首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has been previously observed that the thermic effect of a glucose load is potentiated by prior exercise. To determine whether this phenomenon is observed when different carbohydrates are used and to ascertain the role of insulin, the thermic effects of fructose and glucose were compared during control (rest) and postexercise trials. Six male subjects ingested 100 g fructose or glucose at rest or after recovery from 45 min of treadmill exercise at 70% of maximal O2 consumption. Measurements of O2 consumption, respiratory exchange ratio, and plasma concentrations of glucose, insulin, glycerol, and lactate were measured for 3 h postingestion. Although glucose and fructose increased net energy expenditure by 44 and 51 kcal, respectively, over baseline during control trials, exercise increased the thermic effect of both carbohydrate challenges an additional 20-25 kcal (P less than 0.05). Glucose ingestion was associated with large (P less than 0.05) increases in plasma insulin concentration during control and exercise trials, in contrast to fructose ingestion. Because fructose, which is primarily metabolized by liver, and glucose elicited a similar postexercise potentiation of thermogenesis, the results indicate that the thermogenic phenomenon is not limited to skeletal muscle. These results also demonstrate that carbohydrate-induced postexercise thermogenesis is not related to an incremental increase in plasma insulin concentration.  相似文献   

2.
3.
The metabolic responses induced by the ingestion of a beverage containing glucose (G), fructose (F) or placebo (W) 30 min before exercise of high intensity and intermediate duration have been investigated; in these conditions the energy processes are mostly dependent on aerobic reactions. A group of 11 male recreational sportsmen ran on a treadmill, at an intensity corresponding to 82% of peak oxygen consumption, until exhaustion on three different occasions (after ingestion of a beverage containing 75 g of G, 75 g of F or W). Plasma glucose, insulin, and lactic acid concentrations were determined just prior to the ingestion of the beverages, 30 min afterwards and 10 and 30 min after completion of the exercise. The mean endurance time was 644 (SD 261) s after the ingestion of G, 611 (SD 227) s after the ingestion of F and 584 (SD 189) s after the ingestion of the W (P < 0.05 between G and W). No differences in the oxygen uptake, respiratory quotient or lactate concentrations between the three trials were observed. Both plasma glucose and insulin concentrations determined in samples obtained immediately before the onset of exercise were higher when G was ingested than when F (P < 0.05 andP < 0.05, respectively) or W (P < 0.001 and P < 0.005, respectively) were ingested. These findings would suggest that the ingestion of G prior to an effort of intermediate duration may improve physical performance.  相似文献   

4.
A global metabolic profiling methodology based on gas chromatography coupled to time-of-flight mass spectrometry (GC-TOFMS) for human plasma was applied to a human exercise study focused on the effects of beverages containing glucose, galactose, or fructose taken after exercise and throughout a recovery period of 6 h and 45 min. One group of 10 well trained male cyclists performed 3 experimental sessions on separate days (randomized, single center). After performing a standardized depletion protocol on a bicycle, subjects consumed one of three different beverages: maltodextrin (MD)+glucose (2:1 ratio), MD+galactose (2:1), and MD+fructose (2:1), consumed at an average of ~1.25 g of carbohydrate (CHO) ingested per minute. Blood was taken straight after exercise and every 45 min within the recovery phase. With the resulting blood plasma, insulin, free fatty acid (FFA) profile, glucose, and GC-TOFMS global metabolic profiling measurements were performed. The resulting profiling data was able to match the results obtained from the other clinical measurements with the addition of being able to follow many different metabolites throughout the recovery period. The data quality was assessed, with all the labelled internal standards yielding values of <15% CV for all samples (n=335), apart from the labelled sucrose which gave a value of 15.19%. Differences between recovery treatments including the appearance of galactonic acid from the galactose based beverage were also highlighted.  相似文献   

5.
The first purpose of this study was to investigate whether a glucose (GLU)+fructose (FRUC) beverage would result in a higher exogenous carbohydrate (CHO) oxidation rate and a higher fluid availability during exercise in the heat compared with an isoenergetic GLU beverage. A second aim of the study was to examine whether ingestion of GLU at a rate of 1.5 g/min during exercise in the heat would lead to a reduced muscle glycogen oxidation rate compared with ingestion of water (WAT). Eight trained male cyclists (maximal oxygen uptake: 64+/-1 ml.kg-1.min-1) cycled on three different occasions for 120 min at 50% maximum power output at an ambient temperature of 31.9+/-0.1 degrees C. Subjects received, in random order, a solution providing either 1.5 g/min of GLU, 1.0 g/min of GLU+0.5 g/min of FRUC, or WAT. Exogenous CHO oxidation during the last hour of exercise was approximately 36% higher (P<0.05) in GLU+FRUC compared with GLU, and peak oxidation rates were 1.14+/-0.05 and 0.77+/-0.08 g/min, respectively. Endogenous CHO oxidation was significantly lower (P<0.05) in GLU+FRUC compared with WAT. Muscle glycogen oxidation was not different after ingestion of GLU or WAT. Plasma deuterium enrichments were significantly higher (P<0.05) in WAT and GLU+FRUC compared with GLU. Furthermore, at 60 and 75 min of exercise, plasma deuterium enrichments were higher (P<0.05) in WAT compared with GLU+FRUC. Ingestion of GLU+FRUC during exercise in the heat resulted in higher exogenous CHO oxidation rates and fluid availability compared with ingestion of GLU and reduced endogenous CHO oxidation compared with ingestion of WAT.  相似文献   

6.
7.
8.
The purpose of this study was to compare the oxidation of 13C-labeled glucose, fructose, and glucose polymer ingested (1.33 g.kg-1 in 19 ml.kg-1 water) during cycle exercise (120 min, 53 +/- 2% maximal O2 uptake) in six healthy male subjects. Oxidation of exogenous glucose and glucose polymer (72 +/- 15 and 65 +/- 18%, respectively, of the 98.9 +/- 4.7 g ingested) was similar and significantly greater than exogenous fructose oxidation (54 +/- 13%). A transient rise in plasma glucose concentration was observed with glucose ingestion only. However, plasma insulin levels were similar with glucose and glucose polymer ingestions and significantly higher than with water or fructose ingestion. Plasma free fatty acid and glycerol responses to exercise were blunted with carbohydrate ingestion. However, fat utilization was not significantly different with water (82 +/- 14 g), glucose (60 +/- 3 g), fructose (59 +/- 11 g), or glucose polymer ingestion (60 +/- 8 g). Endogenous carbohydrate utilization was significantly lower with glucose (184 +/- 22 g), glucose polymer (187 +/- 31 g), and fructose (211 +/- 18 g) than with water (239 +/- 30 g) ingestion. Plasma volume slightly increased with water ingestion (7.4 +/- 4.5%), but the decrease was similar with glucose (-7.6 +/- 5.1%) and glucose polymer (-8.2 +/- 4.6%), suggesting that the rate of water delivery to plasma was similar with the two carbohydrates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
We examined the influence of various carbohydrates of fuel homeostasis and glycogen utilization during prolonged exercise. Seventy-five grams of glucose, fructose, or placebo were given orally to eight healthy males 45 min before ergometer exercise performed for 2 h at 55% of maximal aerobic power (VO2max). After glucose ingestion, the rises in plasma glucose (P less than 0.01) and insulin (P less than 0.001) were 2.4- and 5.8-fold greater than when fructose was consumed. After 30 min of exercise following glucose ingestion, the plasma glucose concentration had declined to a nadir of 3.9 +/- 0.3 mmol/l, and plasma insulin had returned to basal levels. The fall in plasma glucose was closely related to the preexercise glucose (r = 0.98, P less than 0.001) and insulin (r = 0.66, P less than 0.05) levels. The rate of endogenous glucose production and utilization rose similarly by 2.8-fold during exercise in fructose group and were 10-15% higher than in placebo group (P less than 0.05). Serum free fatty acid levels were 1.5- to 2-fold higher (P less than 0.01) after placebo than carbohydrate ingestion. Muscle glycogen concentration in the quadriceps femoris fell in all three groups by 60-65% (P less than 0.001) during exercise. These data indicate that fructose ingestion, though causing smaller perturbations in plasma glucose, insulin, and gastrointestinal polypeptide (GIP) levels than glucose ingestion, was no more effective than glucose or placebo in sparing glycogen during a long-term exercise.  相似文献   

10.
Resting and exercise fuel metabolism was assessed in three different phases of the menstrual cycle, characterized by different levels of estrogen relative to progesterone: early follicular (EF, low estrogen and progesterone), midfollicular (MF, elevated estrogen, low progesterone), and midluteal (ML, elevated estrogen and progesterone). It was hypothesized that exercise glucose utilization and whole body carbohydrate oxidation would decrease sequentially from the EF to the MF to the ML phase. Normal-weight healthy females, experiencing a regular menstrual cycle, were recruited. Subjects were moderately active but not highly trained. Testing occurred after 3 days of diet control and after an overnight fast (12-13 h). Resting (2 h) and exercise (50% maximal O(2) uptake, 90 min) measurements of whole body substrate oxidation, tracer-determined glucose flux, and substrate and hormone concentrations were made. No significant difference was observed in whole body fuel oxidation during exercise in the three phases (nonprotein respiratory exchange ratio: EF 0.84 +/- 0.01, MF 0.85 +/- 0.01, ML 0.85 +/- 0.01) or in rates of glucose appearance or disappearance. There were, however, significantly higher glucose (P < 0.05) and insulin (P < 0.001) concentrations during the first 45 min of exercise in the ML phase vs. EF and MF phases. In conclusion, whole body substrate oxidation and glucose utilization did not vary significantly across the menstrual cycle in moderately active women, either at rest or during 90 min of moderate-intensity exercise. During the ML phase, however, this similar pattern of substrate utilization was associated with greater glucose and insulin concentrations. Both estrogen and progesterone are elevated during the ML phase of the menstrual cycle, suggesting that one or both of these sex steroids may play a role in this response.  相似文献   

11.
Oxidation of combined ingestion of glucose and fructose during exercise.   总被引:1,自引:0,他引:1  
The purpose of the present study was to examine whether combined ingestion of a large amount of fructose and glucose during cycling exercise would lead to exogenous carbohydrate oxidation rates >1 g/min. Eight trained cyclists (maximal O(2) consumption: 62 +/- 3 ml x kg(-1) x min(-1)) performed four exercise trials in random order. Each trial consisted of 120 min of cycling at 50% maximum power output (63 +/- 2% maximal O(2) consumption), while subjects received a solution providing either 1.2 g/min of glucose (Med-Glu), 1.8 g/min of glucose (High-Glu), 0.6 g/min of fructose + 1.2 g/min of glucose (Fruc+Glu), or water. The ingested fructose was labeled with [U-(13)C]fructose, and the ingested glucose was labeled with [U-(14)C]glucose. Peak exogenous carbohydrate oxidation rates were approximately 55% higher (P < 0.001) in Fruc+Glu (1.26 +/- 0.07 g/min) compared with Med-Glu and High-Glu (0.80 +/- 0.04 and 0.83 +/- 0.05 g/min, respectively). Furthermore, the average exogenous carbohydrate oxidation rates over the 60- to 120-min exercise period were higher (P < 0.001) in Fruc+Glu compared with Med-Glu and High-Glu (1.16 +/- 0.06, 0.75 +/- 0.04, and 0.75 +/- 0.04 g/min, respectively). There was a trend toward a lower endogenous carbohydrate oxidation in Fruc+Glu compared with the other two carbohydrate trials, but this failed to reach statistical significance (P = 0.075). The present results demonstrate that, when fructose and glucose are ingested simultaneously at high rates during cycling exercise, exogenous carbohydrate oxidation rates can reach peak values of approximately 1.3 g/min.  相似文献   

12.
13.
The addition of beta-D-glucose (final concentration, 50 mM) to a cell suspension of Saccharomyces cerevisiae in stationary phase caused a rapid 4-fold increase in the concentration of cAMP, while a 2-fold increase of cAMP was observed by the addition of alpha-D-glucose. beta -D-Glucose was also more effective than alpha-D-glucose in the inactivation of fructose 1,6-bisphosphatase and the activation of trehalase. These results, taken together with the previous report that alpha-D-glucose is transported more rapidly than beta-D-glucose in Saccharomyces cerevisiae, do not support the view currently proposed by some investigators that cotransport of D-glucose with protons causes the depolarization of the cell membrane, resulting in the activation of adenylate cyclase. The present data, however, provides supporting evidence for the view that cAMP-dependent protein kinase is implicated in the inactivation of fructose 1,6-bisphosphatase and the activation of trehalase.  相似文献   

14.
15.
Jeukendrup, A. E., M. Mensink, W. H. M. Saris, and A. J. M. Wagenmakers. Exogenous glucose oxidation during exercise in endurance-trained and untrained subjects. J. Appl.Physiol. 82(3): 835-840, 1997.To investigate theeffect of training status on the fuel mixture used during exercise withglucose ingestion, seven endurance-trained cyclists (Tr; maximumO2 uptake 67 ± 2.3 ml · kg1 · min1)and eight untrained subjects (UTr; 48 ± 2 ml · kg1 · min1)were studied during 120 min of exercise at ~60% maximumO2 uptake. At the onset of exercise, 8 ml · kg1 · min1of an 8% naturally enriched[13C]glucose solutionwas ingested and 2 ml/kg every 15 min thereafter. Energy expenditurewas higher in Tr subjects compared with UTr subjects (3,404 vs. 2,630 kJ; P < 0.01). During the secondhour, fat oxidation was higher in Tr subjects (37 ± 2 g) comparedwith UTr subjects (23 ± 1 g), whereas carbohydrateoxidation was similar (116 ± 8 g in Tr subjects vs. 114 ± 4 g in UTr subjects). No differences were observed in exogenousglucose oxidation (50 ± 2 g in Tr subjects and 45 ± 3 g in UTr subjects, respectively). Peak exogenous glucose oxidationrates were similar in the two groups (0.95 ± 0.07 g/min in Trsubjects and 0.96 ± 0.03 g/min in UTr subjects). It is concluded that the higher energy expenditure in Tr subjects during exercise atthe same relative exercise intensity is entirely met by a higher rateof fat oxidation without changes in the rates of exogenous andendogenous carbohydrates.

  相似文献   

16.
The pyrolytic behavior of inulin, a (2 → 1)-linked fructofuranan, is described. Parallel investigations of the pyrolysis of glucose and of fructose were conducted to supplement the inulin results and to aid comparison with previous results from glucans. Effects of neutral and basic additives are emphasized. As with glucans, the addition of such additives (especially basic) increases the yields of the one-, two-, and three-carbon products (as well as of hexosaccharinolactones), while generally decreasing the yields of anhydro sugar and furan derivatives. The former products include glycoaldehyde, acetol, dihydroxyacetone, acetic acid, formic acid, and lactic acid. Mechanistic speculations are made regarding the origins of these compounds, as well as of furan derivatives and saccharinic acid lactones. Parallels with alkaline degradation are considered.  相似文献   

17.
Regulatory functions of glycogen stores and blood glucose on human appetite, particularly relating to exercise, are not fully understood. Ten men (age 20-31 yr) performed glycogen-depleting exercise in an evening, ate a low-carbohydrate dinner, and stayed overnight in the laboratory. The next day, blood glucose was monitored continuously for 517 +/- 23 (SE) min. Subjects had access to high-fat and high-carbohydrate foods after baseline glucose and respiratory quotient were determined. In the afternoon, 1 h of moderate exercise was performed. Baseline respiratory quotient was 0. 748 +/- 0.008, plasma free fatty acids were 677 +/- 123 micromol/l, insulin was 4.8 +/- 0.5 microU/ml, and leptin was 1.9 +/- 0.3 ng/ml. Postabsorptively, 8 of 10 meals were initiated during stability in blood glucose. Postprandially, the association between meal initiation and blood glucose declines became significant (chi(2) = 7. 82). During moderate exercise, blood glucose initially decreased but recovered before completion. When the glycogen buffer is depleted, meal initiation can occur during blood glucose stability; the relationship between blood glucose declines and meal initiation reestablishes with refeeding.  相似文献   

18.
19.
Objective To examine the relation between intake of sugar sweetened soft drinks and fructose and the risk of incident gout in men.Design Prospective cohort over 12 years.Setting Health professionals follow-up study.Participants 46 393 men with no history of gout at baseline who provided information on intake of soft drinks and fructose through validated food frequency questionnaires.Main outcome measure Incident cases of gout meeting the American College of Rheumatology survey criteria for gout.Results During the 12 years of follow-up 755 confirmed incident cases of gout were reported. Increasing intake of sugar sweetened soft drinks was associated with an increasing risk of gout. Compared with consumption of less than one serving of sugar sweetened soft drinks a month the multivariate relative risk of gout for 5-6 servings a week was 1.29 (95% confidence interval 1.00 to 1.68), for one serving a day was 1.45 (1.02 to 2.08), and for two or more servings a day was 1.85 (1.08 to 3.16; P for trend=0.002). Diet soft drinks were not associated with risk of gout (P for trend=0.99). The multivariate relative risk of gout according to increasing fifths of fructose intake were 1.00, 1.29, 1.41, 1.84, and 2.02 (1.49 to 2.75; P for trend <0.001). Other major contributors to fructose intake such as total fruit juice or fructose rich fruits (apples and oranges) were also associated with a higher risk of gout (P values for trend <0.05).Conclusions Prospective data suggest that consumption of sugar sweetened soft drinks and fructose is strongly associated with an increased risk of gout in men. Furthermore, fructose rich fruits and fruit juices may also increase the risk. Diet soft drinks were not associated with the risk of gout.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号