首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Most automotive plastic waste (APW) is landfilled or used in energy recovery as it is unsuitable for high-quality product mechanical recycling. Chemical recycling via pyrolysis offers a pathway toward closing the material loop by handling this heterogeneous waste and providing feedstock for producing virgin plastics. This study compares chemical recycling and energy recovery scenarios for APW regarding climate change impact and cumulative energy demand (CED), assessing potential environmental advantages. In addition, an economic assessment is conducted. In contrast to other studies, the assessments are based on pyrolysis experiments conducted with an actual waste fraction. Mass balances and product composition are reported. The experimental data is combined with literature data for up- and downstream processes for the assessment. Chemical recycling shows a lower net climate change impact (0.57 to 0.64 kg CO2e/kg waste input) and CED (3.38 to 4.41 MJ/kg waste input) than energy recovery (climate change impact: 1.17 to 1.25 kg CO2e/kg waste input; CED: 6.94 to 7.97 MJ/kg waste input), while energy recovery performs better economically (net processing cost of −0.05 to −0.02€/kg waste input) compared to chemical recycling (0.05 to 0.08€/kg waste input). However, chemical recycling keeps carbon in the material cycle contributing to a circular economy and reducing the dependence on fossil feedstocks. Therefore, an increasing circularity of APW through chemical recycling shows a conflict between economic and environmental objectives.  相似文献   

2.
Plastics recycling, especially as prescribed by the German Ordinance on Packaging Waste (Verpackungsverordnung), is a conspicuous example of closing material loops on a large scale. In Germany, an industry‐financed system (Duales System Deutschland) was established in 1991 to collect and recycle packaging waste from households. To cope with mixed plastics, various “feedstock‐recycling” processes were developed. We discuss the environmental benefits and the cost‐benefit ratio of the system relative to municipal solid waste (MSW) incineration, based on previously published life‐cycle assessment (LCA) studies. Included is a first‐time investigation of energy recovery in all German incinerators, the optimization opportunities, the impact on energy production and substitution processes, an estimation of the costs, and a cost‐benefit assessment. In an LCA, the total environmental impact of MSW incineration is mainly determined by the energy recovery ratio, which was found on average to reach 39% in current German incineration plants. Due to low revenues from additional energy generation, it is not cost‐effective to optimize the plants energetically. Energy from plastic incineration substitutes for a specific mixture of electric base‐load power, district heating, and process steam generation. Any additional energy from waste incineration will replace, in the long term, mainly natural gas, rather than coal. Incineration of plastic is compared with feedstock recycling methods in different scenarios. In all scenarios, the incineration of plastic leads to an increase of CO2 emissions compared to landfill, whereas feedstock recycling reduces CO2 emissions and saves energy resources. The costs of waste incineration are assumed to decrease by about 30% in the medium term. Today, the calculated costs of CO2 reduction in feedstock recycling are very high, but are ex‐pected to decline in the near future. Relative to incineration, the costs for conserving energy via feedstock recycling are 50% higher, but this gap will close in the near future if automatic sorting and processing are implemented in Germany.  相似文献   

3.
In this study, we develop a framework for the multicriteria design of plastic recycling based on quality information and environmental impacts for the purpose of supporting collaborative decision making among consumers, municipalities, and recyclers. The subject of this article is the mechanical recycling of postconsumer polyethylene terephthalate (PET) bottles. We present a “quality conversion matrix,” which links the quality of recycled PET resin to the quality of waste PET bottles and operational conditions, described in terms of the functions of modules constituting the entire recycling process. We estimate the quality of recycled PET resin and simulate the applicability to the intended products as the primary criterion by confirming whether the estimated quality of recycled resin satisfies the quality demands of PET resin users. The amounts of carbon dioxide (CO2) emissions and fossil resource consumption are also estimated as the secondary criteria. An approach to collaborative decision making utilizing mixed‐integer linear programming (MILP) and Monte Carlo simulation is proposed on the premise of different objectives of various stakeholders, where all the feasible optimal solutions for achieving the quality demands are obtained. The quality requirements of waste bottles, along with the CO2 emissions and fossil resource consumption estimated for each solution, contribute to the collaborative multicriteria design of plastic recycling.  相似文献   

4.
Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide.Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel.While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it may be possible to divert the majority of plastic waste from landfills to recycling over the next decades.  相似文献   

5.
One proposed strategy to solve current environmental challenges is industrial and urban symbiosis (I/UrS); however, appropriate evaluation methods are needed so that the potential benefits of I/UrS can be quantified. Several evaluation methods have been applied separately to study I/UrS, but no integrated studies have been conducted by applying different methods in the same case study area. Therefore, this study aimed to establish a comprehensive framework to evaluate I/UrS by combining the material flow analysis (MFA), carbon footprint (CF) and emergy methods. First, we developed a unified database and step-by-step process to clarify the waste distribution and recycling processes in an industrial city. Then a baseline scenario and an I/UrS scenario were set up to define the baselines and effects of I/UrS and compare the results. Finally, the three methods were applied to identify physical features in the I/UrS system. The MFA-based results showed that the use of I/UrS led to a 6.4% reduction in the physical value of material use. The CF-based results indicated that reduction of waste and by-products results in a 13.8% reduction in CO2e emissions. The emergy-based results showed that, with the implementation of I/UrS, the value of the emergy sustainability index (excluding labor and services) improved greatly (a 49.2% emergy reduction) as compared with the baseline case (a 14.3% reduction). In addition, the effects of implementing I/UrS by waste and by-product exchanges for blast furnace slag, scrap steel, waste paper, and waste plastic were evaluated. Whereas the CF reductions of unit ton of blast furnace slag is relatively low, emergy reductions of that is comparatively high. If policymakers only consider CF results when addressing the issue of climate change, the effects on emergy will be underestimated in this case. We conclude that the main actors in this area release huge emissions, but they also have a high potential to reduce their environmental loads. In addition, with appropriate designs, waste paper and plastics recycling could be highly efficient. Finally, the integration of the three evaluation methods should contribute to creating a low carbon and more resource independent society.  相似文献   

6.

Purpose

The high consumption of electrical and electronic equipment motivated by the rapid technological advances seen over the years has lead to an increase in the generation of waste electrical and electronic equipment (WEEE). Such residues contain various dangerous substances and therefore deserve special attention. To that end, the Brazilian Policy on Solid Waste has provided guidelines on integrated and solid waste management, such as consumer electronics, aiming at their appropriate disposal and treatment through reverse logistics. In this context, the present work focuses on studying the recycling of some WEEE plastics.

Methods

This study was conducted using the methodological framework presented in the International Standard ISO 14040:2006 and aimed to determine the life cycle inventory (LCI) of a WEEE plastic recycling process in a company in Brazil. Having collected the data, it was possible to identify and quantify the environmental aspects caused by the recycling process of major plastics (acrylonitrile-butadiene-styrene (ABS) and high impact polystyrene (HIPS). The study was conducted in the only company in Brazil that operates WEEE plastic recycling in large scale.

Results and discussion

Some of the environmental aspects caused during the recycling process of the plastics under study were identified and quantified. As a result, besides presenting the inventory, it was also possible to determine a reduction in the consumption of energy and in CO2 emissions. When compared to the production of virgin ABS and HIPS, the recycling processes for such plastics showed a reduction in energy consumption by approximately 90% for both plastics and a reduction in CO2 emissions by approximately 84% for HIPS and 87% for ABS. The plastics recycled by the company retain over 90% of their virgin mechanical properties.

Conclusions

The study shows that recycling is highly relevant and that components present in WEEE received appropriate destination and treatment. Recycling avoids environmental impacts as it prevents WEEE from being disposed of in landfills and as the pellets of recycled plastics can re-enter the supply chain as raw materials. Considering the legislation in Brazil, the stage of collection/transport/treatment of WEEE conducted by the company under study presents strong indications of contributions to the environment, society, and economy of the country.
  相似文献   

7.
Cheng CL  Lo YC  Lee KS  Lee DJ  Lin CY  Chang JS 《Bioresource technology》2011,102(18):8514-8523
Due to the recent energy crisis and rising concern over climate change, the development of clean alternative energy sources is of significant interest. Biohydrogen produced from cellulosic feedstock, such as second generation feedstock (lignocellulosic biomass) and third generation feedstock (carbohydrate-rich microalgae), is a promising candidate as a clean, CO2-neutral, non-polluting and high efficiency energy carrier to meet the future needs. This article reviews state-of-the-art technology on lignocellulosic biohydrogen production in terms of feedstock pretreatment, saccharification strategy, and fermentation technology. Future developments of integrated biohydrogen processes leading to efficient waste reduction, low CO2 emission and high overall hydrogen yield is discussed.  相似文献   

8.
Goal, Scope and Background  Gipuzkoa is a department of the Vasque Country (Spain) with a population of about 700,000 people. By the year 2000 approximately 85% of municipal solid waste in this area was managed by landfilling, and only 15% was recycled. Due to environmental law restrictions and landfill capacity being on its limit, a planning process was initiated by the authorities. LCA was used, from an environmental point of view, to assess 7 possible scenarios arising from the draft Plan for the 2016 time horizon. Main Features  In each scenario, 9 waste flows are analysed: rest waste, paper and cardboard, glass containers, light packaging, organic-green waste, as well as industrial/commercial wood, metals and plastics, and wastewater sludge. Waste treatments range from recycling to energy recovery and landfilling. Results  Recycling of the waste flows separated at the source (paper and cardboard, glass, light packaging, organic-green waste, wood packaging, metals and plastics) results in net environmental benefits caused by the substitution of primary materials, except in water consumption. These benefits are common to the 7 different scenarios analysed. However, some inefficiencies are detected, mainly the energy consumption in collection and transport of low density materials, and water consumption in plastic recycling. The remaining flows, mixed waste and wastewater sludge, are the ones causing the major environmental impacts, by means of incineration, landfilling of partially stabilised organic material, as well as thermal drying of sludge. With the characterisation results, none of the seven scenarios can be clearly identified as the most preferable, although, due to the high recycling rates expected by the Plan, net environmental benefits are achieved in 9 out of 10 impact categories in all scenarios when integrated waste management is assessed (the sum of the 9 flows of waste). Finally, there are no relevant differences between scenarios concerning the number of treatment plants considered. Nevertheless, only the effects on transportation impacts were assessed in the LCA, since the plant construction stage was excluded from the system boundaries. Conclusions  The results of the study show the environmental importance of material recycling in waste management, although the recycling schemes assessed can be improved in some aspects. It is also important to highlight the environmental impact of incineration and landfilling of waste, as well as thermal drying of sludge using fossil fuels. One of the main findings of applying LCA to integrated waste management in Gipuzkoa is the fact that the benefits of high recycling rates can compensate for the impacts of mixed waste and wastewater sludge. Recommendations and Outlook  Although none of the scenarios can be clearly identified as the one having the best environmental performance, the authorities in Gipuzkoa now have objective information about the future scenarios, and a multidisciplinary panel could be formed in order to weight the impacts if necessary. In our opinion, LCA was successfully applied in Gipuzkoa as an environmental tool for decision making.  相似文献   

9.
Background, Aims and Scope The interest in recycling materials at the end of their life is growing in the industry in general. As regards the Wastes of Electrical and Electronic Equipment (WEEE), an appreciable increase of these materials has been noticed in the last decades, 117 · 103 tons of WEEE have been produced in Italy in 2002 according to Ecohitech [1] and the increase in this kind of waste is three times higher than that of the municipal waste according to the FISE ASSOAMBIENTE report [2]. Within WEEE, End-of-Life Cathode Ray Tube (EOL CRT) glass, the main part of TV sets and PC monitors, is here analysed using both a technical approach to establish a possible reuse of the glass in a open-loop recycling field (ceramic industry) and a methodology (LCA) capable of providing environmental evaluations. Methods The technological characterization was performed by chemical resistance tests (UNI EN ISO 10545-13), staining tests (UNI EN ISO 10545-14) with blue methylene and potassium permanganate (KMnO4), and surface abrasion tests (UNI EN ISO 10545-7). The LCA study was conducted using the SimaPro 5.0 software and Eco-Indicator 99 as an evaluation method. Results and Discussion The good technical results, reached by using cleaned EOL CRT panel glass inside a ceramic glaze formulation instead of a commercial frit, are supported by the environmental impact evaluation, which shows a decrease of the overall potential damage (measured in Points) of 36% and, in particular, a reduction of 53% in ‘Human health’, 31% in ‘Eco-system quality’ and 24% in ‘Resources’. Conclusions This study has demonstrated that this new, open-loop recycling strategy for the CRT glass significantly reduces the environmental impact of the ceramic glaze production process. In fact, in all damage categories examined in this study, there is a minor impact. An improvement is evident in the respiratory inorganics sub-category related to the lowering of dusts mainly and to a lesser amount with NOx and SOx in the climate change sub-category, due mainly to the reduction of CO2 emission correlated to the avoided combustion of the mixture which feeds melting furnaces in the frit production. Thus, the damage decrease in ‘Ecosystem quality’ is prevalently due to the lower NOx emissions by the kilns in the frit production that is evident in the acidification/eutrophication sub-category. Finally, the significant saving in the ‘Resource’ category is principally linked to the fossil fuels sub-category, thanks to the methane saving which stokes the melting furnaces. Perspectives Furthermore, the decrease in CO2 emission (94.4%) evident in the climate change sub-category is a very important topic because it is in line with the Kyoto protocol (1997), where significant efforts have been exerted for the reduction of the green house gases emission, notably CO2. The CO2 emission is correlated to the combustion of the mixture which feeds melting kilns in the frit production, therefore the recycling of secondary raw materials, already in a glass state, can reduce the emissions of this gas. This reduction can be termed as environmental credit and it is an example of an allocation of environmental loads in a open-loop recycling, where waste from one industrial system are used as raw materials in another product system.  相似文献   

10.
Plastics consumption continues to steeply increase worldwide, while resultant waste is currently mostly landfilled, discarded to the environment, or incinerated. This significantly contributes to global warming and causes negative health and ecosystem effects. Increasing the circularity of plastics can reduce these impacts. This study investigated to which extent plastics' circularity can be increased by mechanical recycling. For this purpose, future scenarios involving increased waste collection, improved product design, and improved waste sorting were assessed. The system studied consists of 11 plastic types in 69 product groups consumed and arising as waste in Switzerland. By means of a material flow analysis, the amounts of consumption, waste, and secondary material utilizable in product manufacturing were quantified for the year 2040. For the waste not mechanically recycled, treatment situations mainly involving energy recovery in waste-to-energy plants and cement kilns were modeled. A life cycle assessment of the complete plastic material flow system was conducted. We found that the mechanical recycling rate calculated based on the utilizable secondary material can be increased to up to 31%. This can lower the plastic carbon footprint by one quarter (1.3% of today's total Swiss carbon footprint) compared to no recycling. Important barriers to a further increase of the recycling rate were inaccessibility, the large diversity of plastic grades, and contamination. The remaining impact at maximum recycling is mainly caused by polyurethanes, polypropylene, and polystyrene production. In conclusion, the potential of mechanical plastic recycling is limited, but it can, as one of several measures, contribute to combating climate change.  相似文献   

11.

Purpose

The goal of this paper is to describe the life cycle inventory (LCI) approach of pig iron produced by Mittal??s Steel Poland Blast Furnace (MSPBF) in Krakow, Poland. The present LCI is representative for the reference year 2005 by application of PN-EN ISO 14040: 2009 (PN-EN ISO 2009). The system boundaries were labeled as gate-to-gate (covering a full chain process of pig iron production). The background input and output data from the blast furnace (BF) process have been inventoried as follows: sinter, several types of pellets, ore (from Brazil or Venezuela), limestone, coke, and from 2005 coal powder, pig iron, blast furnace gas, blast furnace slug, consumption of energy and fuels, including: pulverized coal, natural gas, blast furnace gas and coke oven gas, and emission of air pollutants.

Main feature

LCI energy generation was developed mainly on the basis of following sources: site specific measured or calculated data, study carried out by Mittal Steel Poland (MSP) Environmental Impact Report, study carried out by the Faculty of Mining Surveying and Environmental Engineering of the AGH University of Science and Technology in Krakow, literature information, and expert consultations. The functional unit is represented by 1,504,088?Mg of pig iron, produced BF process. Time coverage is 2005. Operating parameters as well as air emissions associated with the BF process were presented. The production data (pig iron) was given. The emissions of SO2, NO2, CO, CO2, aliphatic hydrocarbons, dust, heavy metals (Cr, Cd, Cu, Pb, Ni, and Mn), and waste are the most important outcomes of the pig iron process.

Results

With regard to 1,504,088?Mg of pig iron produced by MSP, the consumption of coke, pulverized coal, sinters, pellets, and natural gas were 808,509, 16,921, 1,669,023, and 914,080?Mg, respectively. Other material consumption, industrial water, was 1,401,419 m3/year.

Conclusions

The LCI study is the first tentative study to express pig iron production in Poland in terms of LCA/LCI for the pig iron in steel industry. The results may help steel industry government make decisions in policy making. Presentation of the study in this paper is suitable for the other industries.

Recommendations and outlook

The LCI offers environmental information consisting on the list of environmental loads. The impact assessment phase aims the results from the inventory analysis more understandable and life cycle impact assessment will be direction for future research. Another issue to discuss is integration of LCA and risk assessment for industrial processed.  相似文献   

12.
Life cycle assessment (LCA) was combined with primary data from nine forest harvesting operations in New York, Maine, Massachusetts, and Vermont, from 2013 to 2019 where forest biomass (FB) for bioenergy was one of several products. The objective was to conduct a data‐driven study of greenhouse gas emissions associated with FB feedstock harvesting operations in the Northeast United States. Deterministic and stochastic LCA models were built to simulate the current FB bioenergy feedstock supply chain in the Northeast US with a cradle‐to‐gate scope (forest harvest through roadside loading) and a functional unit of 1.0 Mg of green FB feedstock at a 50% moisture content. Baseline LCA, sensitivity analysis, and uncertainty analyses were conducted for three different FB feedstock types—dirty chips, clean chips, and grindings—enabling an empirically driven investigation of differences between feedstock types, individual harvesting process contributions, and literature comparisons. The baseline LCA average impacts were lower for grindings (4.57 kg CO2eq/Mg) and dirty chips (7.16 kg CO2eq/Mg) than for clean chips (23.99 kg CO2eq/Mg) under economic allocation, but impacts were of similar magnitude under mass allocation, ranging from 24.42 to 27.89 kg CO2eq/Mg. Uncertainty analysis showed a wider range of probable results under mass allocation compared to economic allocation. Sensitivity analysis revealed the impact of variations in the production masses and total economic values of primary products of forest harvests on the LCA results due to allocation of supply chain emissions. The high variability in fuel use between logging contractors also had a distinct influence on LCA results. The results of this study can aid decision‐makers in energy policy and guide emissions reductions efforts while informing future LCAs that expand the system boundary to regional FB energy pathways, including electricity generation, transportation fuels, pellets for heat, and combined heat and power.  相似文献   

13.
随着国内外禁塑令和限塑令的升级,以聚乳酸(polylactic acid, PLA)为代表的生物基塑料成为传统石油基塑料市场的主要替代品,备受产业界的青睐。然而,公众对生物基塑料的认识仍存在诸多误解。事实上,生物基塑料的降解需要在特定条件下才能实现,泄入到自然环境中同样难以降解,会对人体、生物多样性和生态系统功能造成危害,这与传统石油基塑料相似。近年来,随着我国PLA产能和市场规模不断的提高,亟需进一步加强对PLA等生物基塑料降解性能的认识,挖掘PLA生物降解资源,关注和研究生物基塑料回收处理模式。基于上述背景,本文首先介绍了PLA塑料的性质及合成方式,以及PLA塑料的产业化与市场规模;其次,对目前聚乳酸塑料微生物与酶法降解的研究进展进行了综述,并对其生物降解机制进行了探讨;最后,提出了微生物原位处理和酶法闭环回收两种聚乳酸塑料废弃物生物处置方法,并对PLA生物基塑料的发展前景和趋势进行了展望。  相似文献   

14.
We propose a novel recycling system for municipal food waste that combines fermentation and chemical processes to produce high-quality poly-L-lactate (PLLA) biodegradable plastics. The process consists of removal of endogenous D, L-lactic acid from minced food waste by a propionibacterium, L-lactic acid fermentation under semisolid conditions, L-lactic acid purification via butyl esterification, and L-lactic acid polymerization via LL-lactide. The total design of the process enables a high yield of PLLA with high optical activity (i.e., a high proportion of optical isomers) and novel recycling of all materials produced at each step, with energy savings and minimal emissions. Approximately 50% of the total carbon was removed, mostly as L-lactic acid, and 100 kg of collected food waste yielded 7.0 kg PLLA (about 34% of the total carbon). The physical properties of the PLLA yielded in this manner were comparable to those of PLLA generated from commercially available. L-lactic acid. Evaluation of the process is also discussed from the viewpoints of material and energy balances and environmental impact.  相似文献   

15.

Purpose  

The goal of this paper is to describe the life cycle inventory (LCI) approach of energy produced by ArcelorMittal Steel Power Plant Poland (AMSPPP) in Krakow, Poland. The present LCI is representative for the reference year 2005 by application of ISO 14040: 2006. The system boundaries were labeled as gate-to-gate (it covered full process chain for energy production). Background data of inputs and outputs from the steel power plant have been inventoried as follows: consumption of energy and fuels, including: power coal (domestic), natural gas, blast furnace gas and coke oven gas, emission of air pollutants, emissions of particulate, air emissions from stockpiles, wastes, internal transport, and land use.  相似文献   

16.
Life cycle assessment (LCA) quantifies the whole-life environmental impacts of products and is essential for helping policymakers and manufacturers transition toward sustainable practices. However, typical LCA estimates future recycling benefits as if it happens today. For long-lived products such as lithium-ion batteries, this may be misleading since there is a considerable time gap between production and recycling. To explore this temporal mismatch problem, we apply future electricity scenarios from an integrated assessment model—IMAGE—using “premise” in Brightway2 to conduct a prospective LCA (pLCA) on the global warming potential of six battery chemistries and four recycling routes. We find that by 2050, electricity decarbonization under an RCP2.6 scenario mitigates production impacts by 57%, so to reach zero-carbon batteries it is important to decarbonize upstream heat, fuels, and direct emissions. For the best battery recycling case, data for 2020 gives a net recycling benefit of −22 kg CO2e kWh−1 which reduces the net impact of production and recycling from 71 to 49 kg CO2e kWh−1. However, for recycling in 2040 with decarbonized electricity, net recycling benefits would be nearly 75% lower (−6 kg CO2e kWh−1), giving a net impact of 65 kg CO2e kWh−1. This is because materials recycled in the future substitute lower-impact processes due to expected electricity decarbonization. Hence, more focus should be placed on mitigating production impacts today instead of relying on future recycling. These findings demonstrate the importance of pLCA in tackling problems such as temporal mismatch that are difficult to capture in typical LCA.  相似文献   

17.

Introduction

In this series of papers, we present a poly(methyl methacrylate) (PMMA) recycling system design based on environmental impacts, chemical hazards, and resource availability. We evaluated the recycling system by life cycle assessment, environment, health, and safety method, and material flow analysis.

Purpose

Previous recycling systems have not focused on highly functional plastics such as PMMA, partly because of lower available volumes of waste PMMA compared with other commodity plastics such as polyethylene or polypropylene. However, with the popularization of PMMA-containing products such as liquid crystal displays, the use of PMMA is increasing and this will result in an increase in waste PMMA in the future. The design and testing of recycling systems and technologies for treating waste PMMA is therefore a high research priority. In this study, we analyze recycling of PMMA monomers under a range of scenarios.

Methods

Based on the differences between PMMA grades and their life cycles, we developed a life cycle model and designed a range of scenarios for PMMA recycling. We obtained monomer recycling process inventory data based on the operational results of a pilot plant. Using this process inventory data, we quantified life cycle greenhouse gas (LC-GHG) emissions and fossil resource consumption, and we calculated the LIME single index.

Results and discussion

PMMA produces more than twice the amount of GHG emissions than other commodity resins. Through scenario and sensitivity analyses, we demonstrated that monomer recycling is more effective than mechanical recycling. Operational modifications in the monomer recycling process can potentially decrease LC-GHG emissions.

Conclusions

Highly functional plastics should be recycled while maintaining their key functions, such as the high transparency of PMMA. Monomer recycling has the potential to achieve a closed-loop recycling of PMMA.  相似文献   

18.
Goal, Scope and Background  Despite the well-known advantages of recycling materials to reduce solid waste or save natural resources, the recycling stage is an additional process within the life cycle that has its own energy and input requirements, as well as specific emissions. The objective of the present paper is to analyze the life cycle inventory associated with the increase in recycling rate (from 2% up to 22% at present) of the cardboard contained in the aseptic packaging for long-life milk. The main aspects of the manufacturing of the Tetra Pak aseptic package, including the filling of the product, the distribution of the conditioned product, up to the final disposal and recycling rates, were considered. Materials and Methods  This study was conducted in accordance with the general directives of the ISO 14040 series. The packaging material system was assessed using 1000 liters of milk as a functional unit, in a packaging system containing 12 units of 1 L cartons each, placed on a corrugated paperboard tray wrapped in polyethylene shrink film and arranged onto one-way wooden pallets. Brazilian inventories for energy, carton, corrugated paperboard and aluminum, based on site-collected data were employed. The final disposal of used packages was modeled using the Average Brazilian Municipal Solid Waste Management data collected for the purpose of the census of the year 2000. Results  Comparison of the total energy consumption throughout the whole life cycle of two recycling scenarios (i.e. different recycling rates) analyzed shows that the higher recycling rate led to a 6% reduction of the total energy requirement for the long-life milk package material system. The most significant reductions in the consumption of natural resources were: 8% water, 11% wood and 10% land use savings. Greenhouse gases were the main reduced air emissions and contributed with a reduction of 9.7% in GWP. Most water emissions were reduced: 10% COD, 9% BOD and 6% TSS. A unique drawback directly caused by the increase of the recycling rate was an increase of 14.4 g in TDS emissions (57%). Discussion  The reduction in energy requirements are related and limited to the proportionality among the different materials that make up the packaging system. Most emission reductions result from the replacement of virgin materials with recycled materials in the packaging system. Although the average balance of water emissions is positive, the need to improve wastewater treatment processes in the paper recycling plants to reduce TDS is highlighted as a key issue. Conclusions  It may be concluded that the increase in the recycling rate brings about a series of benefits in terms of reduction of energy and natural resource consumption, air pollutants and most water emissions. In this case, the increase of the recycling rate improved the overall environmental performance of the aseptic Tetra Pak system for milk. Recommendations and Perspectives  The authors are currently analyzing alternative recycling scenarios that will enable one to evaluate maximum reduction in GWP. Further studies could include the agriculture stages, livestock and consumer phase to broaden the environmental evaluation. ESS-Submission Editor: Dr. Andreas A. Detzel (andreas.detzel@ifeu.de)  相似文献   

19.
20.
Carbon recycling, in which organic waste is recycled into chemical feedstock for material production, may provide benefits in resource efficiency and a more cyclical economy—but may also create “trade‐offs” in increased impacts elsewhere. We investigate the system‐wide environmental burdens and cost associated with carbon recycling routes capable of converting municipal solid waste (MSW) by gasification and Fischer‐Tropsch synthesis into ethylene. Results are compared to business‐as‐usual (BAU) cases in which ethylene is derived from fossil resources and waste is either landfilled with methane and energy recovery (BAU#1) or incinerated (BAU#2) with energy recovery. Monte Carlo and sensitivity analysis is used to assess uncertainties of the results. Results indicate that carbon recycling may lead to a reduction in cumulative energy demand (CED), total material requirement (TMR), and acidification, when compared to BAU#1. Global warming potential is found to be similar or slightly lower than BAU#1 and BAU#2. In comparison to BAU#2, carbon recycling results in higher CED, TMR, acidification, and smog potential, mainly as a result of larger (fossil‐based) energy offsets from energy recovery. However, if a renewable power mix (envisioned for the future) is assumed to be offset, BAU#2 impacts may be similar or higher than carbon recycling routes. Production cost per kilogram (kg) MSW‐derived ethylene range between US$1.85 and US$2.06 (Jan 2011 US$). This compares to US$1.17 per kg for fossil‐based ethylene. Waste‐derived ethylene breaks even with its fossil‐based counterpart at a tipping fee of roughly US$42 per metric ton of waste feedstock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号