首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DnaK is essential for starvation-induced resistance to heat, oxidation, and reductive division in Escherichia coli. Studies reported here indicate that DnaK is also required for starvation-induced osmotolerance, catalase activity, and the production of the RpoS-controlled Dps (PexB) protein. Because these dnaK mutant phenotypes closely resemble those of rpoS38) mutants, the relationship between DnaK and RpoS was evaluated directly during growth and starvation at 30°C in strains with genetically altered DnaK content. A starvation-specific effect of DnaK on RpoS abundance was observed. During carbon starvation, DnaK deficiency reduced RpoS levels threefold, while DnaK excess increased RpoS levels nearly twofold. Complementation of the dnaK mutation restored starvation-induced RpoS levels to normal. RpoS deficiency had no effect on the cellular concentration of DnaK, revealing an epistatic relationship between DnaK and RpoS. Protein half-life studies conducted at the onset of starvation indicate that DnaK deficiency significantly destabilized RpoS. RpoH (ς32) suppressors of the dnaK mutant with restored levels of RpoS and dnaK rpoS double mutants were used to show that DnaK plays both an independent and an RpoS-dependent role in starvation-induced thermotolerance. The results suggest that DnaK coordinates sigma factor levels in glucose-starved E. coli.  相似文献   

2.
Thermotolerance in Escherichia coli is induced by exposing cells to a brief heat shock (42 degrees C for 15 min). This results in resistance to the lethal effect of exposure to a higher temperature (50 degrees C). Mutants defective in the recA, uvrA and xthA genes are more sensitive to heat than the wild-type. However, after development of thermotolerance these mutants are like the wild-type in their heat sensitivity. This suggests that thermotolerance is an inducible response capable of protecting cells from the lethal effects of heat, independently of recA, uvrA and xthA. Thermotolerance does not develop in a dnaK mutant. In addition, the dnaK mutant is sensitive to heat and H2O2, but is resistant to UV irradiation. This implies that the E. coli heat-shock response includes a mechanism that protects cells from heat and H2O2, but not from UV.  相似文献   

3.
We examined the expression and the function of the DnaK chaperone family in the photoautotrophic cyanobacterium, Synechocystis PCC 6803. Surprisingly, only one of the three dnaK genes was transcribed either under normal or heat shock conditions. Their predicted cochaperones (four dnaJs and one grpE) proved to be uninducible under our experimental conditions. Attempts to inactivate the active dnaK2 has failed, indicating that the gene is essential. The partial mutant displayed lower inducibility of chaperones (especially GroEL and HSP17) both at mRNA and protein levels upon heat shock. The mutant showed temperature sensitive phenotype, but was able to acquire thermotolerance.  相似文献   

4.
The cyanobacterium Synechococcus sp. strain PCC7942 has three dnaK homologues (dnaK1, dnaK2, and dnaK3), and a gene disruption experiment was carried out for each dnaK gene by inserting an antibiotic resistance marker. Our findings revealed that DnaK1 was not essential for normal growth, whereas DnaK2 and DnaK3 were essential. We also examined the effect of heat shock on the levels of these three DnaK and GroEL proteins and found a varied response to heat shock, with levels depending on each protein. The DnaK2 and GroEL proteins exhibited a typical heat shock response, that is, their synthesis increased upon temperature upshift. In contrast, the synthesis of DnaK1 and DnaK3 did not respond to heat shock; in fact, the level of DnaK1 protein decreased. We also analyzed the effect of overproduction of each DnaK protein in Escherichia coli cells using an inducible expression system. Overproduction of DnaK1 or DnaK2 resulted in defects in cell septation and formation of cell filaments. On the other hand, overproduction of DnaK3 did not result in filamentous cells; rather a swollen and twisted cell morphology was observed. When expressed in an E. coli dnaK756 mutant, dnaK2 could suppress the growth deficiency at the nonpermissive temperature, while dnaK1 and dnaK3 could not suppress this phenotype. On the contrary, overproduction of DnaK1 or DnaK3 resulted in growth inhibition at the permissive temperature. These results suggest that different types of Hsp70 in the same cellular compartment have specific functions in the cell.  相似文献   

5.
The Synechococcus sp. PCC7942 strain carrying a missense mutation in the peptide-binding domain of DnaK3, one of the essential dnaK gene products, revealed temperature-sensitive growth. We also isolated suppressor mutants of this strain. One of the suppressors was mapped in the ribosomal protein gene rpl24 (syc1876), which encodes the 50S ribosomal protein L24. Subcellular localization of three DnaK proteins was determined, and the results indicated that a quantity of DnaK3 was dislocated from membrane-bound polysomes when dnaK3 temperature-sensitive mutant was incubated at non-permissive temperatures. Furthermore, we examined the photosystem II reaction center protein D1 and detected a translational intermediate polypeptide in membrane-bound polysome fractions prepared from dnaK3 temperature-sensitive cells grown at high temperature. These characteristic features of DnaK3 localizations and detection of D1 protein intermediate were not observed in the suppressor mutant even at high temperatures.  相似文献   

6.
Site-directed mutagenesis has previously been used to construct Escherichia coli dnaK mutants encoding proteins that are altered at the site of in vitro phosphorylation (J. S. McCarty and G. C. Walker, Proc. Natl. Acad. Sci. USA 88:9513-9517, 1991). These mutants are unable to autophosphorylate and are severely defective in ATP hydrolysis. These mutant dnaK genes were placed under the control of the lac promoter and were found not to complement the deficiencies of a delta dnaK mutant in negative regulation of the heat shock response. A decrease in the expression of DnaK and DnaJ below their normal levels at 30 degrees C was found to result in increased expression of GroEL. The implications of these results for DnaK's role in the negative regulation of the heat shock response are discussed. Evidence is also presented indicating the existence of a 70-kDa protein present in a delta dnaK52 mutant that cross-reacts with antibodies raised against DnaK. Derivatives of the dnaK+ E. coli strain MC4100 expressing the mutant DnaK proteins filamented severely at temperatures equal to or greater than 34 degrees C. In the dnaK+ E. coli strain W3110, expression of these mutant proteins caused extreme filamentation even at 30 degrees C. Together with other observations, these results suggest that DnaK may play a direct role in the septation pathway, perhaps via an interaction with FtsZ. Although delta dnaK52 derivatives of strain MC4100 filament extensively, a level of underexpression of DnaK and DnaJ that results in increased expression of the other heat shock proteins did not result in filamentation. The delta dnaK52 allele could be transduced successfully, at temperatures of up to 45 degrees C, into strains carrying a plasmid expressing dnaK+ dnaJ+, although the yield of transductants decreased above 37 degrees C. In contrast, with a strain that did not carry a plasmid expressing dnaK+ dnaJ+, the yield of delta dnaK52 transductants decreased extremely sharply between 39 and 40 degrees C, suggesting that DnaK and DnaJ play one or more roles critical for growth at temperatures of 40 degrees C or greater.  相似文献   

7.
We show here the involvement of the molecular chaperone DnaK from Escherichia coli in the in vivo alpha-complementation of the beta-galactosidase. In the dnaK756(Ts) mutant, alpha-complementation occurs when the organisms are grown at 30 degrees C but not at 37 or 40 degrees C, although these temperatures are permissive for bacterial growth. Plasmid-driven expression of wild-type dnaK restores the alpha-complementation in the mutant but also stimulates it in a dnaK(+) strain. In a mutant which contains a disrupted dnaK gene (DeltadnaK52::Cm(r)), alpha-complementation is also impaired, even at 30 degrees C. This observation provides an easy and original phenotype to detect subtle functional changes in a protein such as the DnaK756 chaperone, within the physiologically relevant temperature.  相似文献   

8.
Extracts made from Escherichia coli null dnaK strains contained elevated levels of ATP-dependent proteolytic activity compared with levels in extracts made from dnaK+ strains. This ATP-dependent proteolytic activity was not due to Lon, Clp, or Alp-associated protease. Comparison of the levels of ATP-dependent proteolytic activity present in lon rpoH dnaK mutants and in lon rpoH dnaK+ mutants showed that the level of ATP-dependent proteolytic activity was elevated in the lon rpoH dnaK mutant strain. These findings suggest that DnaK negatively regulates a new ATP-dependent proteolytic activity, independently of sigma 32. Other results indicate that an ATP-dependent proteolytic activity was increased in a lon alp strain after heat shock. It is not yet known whether the same protease is associated with the increased ATP-dependent proteolytic activity in the dnaK mutants and in the heat-shocked lon alph strain.  相似文献   

9.
Central to the chaperone function of Hsp70 stress proteins including Escherichia coli DnaK is the ability of Hsp70 to bind unfolded protein substrates in an ATP-dependent manner. Mg2+/ATP dissociates bound substrates and, furthermore, substrate binding stimulates the ATPase of Hsp70. This coupling is proposed to require a glutamate residue, E175 of bovine Hsc70, that is entirely conserved within the Hsp70 family, as it contacts bound Mg2+/ATP and is part of a hinge required for a postulated ATP-dependent opening/closing movement of the nucleotide binding cleft which then triggers substrate release. We analyzed the effects of dnaK mutations which alter the corresponding glutamate-171 of DnaK to alanine, leucine or lysine. In vivo, the mutated dnaK alleles failed to complement the delta dnaK52 mutation and were dominant negative in dnaK+ cells. In vitro, all three mutant DnaK proteins were inactive in known DnaK-dependent reactions, including refolding of denatured luciferase and initiation of lambda DNA replication. The mutant proteins retained ATPase activity, as well as the capacity to bind peptide substrates. The intrinsic ATPase activities of the mutant proteins, however, did exhibit increased Km and Vmax values. More importantly, these mutant proteins showed no stimulation of ATPase activity by substrates and no substrate dissociation by Mg2+/ATP. Thus, glutamate-171 is required for coupling of ATPase activity with substrate binding, and this coupling is essential for the chaperone function of DnaK.  相似文献   

10.
11.
The Synechococcus sp. PCC7942 strain carrying a missense mutation in the peptide-binding domain of DnaK3, one of the essential dnaK gene products, revealed temperature-sensitive growth. We also isolated suppressor mutants of this strain. One of the suppressors was mapped in the ribosomal protein gene rpl24 (syc1876), which encodes the 50S ribosomal protein L24. Subcellular localization of three DnaK proteins was determined, and the results indicated that a quantity of DnaK3 was dislocated from membrane-bound polysomes when dnaK3 temperature-sensitive mutant was incubated at non-permissive temperatures. Furthermore, we examined the photosystem II reaction center protein D1 and detected a translational intermediate polypeptide in membrane-bound polysome fractions prepared from dnaK3 temperature-sensitive cells grown at high temperature. These characteristic features of DnaK3 localizations and detection of D1 protein intermediate were not observed in the suppressor mutant even at high temperatures.  相似文献   

12.
13.
Molecular chaperones of the heat shock protein 70 family (Hsp70; also called DnaK in prokaryotes) play an important role in the folding and functioning of cellular protein machinery. The dnaK gene from the plant pathogen Agrobacterium tumefaciens RUOR was amplified using the polymerase chain reaction and the DnaK protein (Agt DnaK) was over-produced as a His-tagged protein in Escherichia coli. The Agt DnaK amino acid sequence was 96% identical to the A. tumefaciens C58 DnaK sequence and 65% identical to the E. coli DnaK sequence. Agt DnaK was shown to be able to functionally replace E. coli DnaK in vivo using complementation assays with an E. coli dnaK756 mutant strain and a dnaK52 deletion strain. Over-production and purification of Agt DnaK was successful, and allowed for further characterization of the protein. Kinetic analysis of the basal ATPase activity of purified Agt DnaK revealed a Vmax of 1.3 nmol phosphate released per minute per milligram DnaK, and a Km of 62 microM ATP. Thus, this is the first study to provide both in vivo and in vitro evidence that Agt DnaK has the properties of a molecular chaperone of the Hsp70 family.  相似文献   

14.
In the intracellular bacterium Brucella suis, the molecular chaperone DnaK was induced under heat-shock conditions and at low pH. Insertional inactivation of dnaK and dnaJ within the dnaK/J locus led to the conclusion that DnaK, but not DnaJ, was required for growth at 37°C in vitro. Viability of the dnaK null mutant was also greatly affected at low pH. Under conditions allowing intracellular multiplication, the infection of U937-derived phagocytes resulted in long-lasting DnaK induction in the wild-type bacteria. In infection experiments performed with both mutants at the reduced temperature of 30°C, the dnaK mutant of B. suis survived but failed to multiply within U937 cells, whereas the wild-type strain and the dnaJ mutant multiplied normally. Complementation of the dnaK mutant with the cloned dnaK gene restored growth at 37°C, increased resistance to acid pH, and increased intracellular multiplication. This is the first report of the effects of dnaK inactivation in a pathogenic species, and of the temperature-independent contribution of DnaK to intracellular multiplication of the pathogen B. suis.  相似文献   

15.
Summary IndnaK7(Ts) mutant cells, scission of DNA strands occurred after temperature shift up. When cells at 30°C were labeled with [3H]-thymidine and then shifted to 46° or 49°C for 20 min, the profiles of sedimentation of thier cellular DNA in an alkaline sucrose gradient revealed a decrease in the size of DNA to a quarter of that at 30°C in the mutant, but not in wild-type cells. The level of manganese-containing superoxide dismutase (MnSOD) in the mutant was about twice that in wild-type cells, even at the permissive temperature, implying increased production of superoxide radical anion, which may cleave DNA strands directly or indirectly in the mutant. Moderate increase in the MnSOD level on temperature shift up was observed in both strains. These results indicated that some components of the DnaK protein participate in protection of cellular membrane functions from thermal damage resulting from elevated production of the superoxide anion radical.  相似文献   

16.
H Itikawa  M Wada  K Sekine  H Fujita 《Biochimie》1989,71(9-10):1079-1087
In Escherichia coli K-12, the heat shock protein DnaK and DnaJ participate in phosphorylation of both glutaminyl-tRNA synthetase and threonyl-tRNA synthetase since when cellular proteins extracted from the dnaK7(Ts), dnaK756(Ts) and dnaJ259(Ts) mutant cells labeled with 32Pi at 42 degrees C were analyzed by two-dimensional gel electrophoresis, no phosphorylation of glutaminyl-tRNA synthetase and threonyl-tRNA synthetase was observed while phosphorylation of both aminoacyl-tRNA synthetases was detected in the samples extracted from wild-type cells.  相似文献   

17.
Escherichia coli dnaK null mutants are inviable at high temperature.   总被引:41,自引:26,他引:15       下载免费PDF全文
DnaK, a major Escherichia coli heat shock protein, is homologous to major heat shock proteins (Hsp70s) of Drosophila melanogaster and humans. Null mutations of the dnaK gene, both insertions and a deletion, were constructed in vitro and substituted for dnaK+ in the E. coli genome by homologous recombination in a recB recC sbcB strain. Cells carrying these dnaK null mutations grew slowly at low temperatures (30 and 37 degrees C) and could not form colonies at a high temperature (42 degrees C); furthermore, they also formed long filaments at 42 degrees C. The shift of the mutants to a high temperature evidently resulted in a loss of cell viability rather than simply an inhibition of growth since cells that had been incubated at 42 degrees C for 2 h were no longer capable of forming colonies at 30 degrees C. The introduction of a plasmid carrying the dnaK+ gene into these mutants restored normal cell growth and cell division at 42 degrees C. These null mutants showed a high basal level of synthesis of heat shock proteins except for DnaK, which was completely absent. In addition, the synthesis of heat shock proteins after induction in these dnaK null mutants was prolonged compared with that in a dnaK+ strain. The well-characterized dnaK756 mutation causes similar phenotypes, suggesting that they are caused by a loss rather than an alteration of DnaK function. The filamentation observed when dnaK mutations were incubated at a high temperature was not suppressed by sulA or sulB mutations, which suppress SOS-induced filamentation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Qian J  Qin X  Yin Q  Chu J  Wang Y 《Biotechnology letters》2011,33(3):571-575
The mitogen-activated protein kinase Hog1 gene (Kmhog1) was isolated from Kluyveromyces marxianus strain NBRC 1777 by degenerate PCR and genome walking, and then disrupted to construct a mutant strain hog1?. The mutant was now more sensitive to acetic acid and its growth was nearly completely inhibited by 0.5 M NaCl (97%) and 10 mM H(2)O(2) (93%) as compared with the wild-type cells. However, neither strain grew at 47°C. Kmhog1 may thus be required for adaptation to acetic acid, osmotic, and oxidative stress but is not involved in thermotolerance.  相似文献   

19.
Summary Escherichia coli cells carrying the dnaK756 mutation, were inactivated at 52°C faster than control cells. This suggests that the intact dnaK gene product plays a role in protecting the cell from lethal damage at 52°C. The effect of the dnaK mutation on induced thermotolerance was examined. Prior heat shock at 42°C greatly lowered the subsequent inactivation rate in both mutant and control cells. This result suggests that, although produced in large amounts in response to thermal stress, mutation in the DnaK protein has little or no effect on induced thermotolerance.  相似文献   

20.
Our working hypothesis is that the major molecular chaperones DnaK and GroE play central roles in the ability of oral bacteria to cope with the rapid and frequent stresses encountered in oral biofilms, such as acidification and nutrient limitation. Previously, our laboratory partially characterized the dnaK operon of Streptococcus mutans (hrcA-grpE-dnaK) and demonstrated that dnaK is up-regulated in response to acid shock and sustained acidification (G. C. Jayaraman, J. E. Penders, and R. A. Burne, Mol. Microbiol. 25:329-341, 1997). Here, we show that the groESL genes of S. mutans constitute an operon that is expressed from a stress-inducible sigma(A)-type promoter located immediately upstream of a CIRCE element. GroEL protein and mRNA levels were elevated in cells exposed to a variety of stresses, including acid shock. A nonpolar insertion into hrcA was created and used to demonstrate that HrcA negatively regulates the expression of the groEL and dnaK operons. The SM11 mutant, which had constitutively high levels of GroESL and roughly 50% of the DnaK protein found in the wild-type strain, was more sensitive to acid killing and could not lower the pH as effectively as the parent. The acid-sensitive phenotype of SM11 was, at least in part, attributable to lower F(1)F(0)-ATPase activity. A minimum of 10 proteins, in addition to GroES-EL, were found to be up-regulated in SM11. The data clearly indicate that HrcA plays a key role in the regulation of chaperone expression in S. mutans and that changes in the levels of the chaperones profoundly influence acid tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号