-1476
The intracellular signal transduction pathway by which the yeast Saccharomyces cerevisiae responds to the presence of peptide mating pheromone in its surroundings is one of the best understood signaling pathways in eukaryotes, yet continues to generate new surprises and insights. In this review, we take a brief walk down the pathway, focusing on how the signal is transmitted from the cell-surface receptor-coupled G protein, via a MAP kinase cascade, to the nucleus.  相似文献   

3.
4.
Bardwell L 《Peptides》2005,26(2):339-350
The intracellular signal transduction pathway by which the yeast Saccharomyces cerevisiae responds to the presence of peptide mating pheromone in its surroundings is one of the best understood signaling pathways in eukaryotes, yet continues to generate new surprises and insights. In this review, we take a brief walk down the pathway, focusing on how the signal is transmitted from the cell-surface receptor-coupled G protein, via a MAP kinase cascade, to the nucleus.  相似文献   

5.
S Erdman  M Snyder 《Genetics》2001,159(3):919-928
Haploid cells of the budding yeast Saccharomyces cerevisiae respond to mating pheromones by arresting their cell-division cycle in G1 and differentiating into a cell type capable of locating and fusing with mating partners. Yeast cells undergo chemotactic cell surface growth when pheromones are present above a threshold level for morphogenesis; however, the morphogenetic responses of cells to levels of pheromone below this threshold have not been systematically explored. Here we show that MATa haploid cells exposed to low levels of the alpha-factor mating pheromone undergo a novel cellular response: cells modulate their division patterns and cell shape, forming colonies composed of filamentous chains of cells. Time-lapse analysis of filament formation shows that its dynamics are distinct from that of pseudohyphal growth; during pheromone-induced filament formation, daughter cells are delayed relative to mother cells with respect to the timing of bud emergence. Filament formation requires the RSR1(BUD1), BUD8, SLK1/BCK1, and SPA2 genes and many elements of the STE11/STE7 MAP kinase pathway; this response is also independent of FAR1, a gene involved in orienting cell polarization during the mating response. We suggest that mating yeast cells undergo a complex response to low levels of pheromone that may enhance the ability of cells to search for mating partners through the modification of cell shape and alteration of cell-division patterns.  相似文献   

6.
Nuclear fusion during yeast mating occurs by a three-step pathway   总被引:1,自引:0,他引:1       下载免费PDF全文
In Saccharomyces cerevisiae, mating culminates in nuclear fusion to produce a diploid zygote. Two models for nuclear fusion have been proposed: a one-step model in which the outer and inner nuclear membranes and the spindle pole bodies (SPBs) fuse simultaneously and a three-step model in which the three events occur separately. To differentiate between these models, we used electron tomography and time-lapse light microscopy of early stage wild-type zygotes. We observe two distinct SPBs in ~80% of zygotes that contain fused nuclei, whereas we only see fused or partially fused SPBs in zygotes in which the site of nuclear envelope (NE) fusion is already dilated. This demonstrates that SPB fusion occurs after NE fusion. Time-lapse microscopy of zygotes containing fluorescent protein tags that localize to either the NE lumen or the nucleoplasm demonstrates that outer membrane fusion precedes inner membrane fusion. We conclude that nuclear fusion occurs by a three-step pathway.  相似文献   

7.
Signaling the pathway to regeneration   总被引:16,自引:0,他引:16  
Snider WD  Zhou FQ  Zhong J  Markus A 《Neuron》2002,35(1):13-16
Robust axon regeneration occurs after peripheral nerve injury through coordinated activation of a genetic program and local intracellular signaling cascades. Although regeneration-associated genes are being identified with increasing frequency, most aspects of regeneration-associated intracellular signaling remain poorly understood. Two independent studies now report that upregulation of cAMP is a component of the PNS regeneration program that can be exploited to enhance axon regeneration through the normally inhibitory CNS environment.  相似文献   

8.
《The Journal of cell biology》1993,123(6):1707-1716
The role of clathrin in endocytosis of the yeast phermone receptors was examined using strains expressing a temperature-sensitive clathrin heavy chain. The yeast phermone receptors belong to the family of seven transmembrane segment, G-protein-coupled receptors. A rapid and reversible defect in uptake of radiolabeled alpha-factor pheromone occurred when the cells were transferred to the nonpermissive temperature. Constitutive, pheromone-independent internalization of newly synthesized a-factor phermone receptor was also rapidly inhibited in mutant strains at the nonpermissive temperature. In both cases residual endocytosis, 30-50% of wild-type levels, was detected in the absence of functional clathrin heavy chain. Once internalized, the a- factor receptor was delivered to the vacuole at comparable rates in chc1-ts and wild-type cells at the nonpermissive temperature. Clathrin heavy chain was also required for maximal uptake of a mutant a-factor receptor which is dependent on pheromone for internalization. In the presence of a-factor, the internalization rate of the mutant receptor in chc1-ts cells at the nonpermissive temperature was 2.5 times slower than the rate observed for endocytosis of the mutant receptor in wild- type cells. These experiments provide in vivo evidence that clathrin plays an important role in the endocytosis of the seven trans-membrane segment pheromone receptors in yeast.  相似文献   

9.
The Frizzled (Fz; called here Fz1) and Fz2 receptors have distinct signaling specificities activating either the canonical Wnt/β-catenin pathway or Fz/planar cell polarity (PCP) signaling in Drosophila. The regulation of signaling specificity remains largely obscure. We show that Fz1 and Fz2 have different subcellular localizations in imaginal disc epithelia, with Fz1 localizing preferentially to apical junctional complexes, and Fz2 being evenly distributed basolaterally. The subcellular localization difference directly contributes to the signaling specificity outcome. Whereas apical localization favors Fz/PCP signaling, it interferes with canonical Wnt/β-catenin signaling. Receptor localization is mediated by sequences in the cytoplasmic tail of Fz2 that appear to block apical accumulation. Based on these data, we propose that subcellular Fz localization, through the association with other membrane proteins, is a critical aspect in regulating the signaling specificity within the Wnt/Fz signaling pathways.  相似文献   

10.
The mushroom-producing fungus Schizophyllum commune has thousands of mating types defined, in part, by numerous lipopeptide pheromones and their G protein-linked receptors. Compatible combinations of pheromones and receptors encoded by different mating types regulate a pathway of sexual development leading to mushroom formation and meiosis. A complex set of pheromone-receptor interactions maximizes the likelihood of outbreeding; for example, a single pheromone can activate more than one receptor and a single receptor can be activated by more than one pheromone. The current study demonstrates that the sex pheromones and receptors of Schizophyllum, when expressed in Saccharomyces cerevisiae, can substitute for endogenous pheromone and receptor and induce the yeast pheromone response pathway through the yeast G protein. Secretion of active Schizophyllum pheromone requires some, but not all, of the biosynthetic machinery used by the yeast lipopeptide pheromone a-factor. The specificity of interaction among pheromone-receptor pairs in Schizophyllum was reproduced in yeast, thus providing a powerful system for exploring molecular aspects of pheromone-receptor interactions for a class of seven-transmembrane-domain receptors common to a wide range of organisms.  相似文献   

11.
12.
13.
14.
Summary Illegitimate / diploids heterozygous for the dmt gene, described previously, have been created and analyzed with respect to auxotrophic markers on chromosome III. It has been shown that in a high proportion of these diploids, which were theoretically heterozygous for the chromosome III auxotrophic markers his4, leu2 and thr4, the expected dominant phenotype was not obtained. This non-expression of the dominant gene (NEDG) appears to be a result of modification of the chromosome III genes found in dmt containing strains. The dmt gene is thought to affect the mating type locus located 22 centermorgans from the centromere on chromosome III. Thus a closely linked antibiotic resistance marker for cryptopleurine was examined along with the auxotrophic markers located on other parts of chromosome III. Control experiments gave the expected expression of cryptopleurine resistance or sensitivity whereas / diploids heterozygous for the dmt gene once again showed non-expression of the dominant genotype for this mating type linked marker. A number of these diploids also showed the unexpected ability to sporulate and gave rise to either two or four viable spores per ascus. Our results are consistent with the idea that the dmt gene causes deletions on chromosome III, and this in turn alters the mating properties of the haploid cells. By observing the effects of various deletions in samples selected for mating dynfunction, it is possible to speculate on certain properties of mating regulation.  相似文献   

15.

Background  

Mechanisms regulating neuronal migration during development remain largely undefined. Extracellular matrix cues, target site released factors, and components of the migratory neurons themselves are likely all coordinated in time and space directing neurons to their appropriate locations. We have studied the effects of proteases and their inhibitors on the extracellular matrix and the consequences to the migration of gonadotropin releasing hormone (GnRH) neurons in the embryonic chick. Chick GnRH neurons differentiate in the olfactory epithelium, migrate along the olfactory nerve and enter the forebrain. The accessibility of this coherent cell group make it amenable for studying protease/inhibitor roles in migratory processes.  相似文献   

16.
The mating process between two protoplasts or between a protoplast and a cell in the yeastSaccharomyces cerevisiœ was manifested by a specific morphological response of only the cell partner. The cells produced projections, up to 5 μm long, to meet their protoplast partners. The protoplasts responded, after a period of nonspecific hernia-like growth, by ceasing to grow and assuming oval or spherical shapes. They never formed mating projections, apparently due to the absence of complete cell walls. Similarly to the cells, nuclear division in protoplasts was arrested and the nucleus migrated towards the plasma membrane at the site of protoplast-cell contact. Cytoplasmic microtubules were directed to this site, indicating the position of the spindle pole body (SPB) on the nucleus adjacent to the plasma membrane. Actin patches accumulated also in this region. These cytological features of the protoplasts were reminiscent of the reorganization of the cytoskeleton and nucleus characteristic of mating cells. This implies that the ability of protoplasts to produce and receive mating signals was unaffected by protoplasting. Fusion, however, was not initiated due to the absence of the complete cell wall in one of the partners. Thus, the cell wall appeared to be necessary for the expression of polarized growth during mating and for cell fusion. Dedicated to Professor O. Nečas on the occasion of his 70th birthday  相似文献   

17.
18.
Nitric oxide (NO) has been recently shown to modulate in vitro motility, viability, the acrosome reaction (AR), and metabolism of spermatozoa in various mammalian species, but the mechanism or mechanisms through which it influences sperm functions has not been clarified. In human capacitated spermatozoa, both the intracellular cGMP level and the percentage of AR-positive cells were significantly increased after 4 h of incubation with the NO donor, sodium nitroprusside (SNP). SNP-induced AR was significantly reduced in the presence of the soluble guanylate cyclase (sGC) inhibitors, LY83583 and ODQ; this block was bypassed by adding 8-bromo-cGMP, a cell-permeating cGMP analogue, to the incubation medium. Finally, Rp-8-Br-cGMPS and Rp-8-pCPT-cGMPS, two inhibitors of the cGMP-dependent protein kinases (PKGs), inhibited the SNP-induced AR. Furthermore, SNP-induced AR did not occur in Ca2+ -free medium or in the presence of the protein kinase C (PKC) inhibitor, calphostin C. This study suggests that the AR-inducing effect of exogenous NO on capacitated human spermatozoa is accomplished via stimulation of an NO-sensitive sGC, cGMP synthesis, and PKG activation. In this effect the activation of PKC is also involved, and the presence of extracellular Ca2+ is required.  相似文献   

19.
Extracellular nucleotides stimulate human neutrophils by activating the purinergic P2Y2 receptor. However, it is not completely understood which types of G proteins are activated downstream of this P2 receptor subtype. We investigated the G-protein coupling to P2Y2 receptors and several subsequent signaling events. Treatment of neutrophils with pertussis toxin (PTX), a Gi protein inhibitor, caused only ∼75% loss of nucleotide-induced Ca2+ mobilization indicating that nucleotides cause Ca2+ mobilization both through Gi-dependent and Gi-independent pathways. However, the PLC inhibitor U73122 almost completely inhibited Ca2+ mobilization in both nucleotide- and fMLP-stimulated neutrophils, strongly supporting the view that both the PTX-sensitive and the PTX-insensitive mechanism of Ca2+ increase require activation of PLC. We investigated the dependence of ERK phosphorylation on the Gi pathway. Treatment of neutrophils with PTX caused almost complete inhibition of ERK phosphorylation in nucleotide or fMLP activated neutrophils. U73122 caused inhibition of nucleotide- or fMLP-stimulated ERK phosphorylation, suggesting that although pertussis toxin-insensitive pathways cause measurable Ca2+ mobilization, they are not sufficient for causing ERK phosphorylation. Since PLC activation leads to intracellular Ca2+ increase and PKC activation, we investigated if these intracellular events are necessary for ERK phosphorylation. Exposure of cells to the Ca2+ chelator BAPTA had no effect on nucleotide- or fMLP-induced ERK phosphorylation. However, the PKC inhibitor GF109203X was able to almost completely inhibit nucleotide- or fMLP-induced ERK phosphorylation. We conclude that the P2Y2 receptor can cause Ca2+ mobilization through a PTX-insensitive but PLC-dependent pathway and ERK phosphorylation is highly dependent on activation of the Gi proteins.  相似文献   

20.
The mechanism by which receptors activate heterotrimeric G proteins was examined by scanning mutagenesis of the Saccharomyces cerevisiae pheromone-responsive Galpha protein (Gpa1). The juxtaposition of high-resolution structures for rhodopsin and its cognate G protein transducin predicted that at least six regions of Galpha are in close proximity to the receptor. Mutagenesis was targeted to residues in these domains in Gpa1, which included four loop regions (beta2-beta3, alpha2-beta4, alpha3-beta5, and alpha4-beta6) as well as the N and C termini. The mutants displayed a range of phenotypes from nonsignaling to constitutive activation of the pheromone pathway. The constitutive activity of some mutants could be explained by decreased production of Gpa1, which permits unregulated signaling by Gbetagamma. However, the constitutive activity caused by the F344C and E335C mutations in the alpha2-beta4 loop and F378C in the alpha3-beta5 loop was not due to decreased protein levels, and was apparently due to defects in sequestering Gbetagamma. The strongest loss of the function mutant, which was not detectably induced by a pheromone, was caused by a K314C substitution in the beta2-beta3 loop. Several other mutations caused weak signaling phenotypes. Altogether, these results suggest that residues in different interface regions of Galpha contribute to activation of signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号