首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ultrastructure of the green dinoflagellate Lepididodinium viride M. M. Watanabe, S. Suda, I. Inouye Sawaguchi et Chihara was studied in detail. The nuclear envelope possessed numerous chambers each furnished with a nuclear pore, a similar arrangement to that found in other gymnodinioids. The flagellar apparatus was essentially identical to Gymnodinium chlorophorum Elbrächter et Schnepf, a species also containing chloroplasts of chlorophyte origin. Of particular interest was the connection of the flagellar apparatus to the nuclear envelope by means of both a fiber and a microtubular extension of the R3 flagellar root. This feature has not been found in other dinoflagellates and suggests a close relationship between these two species. This was confirmed by phylogenetic analysis based on partial sequences of the large subunit (LSU) rDNA gene of L. viride, G. chlorophorum and 16 other unarmoured dinoflagellates, including both the ‘type’ culture and a new Tasmanian isolate of G. chlorophorum. These two isolates had identical sequences and differed from L. viride by only 3.75% of their partial LSU sequences, considerably less than the difference between other Gymnodinium species. Therefore, based on ultrastructure, pigments and partial LSU rDNA sequences, the genus Lepidodinium was emended to encompass L. chlorophorum comb. nov.  相似文献   

2.
Previous studies have shown that dinoflagellates with different plastid ancestries have distinct differences in the fatty acid compositions and regiochemistries of their chloroplast-associated galactolipids, mono- and digalactosyldiacylglycerol (MGDG and DGDG, respectively), thus reflecting plastid origin as a major factor in plastid membrane composition. Specifically, dinoflagellates with aberrant plastids (e.g. Karenia brevis, Kryptoperidinium foliaceum and Lepidodinium chlorophorum) possess certain MGDG- and DGDG-associated fatty acids which are not found in peridinin-containing dinoflagellates (the largest group of photosynthetic dinoflagellates with a red algal plastid ancestry which is thought to be an evolutionary precursor to aberrant plastids), but which are common to other algal groups. For example, hexadecatetraenoic acid (16:4(n-3)) is common to green algae and is found in the MGDG and DGDG of L. chlorophorum, which agrees with its green algal plastid ancestry, while hexadecatrienoic acid (16:3) and hexadecadienoic acid (16:2) are found in the MGDG and DGDG of K. foliaceum, which agrees with its diatom plastid ancestry. Notably, 16:4 has been found by others in the total fatty acids and galactolipids of Karenia mikimotoi, but in no other examined members of the Kareniaceae (all of which have plastids of haptophyte origin). However, these findings lack information as to the regiochemistry of 16:4. We have utilized positive-ion electrospray ionization/mass spectrometry (ESI/MS) and ESI/MS/MS to demonstrate that 16:4, which aside from L. chlorophorum is not found conclusively in the MGDG and DGDG of any other dinoflagellates examined to date irrespective of plastid ancestry, is found in K. mikimotoi as 18:5/16:4 (sn-1/sn-2 regiochemistry) MGDG and DGDG, and that its presence is not modulated (i.e. does not become more saturated) with an increase in growth temperature. Considering an aberrant pigment composition as described by others, we present a perspective where galactolipid-associated 16:4 in K. mikimotoi indicates a plastid ancestry more convoluted than for other members of the Kareniaceae.  相似文献   

3.
Pigment analysis performed on 30 Prasinophyceae strains revealed two main groups: the prasinoxanthin‐containing and prasinoxanthin‐less Prasinophyceae. Prasinoxanthin‐containing Prasinophyceae comprised the orders Mamiellales, Pseudoscourfieldiales (Pycnococcaceae), and Prasinococcales. For this group, classification with pigment composition showed a good agreement with molecular phylogeny. Mamiellales, except Crustomastix stigmatica, accumulated uriolide, micromonal, dihydrolutein, and the pigment Unidentified M1 as characteristic pigments. Prasinococcales and Pseudoscourfieldiales (Pycnococcaceae) lacked micromonal and Unidentified M1. In addition, Pseudoscourfieldiales (Pycnococcaceae) lacked uriolide. A chl c3‐like pigment was present in prasinoxanthin‐containing strains isolated from the deep sea. Common green algae pigments, a loroxanthin derivative, and siphonaxanthin plus derivatives were found in the prasinoxanthin‐less Prasinophyceae, which included strains from Pyramimonadales, Pseudoscourfieldiales (Nephroselmidiaceae), Chlorodendrales, and a new order. Although some associations could be observed, the correspondence between pigments and molecular taxonomy was less clear for this group.  相似文献   

4.
It is generally accepted that the plastids arose from a cyanobacterial ancestor, but the exact phylogenetic relationships between cyanobacteria and plastids are still controversial. Most studies based on partial 16S rRNA sequences suggested a relatively late origin of plastids within the cyanobacterial divergence. In order to clarify the exact relationship and divergence order of cyanobacteria and plastids, we studied their phylogeny on the basis of nearly complete 16S rRNA gene sequences. The data set comprised 15 strains of cyanobacteria from different morphological groups, 1 prochlorophyte, and plastids belonging to 8 species of plants and 12 species of diverse algae. This set included three cyanobacterial sequences determined in this study. This is the most comprehensive set of complete cyanobacterial and plastidial 16S rRNA sequences used so far. Phylogenetic trees were constructed using neighbor joining and maximum parsimony, and the reliability of the tree topologies was tested by different methods. Our results suggest an early origin of plastids within the cyanobacterial divergence, preceded only by the divergence of two cyanobacterial genera, Gloeobacter and Pseudanabaena.   相似文献   

5.
6.
Endosymbiosis, the establishment of a former free-living prokaryotic or eukaryotic cell as an organelle inside a host cell, can dramatically alter the genomic architecture of the endosymbiont. Plastids or chloroplasts, the light-harvesting organelle of photosynthetic eukaryotes, are excellent models to study this phenomenon because plastid origin has occurred multiple times in evolution. Here, we investigate the genomic signature of molecular processes acting through secondary plastid endosymbiosis—the origination of a new plastid from a free-living eukaryotic alga. We used phylogenetic comparative methods to study gene loss and changes in selective regimes on plastid genomes, focusing on green algae that have given rise to three independent lineages with secondary plastids (euglenophytes, chlorarachniophytes, and Lepidodinium). Our results show an overall increase in gene loss associated with secondary endosymbiosis, but this loss is tightly constrained by the retention of genes essential for plastid function. The data show that secondary plastids have experienced temporary relaxation of purifying selection during secondary endosymbiosis. However, this process is tightly constrained, with selection relaxed only relative to the background in primary plastids. Purifying selection remains strong in absolute terms even during the endosymbiosis events. Selection intensity rebounds to pre-endosymbiosis levels following endosymbiosis events, demonstrating the changes in selection efficiency during different origin phases of secondary plastids. Independent endosymbiosis events in the euglenophytes, chlorarachniophytes, and Lepidodinium differ in their degree of relaxation of selection, highlighting the different evolutionary contexts of these events. This study reveals the selection–drift interplay during secondary endosymbiosis and evolutionary parallels during organellogenesis.  相似文献   

7.
A total of 103 root nodule isolates were used to estimate the diversity of bacteria nodulating Lotus tenuis in typical soils of the Salado River Basin. A high level of genetic diversity was revealed by repetitive extragenic palindromic PCR, and 77 isolates with unique genomic fingerprints were further differentiated into two clusters, clusters A and B, after 16S rRNA restriction fragment length polymorphism analysis. Cluster A strains appeared to be related to the genus Mesorhizobium, whereas cluster B was related to the genus Rhizobium. 16S rRNA sequence and phylogenetic analysis further supported the distribution of most of the symbiotic isolates in either Rhizobium or Mesorhizobium: the only exception was isolate BA135, whose 16S rRNA gene was closely related to the 16S rRNA gene of the genus Aminobacter. Most Mesorhizobium-like isolates were closely related to Mesorhizobium amorphae, Mesorhizobium mediterraneum, Mesorhizobium tianshanense, or the broad-host-range strain NZP2037, but surprisingly few isolates grouped with Mesorhizobium loti type strain NZP2213. Rhizobium-like strains were related to Rhizobium gallicum, Rhizobium etli, or Rhizobium tropici, for which Phaseolus vulgaris is a common host. However, no nodC or nifH genes could be amplified from the L. tenuis isolates, suggesting that they have rather divergent symbiosis genes. In contrast, nodC genes from the Mesorhizobium and Aminobacter strains were closely related to nodC genes from narrow-host-range M. loti strains. Likewise, nifH gene sequences were very highly conserved among the Argentinian isolates and reference Lotus rhizobia. The high levels of conservation of the nodC and nifH genes suggest that there was a common origin of the symbiosis genes in narrow-host-range Lotus symbionts, supporting the hypothesis that both intrageneric horizontal gene transfer and intergeneric horizontal gene transfer are important mechanisms for the spread of symbiotic capacity in the Salado River Basin.  相似文献   

8.
Because the secondary plastids of the Euglenophyta and Chlorarachniophyta are very similar to green plant plastids in their pigment composition, it is generally considered that ancestral green algae were engulfed by other eukaryotic host cells to become the plastids of these two algal divisions. Recent molecular phylogenetic studies have attempted to resolve the phylogenetic positions of these plastids; however, almost all of the studies analyzed only plastid‐encoded genes. This limitation may affect the results of comparisons between genes from primary and secondary plastids, because genes in endosymbionts have a higher mutation rate than the genes of their host cells. Thus, the phylogeny of these secondary plastids must be elucidated using other molecular markers. Here, we compared the plastid‐targeting, nuclear‐encoded, oxygen‐evolving enhancer (psbO) genes from various green plants, the Euglenophyta and Chlorarachniophyta. A phylogenetic analysis based on the PsbO amino acid sequences indicated that the chlorarachniophyte plastids are positioned within the Chlorophyta (including Ulvophyceae, Chlorophyceae, and Prasinophyceae, but excluding Mesostigma). In contrast, plastids of the Euglenophyta and Mesostigma are positioned outside the Chlorophyta and Streptophyta. The relationship of these three phylogenetic groups was consistent with the grouping of the primary structures of the thylakoid‐targeting domain and its adjacent amino acids in the PsbO N‐terminal sequences. Furthermore, the serine‐X‐alanine (SXA) motif of PsbO was exactly the same in the Chlorarachniophyta and the prasinophycean Tetraselmis. Therefore, the chlorarachniophyte secondary plastids likely evolved from the ancestral Tetraselmis‐like alga within the Chlorophyta, whereas the Euglenophyte plastids may have originated from the unknown basal lineage of green plants.  相似文献   

9.
The cyanobacterial genus Leptolyngbya is widely distributed throughout terrestrial environments and freshwater. Because environmental factors, such as oxygen level, available water content, and light intensity, vary between soil surface and water bodies, terrestrial Leptolyngbya should have genomic differences with freshwater species to adapt to a land habitat. To study the genomic features of Leptolyngbya species, we determined the complete genome sequence of the terrestrial strain Leptolyngbya sp. NIES-2104 and compared it with that of the near-complete sequence of the freshwater Leptolyngbya boryana PCC 6306. The greatest differences between these two strains were the presence or absence of a nitrogen fixation gene cluster for anaerobic nitrogen fixation and several genes for tetrapyrrole synthesis, which can operate under micro-oxic conditions. These differences might reflect differences in oxygen levels where these strains live. Both strains have the genes for trehalose biosynthesis, but only Leptolyngbya sp. NIES-2104 has genetic capacity to produce a mycosporine-like amino acid, mycosporine-glycine. Mycosporine-glycine has an antioxidant action, which may contribute to adaptation to terrestrial conditions. These features of the genomes yielded additional insights into the classification and physiological characteristics of these strains.  相似文献   

10.
The taxonomic status of new prospective bacteriocin-synthesizing strains of mesophilic lactococci isolated from raw milk and milk products from different regions of Russia and also of strain F-119, obtained by protoplast fusion of two related strains with low bacteriocin-synthesizing activity, was established by classical methods of identification. The values of antibiotic activity displayed by the strains toward a test microorganism Bacillus coagulans were up to 4650 IU/ml, which is significantly higher than in natural lactococci strains. In spite of some differences in morphology, ability to ferment carbohydrates, requirements for nutrients, and antibiotic suspectability, the strains were identified as Lactococcus lactis subsp. lactis. The new strains differed from the classic nisin-producing strain L. lactis subsp. lactis MGU by a remarkably broad spectrum of bactericidal and fungicidal activity. Study of 16S rRNA gene sequences of new natural strains, fusants F-119 and another one obtained earlier, F-116, and their parental strains in comparison with reference strains confirmed the new strains’ taxonomic status as Lactococcus lactis subsp. lactis. The nucleotide sequences of 16S rRNA genes were deposited with GenBank under accession numbers EF100777-EF114305.  相似文献   

11.
In the present scenario, it is now well documented that probiotics confer health benefits to the host and the purported probiotic effects are highly strain specific. Hence, accurate genotypic identification is extremely important to link the strain to the specific health effect. With this aim, specific primed-PCR assays were developed and explored for the molecular identification and typing of a putative indigenous probiotic isolate Lp91 of human faecal origin. PCR with specific primers targeting 23S rRNA gene of genus Lactobacillus and 16S rRNA gene of species L. plantarum resulted positive for Lp91. In addition, BLAST analysis of 16S rRNA gene sequence of Lp91 and multiple sequence alignment of 16S rRNA gene variable (V2-V3) regions along with the reference sequences revealed it as L. plantarum with a sequence identity of more than 99%. Furthermore, resolution of 16S rRNA gene sequences was sufficient to infer a phylogenetic relationship amongst Lactobacillus species. In order to determine strain-level variations, randomly amplified polymorphic DNA (RAPD) banding profiles of Lp91 obtained with OPAA-01, OPAP-01 and OPBB-01 primers were compared with those of reference strains of Lactobacillus spp., and Lp91 could be delineated as a distinct strain. Apart from this, presence of probiotic markers viz. bile salt hydrolase (bsh) and collagen-binding protein (cbp) encoding genes in Lp91 genome could be attributed to its exploitation as a potential probiotic adjunct in the development of indigenous functional foods. Lactobacillus isolates/or strains from the gastrointestinal system, fermented products and other environmental niches could be identified and characterized by employing the PCR methods developed in this study; they are rapid, reproducible and more accurate than the conventional methods based on the fermentation profiles.  相似文献   

12.
Oligonucleotide probes that hybridize with specific sequences in variable regions of the 16S rRNA of the nitrogen-fixing actinomycete Frankia were used for the identification of Frankia strains in nodules. Frankia cells were released from plant tissue by grinding glutaraldehyde-fixed root nodules in guanidine hydrochloride solution. rRNA was obtained after sonication, precipitation with ethanol, and purification by phenolchloroform extraction. Degradation of rRNA, evident in Northern blots, did not affect hybridization with the oligonucleotides. Nodules of about 1 mg (fresh weight) provided sufficient rRNA for reliable detection of the Frankia strain. The utility of this rRNA extraction method was tested in a competition experiment between two effective Frankia strains on cloned Alnus glutinosa plants.  相似文献   

13.
API 20E strip test, the standard for Enterobacteriaceae identification, is not sufficient to discriminate some Yersinia species for some unstable biochemical reactions and the same biochemical profile presented in some species, e.g. Yersinia ferderiksenii and Yersinia intermedia, which need a variety of molecular biology methods as auxiliaries for identification. The 16S rRNA gene is considered a valuable tool for assigning bacterial strains to species. However, the resolution of the 16S rRNA gene may be insufficient for discrimination because of the high similarity of sequences between some species and heterogeneity within copies at the intra-genomic level. In this study, for each strain we randomly selected five 16S rRNA gene clones from 768 Yersinia strains, and collected 3,840 sequences of the 16S rRNA gene from 10 species, which were divided into 439 patterns. The similarity among the five clones of 16S rRNA gene is over 99% for most strains. Identical sequences were found in strains of different species. A phylogenetic tree was constructed using the five 16S rRNA gene sequences for each strain where the phylogenetic classifications are consistent with biochemical tests; and species that are difficult to identify by biochemical phenotype can be differentiated. Most Yersinia strains form distinct groups within each species. However Yersinia kristensenii, a heterogeneous species, clusters with some Yersinia enterocolitica and Yersinia ferderiksenii/intermedia strains, while not affecting the overall efficiency of this species classification. In conclusion, through analysis derived from integrated information from multiple 16S rRNA gene sequences, the discrimination ability of Yersinia species is improved using our method.  相似文献   

14.
Mycoplasma capricolum subsp. capripneumoniae belongs to the so-called Mycoplasma mycoides cluster and is the causal agent of contagious caprine pleuropneumonia (CCPP). All members of the M. mycoides cluster have two rRNA operons. The sequences of the 16S rRNA genes of both rRNA operons from 20 strains of M. capricolum subsp. capripneumoniae of different geographical origins in Africa and Asia were determined. Nucleotide differences which were present in only one of the two operons (polymorphisms) were detected in 24 positions. The polymorphisms were not randomly distributed in the 16S rRNA genes, and some of them were found in regions of low evolutionary variability. Interestingly, 11 polymorphisms were found in all the M. capricolum subsp. capripneumoniae strains, thus defining a putative ancestor. A sequence length difference between the 16S rRNA genes in a poly(A) region and 12 additional polymorphisms were found in only one or some of the strains. A phylogenetic tree was constructed by comparative analysis of the polymorphisms, and this tree revealed two distinct lines of descent. The nucleotide substitution rate of strains within line II was up to 50% higher than within line I. A tree was also constructed from individual operonal 16S rRNA sequences, and the sequences of the two operons were found to form two distinct clades. The topologies of both clades were strikingly similar, which supports the use of 16S rRNA sequence data from homologous operons for phylogenetic studies. The strain-specific polymorphism patterns of the 16S rRNA genes of M. capricolum subsp. capripneumoniae may be used as epidemiological markers for CCPP.  相似文献   

15.
Phylogeny of the Defined Murine Microbiota: Altered Schaedler Flora   总被引:12,自引:4,他引:8       下载免费PDF全文
The “altered Schaedler flora” (ASF) was developed for colonizing germfree rodents with a standardized microbiota. The purpose of this study was to identify each of the eight ASF strains by 16S rRNA sequence analysis. Three strains were previously identified as Lactobacillus acidophilus (strain ASF 360), Lactobacillus salivarius (strain ASF 361), and Bacteroides distasonis (strain ASF 519) based on phenotypic criteria. 16S rRNA analysis indicated that each of the strains differed from its presumptive identity. The 16S rRNA sequence of strain ASF 361 is essentially identical to the 16S rRNA sequences of the type strains of Lactobacillus murinis and Lactobacillus animalis (both isolated from mice), and all of these strains probably belong to a single species. Strain ASF 360 is a novel lactobacillus that clusters with L. acidophilus and Lactobacillus lactis. Strain ASF 519 falls into an unnamed genus containing [Bacteroides] distasonis, [Bacteroides] merdae, [Bacteroides] forsythus, and CDC group DF-3. This unnamed genus is in the Cytophaga-Flavobacterium-Bacteroides phylum and is most closely related to the genus Porphyromonas. The spiral-shaped strain, strain ASF 457, is in the Flexistipes phylum and exhibits sequence identity with rodent isolates of Robertson. The remaining four ASF strains, which are extremely oxygen-sensitive fusiform bacteria, group phylogenetically with the low-G+C-content gram-positive bacteria (Firmicutes, Bacillus-Clostridium group). ASF 356, ASF 492, and ASF 502 fall into Clostridium cluster XIV of Collins et al. Morphologically, ASF 492 resembles members of this cluster, Roseburia cecicola, and Eubacterium plexicaudatum. The 16S rRNA sequence of ASF 492 is identical to that of E. plexicaudatum. Since the type strain and other viable original isolates of E. plexicaudatum have been lost, strain ASF 492 is a candidate for a neotype strain. Strain ASF 500 branches deeply in the low-G+C-content gram-positive phylogenetic tree but is not closely related to any organisms whose 16S rRNA sequences are currently in the GenBank database. The 16S rRNA sequence information determined in the present study should allow rapid identification of ASF strains and should permit detailed analysis of the interactions of ASF organisms during development of intestinal disease in mice that are coinfected with a variety of pathogenic microorganisms.  相似文献   

16.
Cylindrospermopsis raciborskii is a species of freshwater, bloom-forming cyanobacterium. C. raciborskii produces toxins, including cylindrospermopsin (hepatotoxin) and saxitoxin (neurotoxin), although non toxin-producing strains are also observed. In spite of differences in toxicity, C. raciborskii strains comprise a monophyletic group, based upon 16S rRNA gene sequence identities (greater than 99%). We performed phylogenetic analyses; 16S rRNA gene and 16S-23S rRNA gene internally transcribed spacer (ITS-1) sequence comparisons, and genomic DNA restriction fragment length polymorphism (RFLP), resolved by pulsed-field gel electrophoresis (PFGE), of strains of C. raciborskii, obtained mainly from the Australian phylogeographic cluster. Our results showed no correlation between toxic phenotype and phylogenetic association in the Australian strains. Analyses of the 16S rRNA gene and the respective ITS-1 sequences (long L, and short S) showed an independent evolution of each ribosomal operon. The genes putatively involved in the cylindrospermopsin biosynthetic pathway were present in one locus and only in the hepatotoxic strains, demonstrating a common genomic organization for these genes and the absence of mutated or inactivated biosynthetic genes in the non toxic strains. In summary, our results support the hypothesis that the genes involved in toxicity may have been transferred as an island by processes of gene lateral transfer, rather than convergent evolution.  相似文献   

17.
We applied a multilocus phylogenetic approach to elucidate the origin of serradella and lupin Bradyrhizobium strains that persist in soils of Western Australia and South Africa. The selected strains belonged to different randomly amplified polymorphic DNA (RAPD)-PCR clusters that were distinct from RAPD clusters of applied inoculant strains. Phylogenetic analyses were performed with nodulation genes (nodA, nodZ, nolL, noeI), housekeeping genes (dnaK, recA, glnII, atpD), and 16S-23S rRNA intergenic transcribed spacer sequences. Housekeeping gene phylogenies revealed that all serradella and Lupinus cosentinii isolates from Western Australia and three of five South African narrow-leaf lupin strains were intermingled with the strains of Bradyrhizobium canariense, forming a well supported branch on each of the trees. All nodA gene sequences of the lupin and serradella bradyrhizobia formed a single branch, referred to as clade II, together with the sequences of other lupin and serradella strains. Similar patterns were detected in nodZ and nolL trees. In contrast, nodA sequences of the strains isolated from native Australian legumes formed either a new branch called clade IV or belonged to clade I or III, whereas their nonsymbiotic genes grouped outside the B. canariense branch. These data suggest that the lupin and serradella strains, including the strains from uncultivated L.cosentinii plants, are descendants of strains that most likely were brought from Europe accidentally with lupin and serradella seeds. The observed dominance of B. canariense strains may be related to this species' adaptation to acid soils common in Western Australia and South Africa and, presumably, to their intrinsic ability to compete for nodulation of lupins and serradella.  相似文献   

18.
Xenorhabdus strains from entomopathogenic nematodes isolated from United Kingdom soils by using the insect bait entrapment method were characterized by partial sequencing of the 16S rRNA gene, four housekeeping genes (asd, ompR, recA, and serC) and the flagellin gene (fliC). Most strains (191/197) were found to have genes with greatest similarity to those of Xenorhabdus bovienii, and the remaining six strains had genes most similar to those of Xenorhabdus nematophila. Generally, 16S rRNA sequences and the sequence types based on housekeeping genes were in agreement, with a few notable exceptions. Statistical analysis implied that recombination had occurred at the serC locus and that moderate amounts of interallele recombination had also taken place. Surprisingly, the fliC locus contained a highly variable central region, even though insects lack an adaptive immune response, which is thought to drive flagellar variation in pathogens of higher organisms. All the X. nematophila strains exhibited a consistent pattern of insecticidal activity, and all contained the insecticidal toxin genes xptA1A2B1C1, which were present on a pathogenicity island (PAI). The PAIs were similar among the X. nematophila strains, except for partial deletions of a peptide synthetase gene and the presence of insertion sequences. Comparison of the PAI locus with that of X. bovienii suggested that the PAI integrated into the genome first and then acquired the xpt genes. The independent mobility of xpt genes was further supported by the presence of xpt genes in X. bovienii strain I73 on a type 2 transposon structure and by the variable patterns of insecticidal activity in X. bovienii isolates, even among closely related strains.  相似文献   

19.
We used both cultivation and direct recovery of bacterial 16S rRNA gene (rDNA) sequences to investigate the structure of the bacterial community in anoxic rice paddy soil. Isolation and phenotypic characterization of 19 saccharolytic and cellulolytic strains are described in the accompanying paper (K.-J. Chin, D. Hahn, U. Hengstmann, W. Liesack, and P. H. Janssen, Appl. Environ. Microbiol. 65:5042–5049, 1999). Here we describe the phylogenetic positions of these strains in relation to 57 environmental 16S rDNA clone sequences. Close matches between the two data sets were obtained for isolates from the culturable populations determined by the most-probable-number counting method to be large (3 × 107 to 2.5 × 108 cells per g [dry weight] of soil). This included matches with 16S rDNA similarity values greater than 98% within distinct lineages of the division Verrucomicrobia (strain PB90-1) and the Cytophaga-Flavobacterium-Bacteroides group (strains XB45 and PB90-2), as well as matches with similarity values greater than 95% within distinct lines of descent of clostridial cluster XIVa (strain XB90) and the family Bacillaceae (strain SB45). In addition, close matches with similarity values greater than 95% were obtained for cloned 16S rDNA sequences and bacteria (strains DR1/8 and RPec1) isolated from the same type of rice paddy soil during previous investigations. The correspondence between culture methods and direct recovery of environmental 16S rDNA suggests that the isolates obtained are representative geno- and phenotypes of predominant bacterial groups which account for 5 to 52% of the total cells in the anoxic rice paddy soil. Furthermore, our findings clearly indicate that a dual approach results in a more objective view of the structural and functional composition of a soil bacterial community than either cultivation or direct recovery of 16S rDNA sequences alone.  相似文献   

20.
Temporal changes of the bacterioplankton from a meromictic lake (Lake Vilar, Banyoles, Spain) were analyzed with four culture-independent techniques: epifluorescence microscopy, PCR-denaturing gradient gel electrophoresis (DGGE) fingerprinting, fluorescence in situ whole-cell hybridization and flow cytometry sorting. Microscopically, blooms of one cyanobacterium (Synechococcus sp.-like), one green sulfur bacterium (Chlorobium phaeobacteroides-like), and one purple sulfur bacterium (Thiocystis minor-like) were observed at different depths and times. DGGE retrieved these populations and, additionally, populations related to the Cytophaga-Flavobacterium-Bacteroides phylum as predominant community members. The analyses of partial 16S ribosomal DNA sequences from the DGGE fingerprints (550 bp analyzed) revealed higher genetic diversity than expected from microscopic observation for most of these groups. Thus, the sequences of two Synechococcus spp. (both had a similarity of 97% to Synechococcus sp. strain PCC6307 in 16S rRNA), two Thiocystis spp. (similarities to Thiocystis minor of 93 and 94%, respectively), and three Cytophaga spp. (similarities to Cytophaga fermentans of 88 and 89% and to Cytophaga sp. of 93%, respectively) were obtained. The two populations of Synechococcus exhibited different pigment compositions and temporal distributions and their 16S rRNA sequences were 97.3% similar. The two Thiocystis populations differed neither in pigment composition nor in morphology, but their 16S rRNA sequences were only 92.3% similar and they also showed different distributions over time. Finally, two of the Cytophaga spp. showed 96.2% similarity between the 16S rRNA sequences, but one of them was found to be mostly attached to particles and only in winter. Thus, the identity of the main populations changed over time, but the function of the microbial guilds was maintained. Our data showed that temporal shifts in the identity of the predominant population is a new explanation for the environmental 16S rRNA microdiversity retrieved from microbial assemblages and support the hypothesis that clusters of closely related 16S rRNA environmental sequences may actually represent numerous closely related, yet ecologically distinct, populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号