首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous research in the zebra finch, a socially monogamous pair-bonding species, suggests that the preference for opposite-sex partners may arise in part through the organizing actions of sex steroids. To further investigate this process, zebra finch eggs were injected with 20 microg fadrozole, a potent estrogen synthesis inhibitor, or with the saline vehicle on embryonic day 5. As adults they were given two-choice sexual partner preference tests followed by group aviary tests. Fadrozole females had masculinized beak color and had testes or ovotestes instead of ovaries. Males were not affected by fadrozole; they did not differ from controls on any measure. In contrast, sexual partner preference was substantially masculinized in fadrozole females in the group aviary tests. Untreated males given a choice between fadrozole and untreated females preferred the untreated females, but this was equally the case when they were given a choice between saline-treated and untreated females. These results suggest that males do not specifically avoid females with testes and that male avoidance is unlikely to explain why fadrozole-treated females pair with other females. The present data add to the evidence that actions of gonadal steroids during development contribute to adult sex differences in partner preference in this pair-bonding species. Furthermore, because fadrozole-treated females do not produce audible song, the mechanisms regulating partner preference and song system development are dissociated.  相似文献   

2.
The vocal control system in many songbird species is a sexually dimorphic neural circuit that mediates learning and production of song. The mechanism by which this system is sexually differentiated has been investigated in only one species, the zebra finch (Taeniopygia guttata). Estradiol may be involved in the sexual differentiation of this system, as female zebra finches treated with estradiol as nestlings develop a male-like song system; however, blocking estradiol action in embryonic and nestling male zebra finches does not demasculinize the song system. Therefore, the role of estradiol in song system development is unclear. The role of estradiol in song system sexual differentiation was assessed in European starlings (Sturnus vulgaris). This species is of potential interest because it is less extreme in the degree of sexual dimorphism of the song system and song behavior than zebra finches. While in the field, starling nestlings were implanted with 500 μg of estradiol at 3 days of age. These birds were brought into the laboratory at Day 11 and hand-reared. In females, estradiol produces significant increases in the volumes of song control regions defined by Nissl stain, as well as by autoradiography for α2-adrenergic receptors; however, these estradiol-treated females have song systems that more closely resemble those of control females than control males. Estradiol-treated males exhibit significant hypermasculinization at 210 days of age, but this effect is transient and hypermasculinization is no longer evident at Day 345. The role of estradiol in sexual differentiation of the neural circuit mediating song behavior remains enigmatic.  相似文献   

3.
Permanent sex differences in the brain are found in many vertebrates, and are thought to be induced by sex differences in secretion of gonadal steroid hormones during critical periods of early development. This theory has received support primarily from many experiments conducted on mammals, but also from studies on other vertebrate classes, including birds. The only avian neural dimorphism that has allowed extensive tests of this hypothesis is the neural circuit for song in passerine birds, which is much larger in males than in females. Experiments in zebra finches have yielded contradictory results. Although it is relatively easy to induce masculine patterns of development in genetic females with estrogen, it has not been possible to induce feminine patterns of development in males with any treatments, including antiestrogens and inhibitors of estrogen synthesis. Moreover, genetic females that develop with large amounts of functional testicular tissue but with virtually no ovarian tissue nevertheless have a feminine song circuit. The latter studies fail to support the idea of steroid induction of sexual differentiation. An alternative to the steroidal control hypothesis is that nonhormonal gene products expressed in the brain early in development trigger sexually dimorphic patterns of development. Although current evidence in several neural and nonneural systems indicates that sexual differentiation of some somatic phenotypes cannot be explained by the actions of gonadal steroids, the idea of direct genetic (nonhormonal) induction of sexual differentiation has yet to be proved. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 572–584, 1997  相似文献   

4.
5.
The objectives of this work were to determine whether or not plasma levels of testosterone and estradiol reflect the various grades of sex reversal in genetic female chickens treated with Fadrozole (CGS 16949 A), a nonsteroidal aromatase inhibitor, and whether gonadal aromatase activity and plasma levels of testosterone and estradiol in treated females can or not be modified by post-hatch treatments with Fadrozole or Fadrozole + testosterone. Eggs were injected with 1 mg Fadrozole on day 4 of incubation. In females having developed sex-reversed gonads, endocrine parameters (estradiol and testosterone) at and after 13 weeks of age were indicative of the degree of sex reversal, with, for example, sex-reversed females with two testes having the highest levels of testosterone and the lowest levels of estradiol. Among these females, eight (from a total of 13) produced ejaculates with scarce and abnormal spermatozoa. Some motility was observable in the ejaculates from five of them. None of the post-hatch treatments had a significant effect on plasma levels of testosterone or estradiol (measured at 3-week intervals from week 4 to week 28 post-hatch) or on gonadal aromatase activity (measured at 12 and 28 weeks). In conclusion, these results indicate that plasma levels of testosterone and estradiol at and after 13 weeks of age are valuable indicators of the degree of sex reversal in female chickens treated with Fadrozole prior to gonadal sex differentiation. In pre-cited conditions, post-natal treatments with either Fadrozole or Fadrozole + testosterone had no apparent effect on the degree of sex reversal in these birds. Finally, the occurrence of ejaculates with motile although scarce and abnormal spermatozoa, revealed that epididymes and ducti deferens can develop and become functional in sex-reversed female chickens.  相似文献   

6.
The zebra finch telencephalon exhibits rapid and substantial development in the first few weeks after hatching. In parallel, the rate of estradiol synthesis is very high in the zebra finch forebrain, and estradiol can have potent neurotrophic effects in specific telencephalic regions, including those that control the learning and production of song. In an attempt to elucidate mechanisms regulating telencephalic development, potentially including a role for the large capacity for estrogen production, (125)I-nerve growth factor (NGF) binding was measured in homogenates of telencephalon from zebra finches age 3, 15, 30, 60, and 120 days. The highest density of low- and high-affinity (125)I-NGF binding sites was observed in 3-day-old finches. Using an aromatase inhibitor, Fadrozole, to reduce estradiol levels in 1 to 4-day-old zebra finches significantly decreased both high- and low-affinity (125)I-NGF binding sites. Conversely, treating adult or 8 to 14-day-old hatchlings with estradiol increased high-affinity (125)I-NGF binding sites. These results are consistent with the hypothesis that estradiol influences the level of NGF receptors, and suggest one mechanism through which the steroid could affect brain development. The data also indicate that estradiol and NGF activity may be important for very early development of the telencephalon.  相似文献   

7.
Antiestrogens fail to block the masculine ontogeny of the zebra finch song system that is hypothesized to occur as a result of early estrogen action. Moreover, they hypermasculinize the male, and masculinize the female song systems. In experiment 1, we assessed whether these antiestrogenic effects might mimic estrogenic actions. Zebra finch chicks received one of two treatments. They were given estradiol benzoate (EB) or vehicle daily for the first 20 days after hatching and sacrificed at 60 days of age, or they received EB or vehicle for the first 25 days after hatching, at which time they were sacrificed. In the day 60 group, certain attributes of the song system were hypermasculinized in males and masculinized in females by EB, when compared with controls. In the day 25 group, males treated with EB were partially demasculinized, while the females were partially masculinized. In experiment 2, we assessed whether simultaneous treatment with tamoxifen was capable of antagonizing the effects of EB obtained in experiment 1 (day 60 group). Sixty-day-old females, previously treated with both EB and tamoxifen for the first 20 days after hatching, had more masculine song regions than females treated with either EB alone or tamoxifen alone. In males, the effects of the combined treatment of EB and tamoxifen over those produced by tamoxifen alone were not as dramatic as in the female. These results are similar to those obtained in systems where tamoxifen is purely estrogenic and suggest that in the song system, tamoxifen acts as an estrogen, not an antiestrogen.  相似文献   

8.
Antiestrogens fail to block the masculine ontogeny of the zebra finch song system that is hypothesized to occur as a result of early estrogen action. Moreover, they hypermasculinize the male, and masculinize the female song systems. In experiment 1, we assessed whether these antiestrogenic effects might mimic estrogenic actions. Zebra finch chicks received one of two treatments. They were given estradiol benzoate (EB) or vehicle daily for the first 20 days after hatching and sacrificed at 60 days of age, or they received EB or vehicle for the first 25 days after hatching, at which time they were sacrificed. In the day 60 group, certain attributes of the song system were hypermasculinized in males and masculinized in females by EB, when compared with controls. In the day 25 group, males treated with EB were partially demasculinized, while the females were partially masculinized. In experiment 2, we assessed whether simultaneous treatment with tamoxifen was capable of antagonizing the effects of EB obtained in experiment 1 (day 60 group). Sixty-day-old females, previously treated with both EB and tamoxifen for the first 20 days after hatching, had more masculine song regions than females treated with either EB alone or tamoxifen alone. In males, the effects of the combined treatment of EB and tamoxifen over those produced by tamoxifen alone were not as dramatic as in the female. These results are similar to those obtained in systems where tamoxifen is purely estrogenic and suggest that in the song system, tamoxifen acts as an estrogen, not an antiestrogen.  相似文献   

9.
Male zebra finches sing and females normally do not. This sexually dimorphic behavior is mediated by a sexually dimorphic series of interconnected nuclei that are larger and more developed in males. Estradiol administered to females as early as the day of hatching (P1) causes profound masculinization of this song system. The exact timing of estrogen action is unknown, and there is little information concerning the times and sites of expression of estrogen receptors and aromatase before P5. We measured the expression of mRNAs encoding these proteins in brain during late embryogenesis and on P1 to determine if estrogen synthesis or receptor-mediated actions on the song system, as part of the program of sexual differentiation, might be possible during this period. Using highly sensitive and specific in situ hybridization procedures for mRNAs encoding ERalpha, ERbeta, and aromatase, we detected mRNA for ERs in archistriatal regions as early as embryonic stage 34, and in diencephalic regions as early as embryonic stage 30. ERalpha mRNA was also detected in the dorsal mesencephalon at P1. Aromatase mRNA expression was present as early as embryonic stage 30 in diencephalic and mesencephalic regions. No obvious sex differences in the spatio-temporal pattern of mRNA expression were detected. Our results suggest that estrogen can influence cell growth and differentiation in zebra finch brain well before hatching and into posthatching life. The results fail to provide support for the hypothesis that sexual differentiation of the song system is mediated by sex differences in the expression of these mRNAs at these ages.  相似文献   

10.
The zebra finch telencephalon exhibits rapid and substantial development in the first few weeks after hatching. In parallel, the rate of estradiol synthesis is very high in the zebra finch forebrain, and estradiol can have potent neurotrophic effects in specific telencephalic regions, including those that control the learning and production of song. In an attempt to elucidate mechanisms regulating telencephalic development, potentially including a role for the large capacity for estrogen production, 125I–nerve growth factor (NGF) binding was measured in homogenates of telencephalon from zebra finches age 3, 15, 30, 60, and 120 days. The highest density of low‐ and high‐affinity 125I‐NGF binding sites was observed in 3‐day‐old finches. Using an aromatase inhibitor, Fadrozole, to reduce estradiol levels in 1 to 4‐day‐old zebra finches significantly decreased both high‐ and low‐affinity 125I‐NGF binding sites. Conversely, treating adult or 8 to 14‐day‐old hatchlings with estradiol increased high‐affinity 125I‐NGF binding sites. These results are consistent with the hypothesis that estradiol influences the level of NGF receptors, and suggest one mechanism through which the steroid could affect brain development. The data also indicate that estradiol and NGF activity may be important for very early development of the telencephalon. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 149–157, 1999  相似文献   

11.
Aromatase inhibitors administered before sexual differentiation of the gonads can induce sex reversal in female chickens. To analyze the process of sex reversal, we have followed for several months the changes induced by Fadrozole, a nonsteroidal aromatase inhibitor, in gonadal aromatase activity and in morphology and structure of the female genital system. Fadrozole was injected into eggs on day four of incubation, and its effects were examined during the embryonic development and for eight months after hatching. In control females, aromatase activity in the right and the left gonad was high in the middle third of embryonic development, and then decreased up to hatching. After hatching, aromatase activity increased in the left ovary, in particular during folliculogenesis, whereas in the right regressing gonad, it continued to decrease to reach testicular levels at one month. In treated females, masculinization of the genital system was characterized by the maintenance of the right gonad and its differentiation into a testis, and by the differentiation of the left gonad into an ovotestis or a testis; however, in all individuals, the left Müllerian duct and the posterior part of the right Müllerian duct were maintained. In testes and ovotestes, aromatase activity was lower than in gonads of control females (except in the right gonad as of one month after hatching) but remained higher than in testes of control and treated males. Moreover, in ovotestes, aromatase activity was higher in parts displaying follicles than in parts devoid of follicles. The main structural changes in the gonads during sex reversal were partial (in ovotestes) or complete (in testes) degeneration of the cortex in the left gonad, and formation of an albuginea and differentiation of testicular cords/tubes in the two gonads. Testicular cords/tubes transdifferentiated from ovarian medullary cords and lacunae whose epithelium thickened and became Sertolian. Transdifferentiation occurred all along embryonic and postnatal development; thus, new testicular cords/tubes were continuously formed while others degenerated. The sex reversed gonads were also characterized by an abundant fibrous interstitial tissue and abnormal medullary condensations of lymphoid-like cells; in the persisting testicular cords/tubes, spermatogenesis was delayed and impaired. Related to aromatase activity, persistence of too high levels of estrogens can explain the presence of oviducts, gonadal abnormalities and infertility in sex reversed females.  相似文献   

12.
Mechanisms regulating masculinization of the zebra finch song system are unclear; both estradiol and sex‐specific genes may be important. This study was designed to investigate relationships between estrogen and ribosomal proteins (RPL17 and RPL37; sex‐linked genes) that exhibit greater expression in song control nuclei in juvenile males than females. Four studies on zebra finches were conducted using bromodeoxyuridine (BrdU) injections on posthatching days 6–10 with immunohistochemistry for the ribosomal proteins and the neuronal marker HuC/D at day 25. Volumes of brain regions were also assessed in Nissl‐stained tissue. Most BrdU+ cells expressed RPL17 and RPL37. The density and percentage of cells co‐expressing BrdU and HuC/D was greatest in Area X. The density of BrdU+ cells in Area X (or its equivalent) and the percentage of these cells that were neurons were greater in males than females. In RA and HVC, total BrdU+ cells were increased in males. A variety of effects of estradiol were also detected, including inducing an Area X in females with a masculine total number of BrdU+ cells, and increasing the volume and percentage of new neurons in the HVC of females. The same manipulation in males decreased the density of BrdU+ cells in Area X, total number of BrdU+ cells in RA, and density of new neurons in HVC and RA. These data are consistent with the idea that RPL17, RPL37, and estradiol might all influence sexual differentiation, perhaps with the hormone and proteins interacting, such that an appropriate balance is required for normal development. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 2009  相似文献   

13.
Estrogen treatment of hatchling female zebra finches causes the masculine development of singing behavior and of the telencephalic brain regions involved in the control of song. However, early estrogen treatment of males also blocks masculine development of copulatory behavior, presumably controlled by diencephalic regions. In an effort to determine whether the differences in estrogen action are related to sex and regional differences in androgen metabolism (estrogen synthesis or androgen inactivation), we measured aromatase and 5β-reductase activity in dissociated-cell cultures made separately from the telencephalon, diencephalon, and also cerebellum of hatching zebra finches under a variety of conditions. Cultures from all three brain regions express high levels of aromatase and 5β-reductase activity. Comparisons between telencephalic and diencephalic cultures of the activity and kinetics of aromatase suggest that the telencephalic cultures convert androgen to estrogen more efficiently than diencephalic cultures, which might be important in the differential action of estrogen in the two brain regions. However, the activity of neither aromatase nor 5β-reductase was significantly different between the sexes in either telencephalic or diencephalic cultures. Thus, comparisons between the sexes do not support the idea that differences in posthatching aromatase or 5β-reductase activity account for the pattern of sexual differentiation of the song and copulatory systems. © 1995 John Wiley & Sons, Inc.  相似文献   

14.
Recently, we described the distribution of testosterone-metabolizing enzymes (i.e., aromatase, 5 alpha- and 5 beta-reductases) in the zebra finch (Taeniopygia guttata) brain using a sensitive radioenzyme assay combined to the Palkovits punch method. A number of sex-differences in the activity of these enzymes were observed especially in nuclei of the song-control system. The hormonal controls of these differences have now been analyzed by gonadectomizing birds of both sexes and by giving them a replacement therapy with silastic implants of testosterone (T). Five nuclei of the song system (Area X [X], nucleus magnocellularis of the anterior neostriatum [MAN], nucleus robustus archistriatalis [RA], nucleus intercollicularis [ICo], hyperstriatum ventrale, pars caudalis [HVc]) and three preoptic-hypothalamic areas (preoptic anterior [POA], periventricular magnocellular nucleus [PVM], and posterior medial hypothalamic nucleus [PMH]) were studied as well as other limbic and control non-steroid-sensitive areas. The activity of the 5 alpha-reductase was higher in males than in females for the five song-control nuclei and was not affected by the hormonal treatments. The overall activity of this enzyme was not sexually dimorphic in POA and PVM. It was higher in males than in females in intact birds only, and was reduced by gonadectomy and enhanced by T. The activity of the 5 beta-reductase was higher in females than in males in all nuclei of the song system and in POA, but was not influenced by the changes in T level. Both sex and treatment effects were observed in the control of aromatase. The production of estrogens was dimorphic (females greater than males) in RA and PMH. It was increased by T in POA, PVM, and PMH, and also in RA. These data show that some of the sex differences in T-metabolizing enzymes result from the exposure to different levels of T in adulthood (e.g., 5 alpha-reductase in POA and PVM or aromatase in PVM), whereas others persist even if birds are exposed to the same hormonal conditions. These are presumably the result of organizational effects of steroids. The steroid modulation of the aromatase might be related directly to the activation of sexual, aggressive, and nest-building behaviors, whereas the stable dimorphism in 5 alpha- and 5 beta-reductase observed in the nuclei of the song system might be one of the neurochemical bases of the sex differences in the vocal behavior of the zebra finch.  相似文献   

15.
In zebra finches the gonadal steroid estradiol (E2) directs the sexual differentiation of neural regions controlling song and synergizes with androgens to stimulate song in adulthood. To identify regions where E2 may act to exert these effects, steroid autoradiographic techniques were used to assess cellular accumulation of 3[H]-E2 or its metabolites within various nuclei of the zebra finch brain. In Experiment 1 we examined brains from juvenile females, still within the critical period for E2's effect on sexual differentiation. In Experiment 2 the pattern and extent of labeling in adult male brains was determined following injection of 3[H]-E2, 3[H]-testosterone, or 3[H]-dihydrotestosterone. The results suggest that, both during development and in adulthood, most song-control nuclei contain few E2-accumulating cells. In contrast, many cells densely labeled by 3[H]-E2 or its metabolites are present in the hypothalamus and in close proximity to one song-control region, the hyperstriatum ventralis pars caudalis (HVc). The distribution of these latter cells overlaps with cells that project to another song-related nucleus, Area X. Thus, in Experiment 3 fluorescent retrograde tracing and steroid autoradiographic techniques were combined to determine if E2-accumulating cells project to Area X in adult males. Although a few retrogradely labeled cells were lightly labeled by 3[H]-E2 or its metabolites, for the most part these appear to be two distinct populations of cells. The sparse accumulation of E2 in the zebra finch song system contrasts with that described in other song birds and has important implications as to the mechanism of E2 action on the developing and mature song system.  相似文献   

16.
E Akutagawa  M Konishi 《Neuron》2001,31(4):545-556
This paper describes a monoclonal antibody that recognizes a molecule whose expression is mostly restricted to some of the forebrain areas that control singing behavior in adult estrildine species studied, including the zebra, Bengalese, and spice finches. When the song system displays extreme sexual dimorphism, as in these species, antibody staining occurs only in the male's song nuclei. However, protein expression is identical in both sexes of estrildine finches, in which females also have a well-developed song system. Canaries appear to lack the protein, but it can be induced in female zebra finches by early estrogen treatment. Antibody staining patterns in the zebra finch show that the protein's expression is developmentally regulated to coincide with the abrupt increase in the volume and cell size of the male's or the estrogen-treated female's song system.  相似文献   

17.
Treatment of nestling zebra finches with estradiol benzoate (EB) has been shown to masculinize singing in females and demasculinize copulatory behavior in males, suggesting that sexual differentiation of these behaviors is under hormonal control such that testicular hormones induce the capacity for song and ovarian hormones suppress the capacity for mounting. Two experiments were carried out to obtain a more complete picture of sexual differentiation in this species. In Experiment 1, nestlings were injected daily for the first 2 weeks after hatching with testosterone propionate (TP), dihydrotestosterone propionate (DHTP), or a combination of DHTP and EB. As adults, birds were gonadectomized and implanted with TP prior to testing, then tested again after implantation with EB. Singing was not increased in females by any of the treatments. The only effect of either TP or DHTP given alone was defeminization of female proceptive behavior by DHTP. Thus androgens appear to have less influence than estrogens on sexual differentiation of behavior in this species. The combination of DHTP and EB demasculinized mounting in males. In Experiment 2, nestlings were gonadectomized at 7-9 days of age and implanted with TP prior to testing in adulthood. Early gonadectomy had little effect on later behavior; early castrated males sang, danced, and copulated normally and early ovariectomized females neither sang nor mounted.  相似文献   

18.
In many species of vertebrates, major sex differences affect reproductive behavior and endocrinology. Most of these differences do not result from a direct genomic action but develop following early exposure to a sexually differentiated endocrine milieu. In rodents, the female reproductive phenotype mostly develops in the absence of early steroid influence and male differentiation is imposed by the early action of testosterone, acting at least in part through its central conversion into estrogens or aromatization. This pattern of differentiation does not seem to be applicable to avian species. In Japanese quail (Coturnix japonica), injection of estrogens into male embryos causes a permanent loss of the capacity to display male-type copulatory behavior when exposed to testosterone in adulthood. Based on this experimental result, it was proposed that the male reproductive phenotype is “neutral” in birds (i.e. develops in the absence of endocrine influence) and that endogenous estradiol secreted by the ovary of the female embryo is responsible for the physiological demasculinization of females. This model could be recently confirmed. Females indeed display a higher level of circulating estrogens that males during the second part of their embryonic life. In addition, treatment of female embryos with the potent aromatase inhibitor, R76713 or racemic vorozole™ which suppresses the endogenous secretion of estrogens maintains in females the capacity to display the full range of male copulatory behaviors. The brain mechanisms that control this sexually differentiated behavior have not been identified so far but recent data suggest that they should primarily concern a sub-population of aromatase-immunoreactive neurons located in the lateral parts of the sexually dimorphic preoptic nucleus. The zebra finch (Taeniopygia guttata) exhibits a more complex, still partly unexplained, differentiation pattern. In this species, early treatment with exogenous estrogens produces a masculinization of singing behavior in females and a demasculinization of copulatory behavior in males. Since normal untreated males sing and copulate, while females never show these behaviors even when treated with testosterone, it is difficult to understand under which endocrine conditions these behaviors differentiate. In an attempt to resolve this paradox, we recently treated young zebra finches with R76713 in order to inhibit their endogenous estrogens secretion during ontogeny and we subsequently tested their behavior in adulthood. As expected, the aromatase inhibitor decreased the singing frequency in treated males but it did not affect the male-type copulatory behavior in females nor in males. In addition, the sexuality differentiated brain song control nuclei which are also masculinized in females by early treatment with estrogens, were not affected in either sex by the aromatase inhibitor. In conclusion, available data clearly show that sexual differentiation of reproductive behaviors in birds follows a pattern that is almost opposite to that of mammals. This difference may be related to the different mechanisms of sex determination in the two taxa. In quail, the ontogeny of behavioral differentiation is now well understood but we only have a very crude notion of the brain structures that are concerned. By contrast, in zebra finches, the brain mechanisms controlling the sexually differentiated singing behavior in adulthood have been well identified but we do not understand how these structures become sexually dimorphic during ontogeny.  相似文献   

19.
20.
The perception of song is vital to the reproductive success of both male and female songbirds. Several neural structures underlying this perception have been identified by examining expression of immediate early genes (IEGs) following the presentation of conspecific or heterospecific song. In the few avian species investigated, areas outside of the circuit for song production contain neurons that are active following song presentation, specifically the caudal hyperstriatum ventrale (cHV) and caudomedial neostriatum (NCM). While studied in detail in the male zebra finch, IEG responses in these neural substrates involved in song perception have not been quantified in females. Therefore, adult female zebra finches were presented with zebra finch song, nonzebra finch song, randomly generated tones, or silence for 30 min. One hour later they were sacrificed, and their brains removed, sectioned, and immunocytochemically processed for FOS expression. Animals exposed to zebra finch song had a significantly higher density of FOS-immunoreactive cells in the NCM than those presented with other songs, tones, or silence. Neuronal activation in the cHV was equivalent in birds that heard zebra finch and non-zebra finch song, expression that was higher than that observed in the groups that heard no song. Interestingly, the hippocampus (HP) and adjacent parahippocampal area (AHP) were activated in a manner comparable to the NCM. These results suggest a general role for the cHV in song perception and a more specific role for the NCM and HP/AHP in facilitating recognition of and responsiveness to species-specific song in female zebra finches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号