共查询到20条相似文献,搜索用时 15 毫秒
1.
Introduction of the plasmid pKM101-associated muc genes into Saccharomyces cerevisiae 总被引:3,自引:0,他引:3
Bacteria-yeast shuttle plasmids containing the pKM101-associated muc genes were constructed by cloning an ARS TRP fragment into the plasmid pGW270 in both possible orientations. The insertion of Saccharomyces cerevisiae DNA into pGW270 had no effect on the mutator and protective phenotypes associated with the plasmid in Escherichia coli. Two such recombinant plasmids, pAA90 and pAA91 , were capable of efficient transformation of S. cerevisiae and were stably maintained in this organism. Hybridization experiments suggest that muc-specific mRNA was present in transformed yeast cells and a small amount was polyadenylated. The RNAs were not of a discrete size, all being smaller than the muc genes. The presence of the plasmid pAA91 , and to a lesser extent, pAA90 , in yeast resulted in a detectable increase in the reversion frequencies of three markers and in ultraviolet protection. These results are discussed in terms of studying the relationship of error-prone repair in bacteria and yeast and of developing improved yeast tester strains. 相似文献
2.
3.
In strains of Escherichia coli deficient in excision repair (uvrA or uvrB), plasmid pKM101 muc+ but not pGW219 mucB::Tn5 enhanced resistance to angelicin monoadducts but reduced resistance to 8-methoxy-psoralen interstrand DNA crosslinks. Thermally induced recA-441 (= tif-1) bacteria showed an additional resistance to crosslinks that was blocked by pKM101. Plasmid-borne muc+ genes also conferred some additional sensitivity to gamma-radiation and it is suggested that a repair step susceptible to inhibition by muc+ gene products and possibly involving double-strand breaks may be involved after both ionizing radiation damage and psoralen crosslinks. 相似文献
4.
A mutant of Escherichia coli K-12, IB10 carrying the ts10 mutation has been isolated. The mutation affects replication and inheritance of pKM101 plasmid. Incubation of the mutant under non-selective conditions of 42 degrees C resulted in the formation of R-cell population. The frequency of temperature-independent clones was 2,1 X 10(-5). The defect of pKM101 replication was shown to result in growth inhibition of host cells at a non-permissive temperature. The host growth only started after elimination of the plasmid. The mechanisms are likely to exist governing the participation of plasmid gene products in processes related to host growth. The influence of ts10 mutation on replication of other plasmids was studied. It was established that ts10 did not affect replication of R6K, RP4 and Flac+ plasmids. However, replication of R15, R205 as well as of pKM101 plasmid stopped under conditions of non-permissive temperature in IB10 mutant. Obviously, ts10 mutation results in defective replication of plasmids only belonging to the N-incompatibility group (IncPN). It is shown that R6K, RP4, Flac+ plasmids are not able to correct pKM101 replication in the mutant at 42 degrees C. 相似文献
5.
Tn5 insertion mutants and in vitro-generated deletion mutants of the mutagenesis-enhancing plasmid pKM101 have been used to identify several genetic regions on the pKM101 map. In clockwise order on the pKM101 map are: (i) the bla gene, coding for a beta-lactamase; (ii) the Slo region, responsible for retarding cell growth on minimal medium; (iii) the tra genes, enabling pKM101 to transfer conjugally; (iv) sensitivity to IKe phage (this function[s] maps within the tra region); (v) the muc gene(s), responsible for enhancing ultraviolet light and chemically induced mutagenesis in the cell; and (vi) the Rep region, essential for plasmid replication. The muc gene(s) and the Rep region are contained in a deoxyribonucleic acid region bounded by inverted repeated sequences. 相似文献
6.
《Mutation Research/Environmental Mutagenesis and Related Subjects》1980,74(4):255-265
The spontaneous and chemically induced mutability of several markers of E. coli K12/343/113 was compared in dam− derivative which are defective in DNA adenine methylation instructed error avoidance (MIEA) and/or strains carrying the error-prone mutator plasmid pKM101. The results show that the plasmid pKM101 and the dam− mutation affect spontaneous mutagenesis differently: the dam− mutation enhances the mutation frequencies of all genetic markers tested, namely, galR, MTR, arg56 and nad113, while pKM101 slightly enhances the mutability of only certain genes (arg56).In the case of chemically induced mutagenesis the intercalating agent 9-aminoacridine and the phenylating agent methylphenylnitrosamine show greatly enhanced mutagenesis in a dam− background while the alkylating agent methyl methanesulfonate and the cross-linking agent mitomycin C show increased mutagenic efficiency in the pKM101-carrying strain. The strong mutagenecity of methylnitronitrosoguanidine, and that of methyl methanesulfonate, is abolished in strain with dam− background. In the case of ethylmethanesulfonate, mutagenesis is enhanced in both the dam− strain and the pKM101 host.The results presented here demonstrate differences in the mode of action of dam−-enhanced and pKM101-enhanced mutagenesis. Our results, furthermore, confirm the relationship between the lack of correction of mismatched bases in the dam− strains and induction of certain frameshift-type mutations; they also indicate the usefulness of dam− tester strains for the efficient detection of certain types of mutagens, such as some intercalating and phenylating agents. 相似文献
7.
The frequency of elimination of plasmid pKM101 fromSalmonella typhimurium TA92 exposed to the action of 1-alkyl-1-ethylpiperidinium bromides and N-alkyl-N-[5-(benzoyloxy)-3-oxapentyl]-N,N-dimethylammonium bromides was nonlinear in the homologous series. Change in the length of the alkyl chain markedly affected the elimination properties of the piperidine derivatives but had no effect on the elimination of benzoyl derivatives. Piperidines exhibited a weaker elimination capacity than the benzoyl derivatives. The most potent eliminator was the octylbenzoyl derivative, which causes the elimination of the plasmid in 80–85% cells. 相似文献
8.
Effect of pKM101 plasmid on lethal and mutagenic damage in UV-irradiated E. coli strains 总被引:1,自引:0,他引:1
Introduction of the R-factor plasmid pKM101 increased resistance to UV-killing in uvr lexA(Ind-) recA+ strains of E. coli K12 as well as B, while their UV mutability was not affected. Similar effects were also observed in those strains when the 18-B plasmid (a pBR322 derivative carrying the region (about 5 kb) of the 35.4 kb pKM101 plasmid) was introduced. The muc genes which are considered to be involved in error-prone repair are contained in 18-B. These results suggest the possibility that the pKM101 effect requires the host recA gene and a common genetic region, including the muc genes, in both plasmids and is associated with some unmutable repair systems. 相似文献
9.
IncN plasmids, including pKM101, strongly inhibit the conjugal transfer of cohabiting IncP plasmids. We localized the pKM101 DNA sufficient for this phenomenon to a 1.1-kilobase region (denoted fip). Two fip-deficient Tn5 insertion derivatives of pKM101 were isolated; neither affected other pKM101-mediated functions. fip did not inhibit either the synthesis of the IncP plasmid's sex pilus or its ability to mediate entry exclusion against other IncP plasmids. 相似文献
10.
We investigated the effect of catechol derivatives, including dopa, dopamine, adrenaline and noradrenaline, on DNA damage and the mechanisms of DNA strand breakage and formation of 8-hydroxyguanine (8HOG). The catechol derivatives caused strand breakage of plasmid DNA in the presence of ADP-Fe(3+). The DNA damage was prevented by catalase, mannitol and dimethylsulfoxide, suggesting hydroxyl radical (HO..)-like species are involved in the strand breakage of DNA. Iron chelators, such as desferrioxamine and bathophenanthroline, and reduced glutathione also inhibited the DNA damage. Deoxyribose, a molecule that is used to detect HO,, was not degraded by dopa in the presence of ADP-Fe(3+). By adding EDTA, however, dopa induced the marked deoxyribose degradation in the presence of ADP-Fe(3+), indicating that EDTA may extract iron from ADP-Fe(3+) to catalyze HO. formation by dopa. Thus, EDTA was a good catalyst for HO.-generation, whereas it did not promote the strand breakage of DNA. However, calf thymus DNA base damage, which was detected as 8-HOG formation, was caused by dopa in the presence of EDTA-Fe(3+), but not in the presence of ADP-Fe(3+). The 8HOG formation was also inhibited by catalase and HO. scavengers, indicating that HO&z.rad; was involved in the base damage. These results suggest that DNA strand breakage is due to ferryl species rather than HO., and that 8HOG formation is due to HO. rather than ferryl species. 相似文献
11.
12.
13.
Epe B 《Photochemical & photobiological sciences》2012,11(1):98-106
DNA damage induced by photosensitization is not only responsible for the genotoxic effects of various types of drugs in the presence of light, but is also relevant for some of the adverse effects of sunlight, in particular in the UVA and visible range of the spectrum. The types of DNA modifications induced are very diverse and include pyrimidine dimers, covalent adducts, various base modifications generated by oxidation, single-strand breaks and (regular and oxidized) sites of base loss. The ratios in which the various modifications are formed (damage spectra) can be regarded as a fingerprint of the damaging mechanism. Here, we describe the damage spectra of various classes of photosensitizers in relation to the underlying damaging mechanisms. In mammalian cells irradiated with solar radiation, damage at wavelengths <400 nm is characteristic for a (not yet identified) endogenous type-I or type-II photosensitizer. In the UVA range, however, both direct DNA excitation and photosensitized damage appear to be relevant, and there are indications that other chromophore(s) are involved than in the visible range. 相似文献
14.
An experimental system ensuring fusion of bacterial genes to the lac operon of the Mu dl(Aplac) phage was used. Fusion operons in which the lac operon was under the control of promoters of the elt gene, responsible for synthesis of the LT toxin, of the tetracyclin-resistance tet gene, and sfiA gene encoding filament production, was studied. Using this experimental system, plasmid pKM101 was shown to be capable of activating the expression of the above Escherichia coli and Salmonella typhimurium genes, which is manifested as the activation of beta-galactosidase synthesis. The activation of the elt gene expression by the pKM101 plasmid was also confirmed in experiments on detecting the LT toxin synthesized by bacteria carrying this plasmid. Effect of the plasmid on the activation of elt operon expression, unlike the effect of this plasmid on mutability, does not depend on the functioning of the lexA and recA genes, i.e., this is not a SOS-regulated process. The mutant plasmid pGW12, a derivative of pKM101, deficient in the mucAB genes responsible for mutagenesis, causes a more pronounced activation of the elt gene than plasmid pKM101. 相似文献
15.
Mortelmans K 《Mutation research》2006,612(3):151-164
pKM101 is a mutagenesis-enhancing resistance transfer plasmid (R plasmid) that was introduced into several tester strains used in the Salmonella/microsome mutation assay (Ames test). Plasmid pKM101 has contributed substantially to the effectiveness of the Ames assay, which is used on a world-wide basis to detect mutagens and is required by many government regulatory agencies for approval to market new drugs and other chemical agents. Widely used since 1975, the Ames test is still regarded as one of the most sensitive genetic toxicity assays and a useful short-term test for predicting carcinogenicity in animals. Plasmid pKM101, which is a deletion derivative of plasmid R46 (also referred to as R-Brighton after its origin of isolation in Brighton, England), has also been used to elucidate molecular mechanisms of mutagenesis. It was isolated in the laboratory of Professor Bruce A.D. Stocker at Stanford University as part of my doctoral research with 20 R plasmids. Professor Stocker's phenomenal insight into the genetics of Salmonella typhimurium and plasmid behavior was a major factor that led to the isolation of pKM101. This paper includes a tribute to Bruce Stocker, together with a summary of my research with mutagenesis-enhancing R plasmids and a brief discussion of the molecular mechanisms involved in pKM101 plasmid-mediated bacterial mutagenesis. 相似文献
16.
Summary Selection for 3-amino-1,2,4-triazole (AT) resistance in certain strains of Salmonella typhimurium has been previously shown to select for genetic tandem duplications of the histidine operon. We show here that agents which induce tandem duplications are less effective in such induction in the presence of the pKM101 plasmid. The presence of the plasmid also produces an increase in AT-resistance due to mechanisms other than duplication, presumably because pKM101 produces high levels of error-prone repair. We suggest that high levels of error-prone repair may cause decreases in tandem duplication induction and propose that error-prone repair and tandem duplication may be alternative cellular responses to certain DNA lesions. 相似文献
17.
In E. coli K12 bacteria carrying plasmid pKM101, prophage lambda was induced at UV doses higher than in plasmid-less parental bacteria. UV-induced reactivation per se was less effective. Bacteria with pKM101 showed no alteration in their division cycle. Plasmid pKM101 coded for a constitutive error-prone repair different from the inducible error-prone repair called SOS repair. Plasmid pKM101 protected E. coli bacteria from UV damage but slightly sensitized them to X-ray lesions. Protection against UV damage was effective in mutant bacteria deficient in DNA excision-repair provided that the recA, lexA and uvrE genes were functional. Survival of phages lambda and S13 after UV irradiation was enhanced in bacteria carrying plasmid pKM101; phage lambda mutagenesis was also increased. Plasmid pKM101 repaired potentially lethal DNA lesions, although wild-type DNA sequences may not necessarily be restored; hence the mutations observed are the traces of the original DNA lesions. 相似文献
18.
I E Mattern F P Olthoff-Smit B L Jacobs-Meijsing B E Enger-Valk P H Pouwels P H Lohman 《Mutation research》1985,148(1-2):35-45
A system has been developed for the analysis of basepair substitutions that are involved in the reversion of a specific missense mutation. The method is based on the ability of restriction enzymes to recognize and cut specific DNA sequences. Wild-type revertants arising from AT----GC transitions, pseudo wild-type revertants arising from AT-transversions and second site revertants can be distinguished. 4 mutagenic agents have been used, 2,6-diaminopurine, MMS, EMS and ENU, which differ in the types of damage they cause in DNA and in the susceptibility of the damage to repair. All 4 mutagens effectively enhanced the reversion of the mutation studied, trpA223, particularly by increasing the fraction of AT----GC transitions. In this system the influence of the muc genes of plasmid pKM101 was investigated. The presence of these genes reduced the fraction of AT----GC transitions and enhanced the fraction of AT-transversions as well as the fraction of second-site mutations. This change in mutation specificity is found irrespective whether mutation induction occurs mainly via SOS repair (MMS, ENU) or via mainly misreplication (2,6-diAP, EMS). These data suggest that the muc genes are involved in the induction of mutations not only during SOS repair, but also during misreplication. The change in mutation specificity may be caused by a change in the selection and insertion of nucleotides by the DNA-polymerising complex, or by interference with the repair of mismatched bases. 相似文献
19.
The conjugal transfer system of the broad-host range IncN plasmid pKM101 was analyzed genetically. Its organization differed significantly from that of the F plasmid. The tra genes are located in three regions, each between 3 and 4 kilobases in length. All of the genes in the first two regions are required for sensitivity to "donor-specific" phage which bind to the plasmid-mediated sex pilus, and these genes therefore are involved in the synthesis, and possibly retraction, of the sex pilus. The plasmid's origin of transfer was localized to a 1.2-kilobase region at an extreme end of the transfer region. Using two different methods, we have identified 11 complementation groups required for transfer. One of these, traC, is of special interest in that mutations at this locus can be partially suppressed if, prior to mating, cells carrying a traC mutant plasmid are incubated with cells which elaborate sex pili but are unable to transfer their plasmids. One possible explanation for this is that pilus-elaborating cells can donate traC gene product to a traC mutant in a form that can be reused. 相似文献
20.
Tiganova IG Rusina OIu Andreeva IV Skavronskaia AG 《Molekuliarnaia genetika, mikrobiologiia i virusologiia》2003,(2):16-20
The study focused on plasmid pKM101, which is a necessary component of the short-term test of Eim's system (Salmonella-microsome test), to detect the potential carcinogens through their mutagen activity. We found a previously unknown feature of the plasmid to enhance the expression of certain plasmid and chromosome genes. The purpose of the present study was to examine and specify the role of operon mucAB responsible for the mutation properties of the plasmid in activating the expression of bacterial genes. An ultraviolet-induction examination of bacterial genes, with the mutants of plasmid pKM101 affecting operon mucAB being used, showed that the function of genes mucAB did activate, but, on the contrary, suppressed the induction of genes elt (i.e. of genes controlling the formation of LT-toxin of Escherichia coli) and of sfiA (SOS-regulated gen E. col controlling the cell division. 相似文献