首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
We determined the effect of 48-h elevation of plasma free fatty acids (FFA) on insulin secretion during hyperglycemic clamps in control female Wistar rats (group a) and in the following female rat models of progressive beta-cell dysfunction: lean Zucker diabetic fatty (ZDF) rats, both wild-type (group b) and heterozygous for the fa mutation in the leptin receptor gene (group c); obese (fa/fa) Zucker rats (nonprediabetic; group d); obese prediabetic (fa/fa) ZDF rats (group e); and obese (fa/fa) diabetic ZDF rats (group f). FFA induced insulin resistance in all groups but increased C-peptide levels (index of absolute insulin secretion) only in obese prediabetic ZDF rats. Insulin secretion corrected for insulin sensitivity using a hyperbolic or power relationship (disposition index or compensation index, respectively, both indexes of beta-cell function) was decreased by FFA. The decrease was greater in normoglycemic heterozygous lean ZDF rats than in Wistar controls. In obese "prediabetic" ZDF rats with mild hyperglycemia, the FFA-induced decrease in beta-cell function was no greater than that in obese Zucker rats. However, in overtly diabetic obese ZDF rats, FFA further impaired beta-cell function. In conclusion, 1) the FFA-induced impairment in beta-cell function is accentuated in the presence of a single copy of a mutated leptin receptor gene, independent of hyperglycemia. 2) In prediabetic ZDF rats with mild hyperglycemia, lipotoxicity is not accentuated, as the beta-cell mounts a partial compensatory response for FFA-induced insulin resistance. 3) This compensation is lost in diabetic rats with more marked hyperglycemia and loss of glucose sensing.  相似文献   

2.
Intermittent restraint stress delays hyperglycemia in ZDF rats better than pair feeding. We hypothesized that intermittent stress would preserve beta-cell mass through distinct mechanisms from food restriction. We studied temporal effects of intermittent stress on beta-cell compensation during pre-, early, and late diabetes. Six-week-old obese male ZDF rats were restraint-stressed 1 h/day, 5 days/wk for 0, 3, 6, or 13 wk and compared with age-matched obese ZDF rats that had been food restricted for 13 wk, and 19-wk-old lean ZDF rats. Thirteen weeks of stress and food restriction lowered cumulative food intake 10-15%. Obese islets were fibrotic and disorganized and not improved by stress or food restriction. Obese pancreata had islet hyperplasia and showed evidence of neogenesis, but by 19 wk old beta-cell mass was not increased, and islets had fewer beta-cells that were hypertrophic. Both stress and food restriction partially preserved beta-cell mass at 19 wk old via islet hypertrophy, whereas stress additionally lowered alpha-cell mass. Concomitant with maintenance of insulin responses to glucose, stress delayed the sixfold decline in beta-cell proliferation and reduced beta-cell hypertrophy, translating into 30% more beta-cells per islet after 13 wk. In contrast, food restriction did not improve insulin responses or beta-cell hyperplasia, exacerbated beta-cell hypertrophy, and resulted in fewer beta-cells and greater alpha-cell mass than with stress. Thus, preservation of beta-cell mass with adaptation to intermittent stress is related to beta-cell hyperplasia, maintenance of insulin responses to glucose, and reductions in alpha-cell mass that do not occur with food restriction.  相似文献   

3.
Diabetes results in several metabolic changes, including alterations in the transport, distribution, excretion, and accumulation of metals. While changes have been examined in several rat models of insulin resistance and diabetes, the metal ion concentrations in the tissues of Zucker lean, Zucker obese (an insulin resistance and early stage diabetes model), and Zucker diabetic fatty (ZDF, a type 2 diabetes model) have not previously been examined in detail. The concentration of Cu, Zn, Fe, Mg, and Ca were examined in the liver, kidney, heart and spleen, and Cr concentration in the liver and kidney of these rats were examined. Zucker obese rats have a reduction in the concentration of Cu, Zn, Fe, Mg in the liver compared to ZDF and/or lean Zucker rats, presumably as a result of the increased fat content of the liver of the obese rats. ZDF rats have increased concentrations of kidney Cu compared to the lean rats, while kidney Ca concentrations are increased in the Zucker obese rats. Spleen Fe concentrations are decreased in Zucker obese rats compared to the lean rats. No effects on metal concentrations in the heart were observed between the lean, obese, and ZDF rats, and no effects on Cr concentrations were identified. Cr(III) complexes have previously been shown to have beneficial effects on the signs of insulin resistance in Zucker obese and ZDF rats. The effects of daily gavage administration of chromium picolinate ([Cr(pic)3]) (1 mg?Cr/kg body mass), CrCl3 (1 mg?Cr/kg body mass), and Cr3 ([Cr3O(propionate)6(H2O)3]+) (33 μg and 1 mg?Cr/kg body mass) on metal concentrations in these tissues were examined. Treatment with CrCl3 and Cr3, but not [Cr(pic)3], at 1 mg?Cr/kg resulted in a statistically significant accumulation of Cr in the kidney of lean and obese but not ZDF rats but resulted in lowering the elevated levels of kidney Cu in ZDF rats, suggesting a beneficial effect on this symptom of type 2 diabetes.  相似文献   

4.
Type 2 diabetes and obesity are characterized by elevated nocturnal circulating free fatty acids, elevated basal insulin secretion, and blunted glucose‐stimulated insulin secretion (GSIS). The CB1 receptor antagonist, Rimonabant, has been shown to improve glucose tolerance and insulin sensitivity in vivo but its direct effect on islets has been unclear. Islets from lean littermates and obese Zucker (ZF) and Zucker Diabetic Fatty (ZDF) rats were incubated for 24 h in vitro and exposed to 11 mmol/l glucose and 0.3 mmol/l palmitate (GL) with or without Rimonabant. Insulin secretion was determined at basal (3 mmol/l) or stimulatory (15 mmol/l) glucose concentrations. As expected, basal secretion was significantly elevated in islets from obese or GL‐treated lean rats whereas the fold increase in GSIS was diminished. Rimonabant decreased basal hypersecretion in islets from obese rats and GL‐treated lean rats without decreasing the fold increase in GSIS. However, it decreased GSIS in islets from lean rats without affecting basal secretion. These findings indicate that Rimonabant has direct effects on islets to reduce insulin secretion when secretion is elevated above normal levels by diet or in obesity. In contrast, it appears to decrease stimulated secretion in islets from lean animals but not in obese or GL‐exposed islets.  相似文献   

5.
The purpose of this study was to investigate the effect of endurance training (10 weeks) on previously reported alterations of lactate exchange in obese Zucker fa/fa rats. We used sarcolemmal vesicles to measure lactate transport capacity in control sedentary rats, Zucker (fa/fa), and endurance trained Zucker (fa/fa) rats. Monocarboxylate transporter (MCT) 1 and 4 content was measured in sarcolemmal vesicles and skeletal muscle. Training increased citrate synthase activity in soleus and in red tibialis anterior, and improved insulin sensitivity measured by intraperitoneal glucose tolerance test. Endurance training increased lactate influx in sarcolemmal vesicles at 1 mM of external lactate concentration and increased MCT1 expression on sarcolemmal vesicles. Furthermore, muscular lactate level was significantly decreased after training in red tibialis anterior and extensor digitorum longus. This study shows that endurance training improves impairment of lactate transport capacity that is found in insulin resistance state like obesity and type 2 diabetes.  相似文献   

6.
The beta-cell biochemical mechanisms that account for the compensatory hyperfunction with insulin resistance (so-called beta-cell adaptation) are unknown. We investigated glucose metabolism in isolated islets from 10-12-week-old Zucker fatty (ZF) and Zucker lean (ZL) rats (results expressed per mg/islet of protein). ZF rats were obese, hyperlipidemic, and normoglycemic. They had a 3.8-fold increased beta-cell mass along with 3-10-fold increases in insulin secretion to various stimuli during pancreas perfusion despite insulin content per milligram of beta-cells being only one-third that of ZL rats. Islet glucose metabolism (utilization and oxidation) was 1.5-2-fold increased in the ZF islets despite pyruvate dehydrogenase activity being 30% lowered compared with the ZL islets. The reason was increased flux through pyruvate carboxylase (PC) and the malate-pyruvate and citrate-pyruvate shuttles based on the following observations (% ZL islets): increased V(max) of PC (160%), malate dehydrogenase (170%), and malic enzyme (275%); elevated concentrations of oxaloacetate (150%), malate (250%), citrate (140%), and pyruvate (250%); and 2-fold increased release of malate from isolated mitochondria. Inhibition of PC by 5 mm phenylacetic acid markedly lowered glucose-induced insulin secretion in ZF and ZL islets. Thus, our results suggest that PC and the pyruvate shuttles are increased in ZF islets, and this accounts for glucose mitochondrial metabolism being increased when pyruvate dehydrogenase activity is reduced. As the anaplerosis pathways are implicated in glucose-induced insulin secretion and the synthesis of glucose-derived lipid and amino acids, our results highlight the potential importance of PC and the anaplerosis pathways in the enhanced insulin secretion and beta-cell growth that characterize beta-cell adaptation to insulin resistance.  相似文献   

7.
Type 2 diabetes (T2D) is closely associated with obesity, and it arises when pancreatic β cells fail to achieve β cell compensation. However, the mechanism linking obesity, insulin resistance, and β cell failure in T2D is not fully understood. To explore this association, we carried out a differential proteomics study using the disease models of Zucker Fatty (ZF) and Zucker Diabetic Fatty (ZDF) rats as the rat models for obese/prediabetes and obese/diabetes, respectively. Differentially expressed islet proteins were identified among ZDF, ZF, and Zucker Lean (ZL, control rat) rats using three iTRAQ experiments, where three biological replicates and two technical replicates were examined to assess both the technical and biological reproducibilities. A total of 54 and 58 proteins were differentially expressed in ZDF versus ZL rats and in ZF versus ZL rats, respectively. Notably, the novel proteins involved in impaired insulin secretion (Scg2, Anxa2, and Rab10), mitochondrial dysfunction (Atp5b and Atp5l), extracellular matrix proteins (Lgal-1, Vim, and Fbn1), and microvascular ischemia (CPA1, CPA2, CPB, Cela2a, and Cela3b) were observed for the first time. With these novel proteins, our proteomics study could provide valuable clues for better understanding the underlying mechanisms associated with the dynamic transition of obesity to T2D.  相似文献   

8.
Physical activity improves glycemic control in type 2 diabetes (T2D), but its contribution to preserving β-cell function is uncertain. We evaluated the role of physical activity on β-cell secretory function and glycerolipid/fatty acid (GL/FA) cycling in male Zucker diabetic fatty (ZDF) rats. Six-week-old ZDF rats engaged in voluntary running for 6 wk (ZDF-A). Inactive Zucker lean and ZDF (ZDF-I) rats served as controls. ZDF-I rats displayed progressive hyperglycemia with β-cell failure evidenced by falling insulinemia and reduced insulin secretion to oral glucose. Isolated ZDF-I rat islets showed reduced glucose-stimulated insulin secretion expressed per islet and per islet protein. They were also characterized by loss of the glucose regulation of fatty acid oxidation and GL/FA cycling, reduced mRNA expression of key β-cell genes, and severe reduction of insulin stores. Physical activity prevented diabetes in ZDF rats through sustaining β-cell compensation to insulin resistance shown in vivo and in vitro. Surprisingly, ZDF-A islets had persistent defects in fatty acid oxidation, GL/FA cycling, and β-cell gene expression. ZDF-A islets, however, had preserved islet insulin mRNA and insulin stores compared with ZDF-I rats. Physical activity did not prevent hyperphagia, dyslipidemia, or obesity in ZDF rats. In conclusion, islets of ZDF rats have a susceptibility to failure that is possibly due to altered β-cell fatty acid metabolism. Depletion of pancreatic islet insulin stores is a major contributor to islet failure in this T2D model, preventable by physical activity.  相似文献   

9.
Male obese Zucker Diabetic Fatty (ZDF) rats develop type 2 diabetes around eight weeks of age, and are widely used as a model for human diabetes and its complications. The objective of the study was to test whether the complications manifested in the kidney and nerves of ZDF rats really correspond to human diabetic complications in their being related to the hyperglycaemic state. Four groups of ZDF rats were used. One lean (Fa/?) and one obese (fa/fa) untreated group served as non-diabetic and diabetic controls. In two further groups of obese (fa/fa) rats, diabetes was prevented by pioglitazone or delayed by food restriction. All rats were monitored up to 35 weeks of age with respect to their blood glucose, HbA1c and insulin levels, their kidney function (urinary glucose excretion, renal glucose filtration, glomerular filtration rate, albumin/creatinine ratio), and their nerve function (tactile and thermal sensory threshold and nerve conduction velocity). Pioglitazone prevented the development of diabetes, while food restriction delayed its onset for 8-10 weeks. Accordingly, kidney function parameters were similar to lean non-diabetic rats in pioglitazone-treated rats and significantly improved in food-restricted rats compared with obese controls. Kidney histology paralleled the functional results. By contrast, nerve functional evaluations did not mirror the differing blood glucose levels. We conclude that the ZDF rat is a good model for diabetic nephropathy, while alterations in nerve functions were not diabetes-related.  相似文献   

10.
The present study examined the level of GLUT-4 glucose transporter protein in gastrocnemius muscles of 36 week old genetically obese Zucker (fa/fa) rats and their lean (Fa/-) littermates, and in obese Zucker rats following 18 or 30 weeks of treadmill exercise training. Despite skeletal muscle insulin resistance, the level of GLUT-4 glucose transporter protein was similar in lean and obese Zucker rats. In contrast, exercise training increased GLUT-4 protein levels by 1.7 and 2.3 fold above sedentary obese rats. These findings suggest endurance training stimulates expression of skeletal muscle GLUT-4 protein which may be responsible for the previously observed increase in insulin sensitivity with training.  相似文献   

11.
The objective was to examine the effect of polyunsaturated fatty acid type (plant vs fish oil-derived n-3, compared to n-6 fatty acids in the presence of constant proportions of saturated, monounsaturated and polyunsaturated fatty acids) on obesity, insulin resistance and tissue fatty acid composition in genetically obese rats. Six-week-old fa/fa and lean Zucker rats were fed with a 10% (w/w) mixed fat diet containing predominantly flax-seed, menhaden or safflower oils for 9 weeks. There was no effect of dietary lipid on obesity, oral glucose tolerance (except t=60 min insulin), pancreatic function or molecular markers related to insulin, glucose and lipid metabolism, despite increased n-3 fatty acids in muscle and adipose tissue. The menhaden oil diet reduced fasting serum free fatty acids in both fa/fa and lean rats. These data suggest that n-3 composition does not alter obesity and insulin resistance in the fa/fa Zucker rat model when dietary lipid classes are balanced.  相似文献   

12.
The obese (ob) gene product leptin, secreted from adipose tissue, acts in the hypothalamus to regulate body energy stores. In vitro experiments showed that insulin increases both leptin mRNA expression and leptin secretion by adipocytes. Here, we report on the relationship between plasma insulin and plasma leptin in a longitudinal in vivo study. In Zucker diabetic fatty (ZDF) rats, an animal model for non-insulin-dependent diabetes mellitus (NIDDM), and in ZDF control rats, blood glucose, body weight, plasma insulin and plasma leptin levels were measured from 10 to 25 weeks of age. In ZDF control rats, body weight, plasma leptin and plasma insulin levels increased gradually during the study period. In ZDF rats, the time course of plasma leptin was similar to that of plasma insulin, but did not parallel that of body weight. Calculation of partial correlation coefficients revealed that in ZDF control rats plasma leptin correlated with body weight rather than with plasma insulin. However, in ZDF rats, plasma leptin correlated with plasma insulin rather than with body weight, suggesting an important role for insulin in the modulation of leptin secretion in this animal model for NIDDM.  相似文献   

13.
Exercise improves glucose tolerance in obese rodent models and humans; however, effects with respect to mechanisms of beta-cell compensation remain unexplained. We examined exercise's effects during the progression of hyperglycemia in male Zucker diabetic fatty (ZDF) rats until 19 wk of age. At 6 wk old, rats were assigned to 1) basal--euthanized for baseline values; 2) exercise--swam individually for 1 h/day, 5 days/wk; and 3) controls (n = 8-10/group). Exercise (13 wk) resulted in maintenance of fasted hyperinsulinemia and prevented increases in fed and fasted glucose (P < 0.05) compared with sham-exercised and sedentary controls (P < 0.05). Beta-cell function calculations indicate prolonged beta-cell adaptation in exercised animals alone. During an intraperitoneal glucose tolerance test (IPGTT), exercised rats had lower 2-h glucose (P < 0.05) vs. controls. Area-under-the-curve analyses from baseline for IPGTT glucose and insulin indicate improved glucose tolerance with exercise was associated with increased insulin production and/or secretion. Beta-cell mass increased in exercised vs. basal animals; however, mass expansion was absent at 19 wk in controls (P < 0.05). Hypertrophy and replication contributed to expansion of beta-cell mass; exercised animals had increased beta-cell size and bromodeoxyuridine incorporation rates vs. controls (P < 0.05). The relative area of GLUT2 and protein kinase B was significantly elevated in exercised vs. sedentary controls (P < 0.05). Last, we show formation of ubiquitinated protein aggregates, a response to cellular/oxidative stress, occurred in nonexercised 19 wk-old ZDF rats but not in lean, 6 wk-old basal, or exercised rats. In conclusion, improved beta-cell compensation through increased beta-cell function and mass occurs in exercised but not sedentary ZDF rats and may be in part responsible for improved glucoregulation.  相似文献   

14.
The inhibitory action of vanadate towards protein tyrosine phosphatase (PTPase) has been considered as a probable mechanism by which it exerts insulin-like effects. In this study, we have examined thein vivo effects of vanadate on PTPases in the liver of obese Zucker rats, a genetic animal model for obesity and type II diabetes. These animals were characterized by hyperinsulinemia and mild hyperglycemia. The number of insulin receptors were significantly (p<0.01) decreased in liver. After chronic administration of vanadate in obese rats, 80% decrease in the plasma levels of insulin was observed. The insulin receptor numbers were significantly (p<0.01) higher in vanadate-treated obese rats as compared to the untreated ones. The hepatic PTPase activities in cytosolic and particulate fractions, with phosphorylated poly glu:tyr (41) and the insulin receptor peptide (residues 1142–1153) as substrates, increased in obese rats. In vanadate-treated obese rat livers, the PTPase activities in both subcellular fractions with these substrates decreased significantly (p<0.001). The decreases in PTPase activities from these groups of rats were further supported by chromatography on a Mono Q column. These data support the view that inhibition of PTPases plays a role in the insulin-mimetic action of vanadate.  相似文献   

15.
The Zucker obese (fa/fa) rat is a model of hypertrophic/hyperplastic obesity. These rats develop marked hyperinsulinemia, insulin resistance, and pancreatic beta-cell hyperplasia. In the present study, chronic (22 weeks) administration of the 17-ketosteroid, dehydroepiandrosterone (DHEA), to obese Zucker rats significantly decreased body weight, and retroperitoneal and parametrial fat pad weights. In addition, beta-cell hyperplasia was reduced as well as pancreatic insulin content. DHEA treatment of lean Zucker rats also reduced body weight, fat depot weight, pancreatic islet diameter, and pancreatic insulin content. These data indicate that DHEA treatment appears to inhibit insulin synthesis and beta-cell proliferation. Whether this is due to a direct effect on the pancreas or due to improvement of peripheral insulin sensitivity remains to be elucidated.  相似文献   

16.
Acute physiological hyperinsulinemia increases skeletal muscle capillary blood volume (CBV), presumably to augment glucose and insulin delivery. We hypothesized that insulin-mediated changes in CBV are impaired in type 2 diabetes mellitus (DM) and are improved by angiotensin-converting enzyme inhibition (ACE-I). Zucker obese diabetic rats (ZDF, n = 18) and control rats (n = 9) were studied at 20 wk of age. One-half of the ZDF rats were treated with quinapril (ZDF-Q) for 15 wk prior to study. CBV and capillary flow in hindlimb skeletal muscle were measured by contrast-enhanced ultrasound (CEU) at baseline and at 30 and 120 min after initiation of a euglycemic hyperinsulinemic clamp (3 mU.min(-1).kg(-1)). At baseline, ZDF and ZDF-Q rats were hyperglycemic and hyperinsulinemic vs. controls. Glucose utilization in ZDF rats was 60-70% lower (P < 0.05) than in controls after 30 and 120 min of hyperinsulinemia. In ZDF-Q rats, glucose utilization was impaired at 30 min but similar to controls at 120 min. Basal CBV was lower in ZDF and ZDF-Q rats compared with controls (13 +/- 4, 7 +/- 3, and 9 +/- 2 U, respectively). With hyperinsulinemia, CBV increased by about twofold in control animals at 30 and 120 min, did not change in ZDF animals, and increased in ZDF-Q animals only at 120 min to a level similar to controls. Anatomic capillary density on immunohistology was not different between groups. We conclude that insulin-mediated capillary recruitment in skeletal muscle, which participates in glucose utilization, is impaired in animals with DM and can be partially reversed by chronic ACE-I therapy.  相似文献   

17.
Herein, we bridge beta-cell function and morphology in minipigs. We hypothesized that different aspects of beta-cell dysfunction are present in obesity and obesity with reduced beta-cell mass by using pulsatile insulin secretion as an early marker. Measures for beta-cell function (glucose and arginine stimulation plus baseline and glucose-entrained pulsatile insulin secretion) and islet morphology were studied in long-term (19-20 mo) obese (n = 5) and obese beta-cell-reduced [nicotinamide + streptozotocin (STZ), n = 5] minipigs and normal controls, representing different stages in the development toward type 2 diabetes. Acute insulin response (AIR) to glucose and arginine were, surprisingly, normal in obese (0.3 g/kg glucose: AIR = 246 +/- 119 vs. 255 +/- 61 pM in control; 67 mg/kg arginine: AIR = 230 +/- 124 vs. 214 +/- 85 pM in control) but reduced in obese-STZ animals (0.3 g/kg glucose: AIR = 22 +/- 36, P < 0.01; arginine: AIR = 87 +/- 92 pM, P < 0.05 vs. control). Baseline pulsatile insulin secretion was reduced in obese (59 +/- 16 vs. 76 +/- 16% in control, P < 0.05) and more so in obese-STZ animals (43 +/- 13%, P < 0.01), whereas regularity during entrainment was increased in obese animals (approximate entropy: 0.85 +/- 0.14 vs. 1.13 +/- 0.13 in control, P < 0.01). Beta-cell mass (mg/kg body wt) was normal in obese and reduced in obese-STZ animals, with pancreatic fat infiltration in both groups. In conclusion, obesity and insulin resistance are not linked with a general reduction of beta-cell function, but dynamics of insulin secretion are perturbed. The data suggest a sequence in the development of beta-cell dysfunction, with the three groups representing stages in the progression from normal physiology to diabetes, and assessment of pulsatility as the single most sensitive marker of beta-cell dysfunction.  相似文献   

18.
The male obese Wistar Diabetic Fatty (WDF) rat is a genetic model of obesity and non-insulin dependent diabetes (NIDDM). The obese Zucker rat shares the same gene for obesity on a different genetic background but is not diabetic. This study evaluated the degree of insulin resistance in both obese strains by examining the binding and post binding effects of muscle insulin receptors in obese, rats exhibiting hyperinsulinemia and/or hyperglycemia. Insulin receptor binding and affinity and tyrosine kinase activity were measured in skeletal muscle from male WDF fa/fa (obese) and Fa/? (lean) and Zucker fa/fa (obese) and Fa/Fa (homozygous lean) rats. Rats were fed a high sucrose (68% of total Kcal) or Purina stock diet for 14 weeks. At 27 weeks of age, adipose depots were removed for adipose cellularity analysis and the biceps femoris muscle was removed for measurement of insulin binding and insulin-stimulated receptor kinase activity. Plasma glucose (13.9 vs. 8.4 mM) and insulin levels (14,754 vs. 7440 pmoI/L) were significantly higher in WDF obese than in Zucker obese rats. Insulin receptor number and affinity and TK activity were unaffected by diet. Insulin receptor number was significantly reduced in obese WDF rats (2.778 ± 0.617 pmol/mg protein), compared to obese Zucker rats (4.441 ± 0.913 pmol/mg potein). Both obese strains exhibited down regulation of the insulin receptor compared to their lean controls. Maximal tyrosine kinase (TK) activity was significantly reduced in obese WDF rats (505 ± 82 fmol/min/mg protein) compared to obese Zucker rats (1907 ± 610 fmol/min/mg protein). Only obese WDF rats displayed a decrease in TK activity per receptor. These observations establish the obese WDF rat as an excellent model for exploring mechanisms of extreme insulin resistance, particularly post-receptor tyrosine kinase-associated defects, in non-insulin dependent diabetes.  相似文献   

19.

Background

Canagliflozin is a sodium glucose co-transporter (SGLT) 2 inhibitor in clinical development for the treatment of type 2 diabetes mellitus (T2DM).

Methods

14C-alpha-methylglucoside uptake in Chinese hamster ovary-K cells expressing human, rat, or mouse SGLT2 or SGLT1; 3H-2-deoxy-d-glucose uptake in L6 myoblasts; and 2-electrode voltage clamp recording of oocytes expressing human SGLT3 were analyzed. Graded glucose infusions were performed to determine rate of urinary glucose excretion (UGE) at different blood glucose (BG) concentrations and the renal threshold for glucose excretion (RTG) in vehicle or canagliflozin-treated Zucker diabetic fatty (ZDF) rats. This study aimed to characterize the pharmacodynamic effects of canagliflozin in vitro and in preclinical models of T2DM and obesity.

Results

Treatment with canagliflozin 1 mg/kg lowered RTG from 415±12 mg/dl to 94±10 mg/dl in ZDF rats while maintaining a threshold relationship between BG and UGE with virtually no UGE observed when BG was below RTG. Canagliflozin dose-dependently decreased BG concentrations in db/db mice treated acutely. In ZDF rats treated for 4 weeks, canagliflozin decreased glycated hemoglobin (HbA1c) and improved measures of insulin secretion. In obese animal models, canagliflozin increased UGE and decreased BG, body weight gain, epididymal fat, liver weight, and the respiratory exchange ratio.

Conclusions

Canagliflozin lowered RTG and increased UGE, improved glycemic control and beta-cell function in rodent models of T2DM, and reduced body weight gain in rodent models of obesity.  相似文献   

20.
The prevalence of type 2 diabetes (T2DM) is increasing, creating a need for T2DM animal models for the study of disease pathogenesis, prevention, and treatment. The purpose of this project was to develop a rat model of T2DM that more closely models the pathophysiology of T2DM in humans. The model was created by crossing obese Sprague-Dawley rats with insulin resistance resulting from polygenic adult-onset obesity with Zucker diabetic fatty-lean rats that have a defect in pancreatic beta-cell function but normal leptin signaling. We have characterized the model with respect to diabetes incidence; age of onset; longitudinal measurements of glucose, insulin, and lipids; and glucose tolerance. Longitudinal fasting glucose and insulin data demonstrated progressive hyperglycemia (with fasting and fed glucose concentrations >250 and >450 mg/dl, respectively) after onset along with hyperinsulinemia resulting from insulin resistance at onset followed by a progressive decline in circulating insulin concentrations, indicative of beta-cell decompensation. The incidence of diabetes in male and female rats was 92 and 43%, respectively, with an average age of onset of 6 mo in males and 9.5 mo in females. Results from intravenous glucose tolerance tests, pancreas immunohistochemistry, and islet insulin content further support a role for beta-cell dysfunction in the pathophysiology of T2DM in this model. Diabetic animals also exhibit glycosuria, polyuria, and hyperphagia. Thus diabetes in the UC Davis-T2DM rat is more similar to clinical T2DM in humans than in other existing rat models and provides a useful model for future studies of the pathophysiology, treatment, and prevention of T2DM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号