首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phytogenous Phenolic and benzene compounds have been described as being responsible for many biological activities including antifungal effects. The effect of caffeine and cinnamic and caffeic acids on a model fungus, Aspergillus nidulans, was investigated at its initial stage of germination. Conidia did not germinate in the presence of cinnamic acid (1 mM). Caffeine and caffeic acid exerted a negative effect on germination, on the nuclear duplication cycle and on first septum formation. The effects of caffeine were dose-dependent; effects of caffeic acid (1 mM) were more intense than those of caffeine (10 mM).  相似文献   

2.
Daniel Melin 《Phytochemistry》1975,14(10):2193-2197
Phenylalanine is the precursor of the cinnamic acids and coumarins in the stems and leafs of P. graeca L. Esterification of p-coumaric acid by quinic acid is required before oxidation to chlorogenic acid. In our experiments, we did not obtain radioactive flavonols from 14C phenylalanine. PAL activity varies as a result of light and temperature in the same manner as the level of flavonoids (especially the phenolic acids). This enzyme, therefore, plays a regulatory role in the synthesis of these phenolic substances. The variation in PAL activity during illumination does not follow the same course as described for other plants.  相似文献   

3.
The extractable activity of l-phenylalanine ammonia-lyase (EC 4.3.1.5) and the concentration of sugar esters of p-coumaric and ferulic acids in the hypocotyls of etiolated gherkin seedlings increase upon irradiation with white light. Treatment of intact seedlings with the phenylalanine ammonia-lyase inhibitors α-aminooxyacetic acid and l-α-aminooxy-β-phenylpropionic acid during illumination causes enhanced formation of the lyase and reduces the accumulation of hydroxycinnamic acids. Enzyme activity in excised hypocotyl segments floating on buffer increases in the dark as well as in the light, while hydroxycinnamic acids accumulate only in the light. Phenylalanine ammonia-lyase formation in the segments is inhibited by cinnamic acid and, to a lesser extent, p-coumaric acid, while it is slightly enhanced by caffeic acid and is not affected by ferulic acid.Aminooxyphenylpropionate dramatically promotes phenylalanine ammonialyase formation in the segments in darkness and light and prevents the accumulation of hydroxycinnamic acids in the light. Aminooxyphenylpropionate does not, however, affect the time course of apparent lyase formation and decay. Cinnamic acid, the product of the lyase reaction, antagonizes the effect of aminooxyphenylpropionate. It is proposed that the reaction product(s) are involved to some extent in the regulation of the pool of actively lyase in the hypocotyl tissue.  相似文献   

4.
When grown on glucose as principal carbon source the culture medium of Polyporus hispidus was found to contain phenolic acids, including p-coumaric and caffeic acids. 14C-Studies indicated that phenylalanine is converted to cinnamic acid as well as to phenylpyruvic acid and tyrosine in cultures. Cell-free preparations of mycelium contained phenylalanine and tyrosine ammonia-lyse activities and were capable of effecting the hydroxylation of cinnamic, p-coumaric and benzoic acids.  相似文献   

5.
An enzymatic method for the determination of phenylalanine and tyrosine has been described. This method is based on the formation of cinnamic acid from phenylalanine or the formation of p-coumaric acid from tyrosine by phenylalanine ammonia-lyase of Rhodotorula. Cinnamic acid and p-coumaric acid, which are formed in stoichiometric amounts, are determined spectrophotometrically. Other amino acids and d-isomers of phenylalanine and tyrosine have no effect on this determination.  相似文献   

6.
Sander M  Petersen M 《Planta》2011,233(6):1157-1171
cDNAs and genes encoding a hydroxycinnamoyl-CoA:hydroxyphenyllactate hydroxycinnamoyltransferase (CbRAS; rosmarinic acid synthase) and a hydroxycinnamoyl-CoA:shikimate hydroxycinnamoyltransferase (CbHST) were isolated from Coleus blumei Benth. (syn. Solenostemon scutellarioides (L.) Codd; Lamiaceae). The proteins were expressed in E. coli and the substrate specificity of both enzymes was tested. CbRAS accepted several CoA-activated phenylpropenoic acids as donor substrates and d-(hydroxy)phenyllactates as acceptors resulting in ester formation while shikimate and quinate were not accepted. Unexpectedly, amino acids (d-phenylalanine, d-tyrosine, d-DOPA) also yielded products, showing that RAS can putatively catalyze amide formation. CbHST was able to transfer cinnamic, 4-coumaric, caffeic, ferulic as well as sinapic acid from CoA to shikimate but not to quinate or acceptor substrates utilized by CbRAS. In addition, 3-hydroxyanthranilate, 3-hydroxybenzoate and 2,3-dihydroxybenzoate were used as acceptor substrates. The reaction product with 3-aminobenzoate putatively is an amide. For both enzymes, structural requirements for donor and acceptor substrates were deduced. The acceptance of unusual acceptor substrates by CbRAS and CbHST resulted in the formation of novel compounds. The rather relaxed substrate as well as reaction specificity of both hydroxycinnamoyltransferases opens up possibilities for the evolution of novel enzymes forming novel secondary metabolites in plants and for the in vitro formation of new compounds with putatively interesting biological activities.  相似文献   

7.
The extractable activity of L-phenylalanine ammonia-lyase (EC 4.3.1.5) and the concentration of sugar esters of p-coumaric and ferulic acids in the hypocotyls of etiolated gherkin seedlings increase upon irradiation with white light. Treatment of intact seedlings with the phenylalanine ammonia-lyase inhibitors alpha-aminooxyacetic acid and L-alpha-aminooxy-beta-phenylpropionic acid during illumination causes enhanced formation of the lyase and reduces the accumulation of hydroxycinnamic acids. Enzyme activity in excised hypocotyl segments floating on buffer increases in the dark as well as in the light, while hydroxycinnamic acids accumulate only in the light. Phenylalanine ammonia-lyase formation in the segments is inhibited by cinnamic acid and, to a lesser extent, p-coumaric acid, while it is slightly enhanced by caffeic acid and is not affected by ferulic acid. Aminooxyphenylpropionate dramatically promotes phenylalanine ammonia-lyase formation in the segments in darkness and light prevents the accumulation of hydroxycinnamic acids in the light. Aminooxyphenylpropionate does not, however, affect the time course of apparent lyase formation and decay. Cinnamic acid, the product of the lyase reaction, antagonizes the effect of aminooxyphenylpropionate. It is proposed that the reaction product(s) are involved to some extent in the regulation of the pool of active lyase in the hypocotyl tissue.  相似文献   

8.
Photocontrol of chlorogenic acid biosynthesis in potato tuber discs   总被引:2,自引:0,他引:2  
The appearance of phenylalanine ammonia-lyase activity and the accumulation of chlorogenic acid in potato tuber discs are stimulated by illumination with white light, whereas the appearance of cinnamic acid 4-hydroxylase activity is unaffected by illumination. The photosensitive step in chlorogenic acid biosynthesis may be by-passed by treatment of discs with exogenous supplies of cinnamic acid, whereas treatment of discs with phenylalanine does not isolate the photosensitive step. Therefore, the site of photocontrol of chlorogenic acid biosynthesis in potato tuber discs is the reaction catalysed by phenylalanine ammonia-lyase. Cinnamic acid 4-hydroxylase activity in vitro is unaffected by p-coumaric acid, caffeic acid or chlorogenic acid. Phenylalanine ammonia-lyase activity in vitro is sensitive to inhibition by cinnamic acid. The in vitro properties of the two enzymes are also consistent with the hypothesis that phenylalanine ammonia-lyase rather than cinnamic acid 4-hydroxylase is important in the regulation of chlorogenic acid biosynthesis in potato tuber discs.  相似文献   

9.
Summary Chili pepper (Capsicum annuum L., cv. Tampique?o 74) cell suspensions were employed to study the influence of phenylalanine and phenylpropanoids on the total production of capsaicinoids, the hot taste compounds of chili pepper fruits. The effect of capsaicinoid precursors and intermediates on the accumulation of lignin as an indicator of metabolic diversion was also investigated. Addition of 100 μM of either phenylalanine, cinnamic or caffeic acids to chili pepper cell cultures did not cause significant increases in total capsaicinoids (expressed as capsaicin content, and calculated as averages of the measured values) during the growth cycle. The highest total capsaicinoid content was recorded in cultures grown in the presence of vanillin (142.61 μg g−1 f.wt.), followed by cells treated with 100 μM vanillylamine (104.88 μg g−1 f.wt.), p-coumaric acid (72.36 μg g−1 f.wt.). and ferulic acid (34.67 μg g−1 f.wt.). Capsaicinoid content for control cells was 13.97 μg g−1 f.wt. Chili pepper cell suspensions cultured in the presence of 100 μM of either phenylalanine, or cinnamic, caffeic, or ferulic acids, or the same concentration, of vanillin and vanillylamine, did not exhibit statistically significant differences in the content of lignin as compared with control cells. However, addition of p-coumaric acid (100 μM) to the cultute medium significantly increased thelignin production (c. 10–15 times the contents of control cells).  相似文献   

10.
Cinnamic acid and its hydroxylated derivatives (p-coumaric, caffeic, ferulic and sinapic acids) are known allelochemicals that affect the seed germination and root growth of many plant species. Recent studies have indicated that the reduction of root growth by these allelochemicals is associated with premature cell wall lignification. We hypothesized that an influx of these compounds into the phenylpropanoid pathway increases the lignin monomer content and reduces the root growth. To confirm this hypothesis, we evaluated the effects of cinnamic, p-coumaric, caffeic, ferulic and sinapic acids on soybean root growth, lignin and the composition of p-hydroxyphenyl (H), guaiacyl (G) and syringyl (S) monomers. To this end, three-day-old seedlings were cultivated in nutrient solution with or without allelochemical (or selective enzymatic inhibitors of the phenylpropanoid pathway) in a growth chamber for 24 h. In general, the results showed that 1) cinnamic, p-coumaric, caffeic and ferulic acids reduced root growth and increased lignin content; 2) cinnamic and p-coumaric acids increased p-hydroxyphenyl (H) monomer content, whereas p-coumaric, caffeic and ferulic acids increased guaiacyl (G) content, and sinapic acid increased sinapyl (S) content; 3) when applied in conjunction with piperonylic acid (PIP, an inhibitor of the cinnamate 4-hydroxylase, C4H), cinnamic acid reduced H, G and S contents; and 4) when applied in conjunction with 3,4-(methylenedioxy)cinnamic acid (MDCA, an inhibitor of the 4-coumarate:CoA ligase, 4CL), p-coumaric acid reduced H, G and S contents, whereas caffeic, ferulic and sinapic acids reduced G and S contents. These results confirm our hypothesis that exogenously applied allelochemicals are channeled into the phenylpropanoid pathway causing excessive production of lignin and its main monomers. By consequence, an enhanced stiffening of the cell wall restricts soybean root growth.  相似文献   

11.
The kinetics and mechanisms of the reactions of iron(III) with the hydroxy cinnamic acid based ligands caffeic, chlorogenic, sinapic and ferulic acids and the flavonoid naringin have been investigated in aqueous solution. The mechanisms for caffeic and chlorogenic acid are generally consistent with the formation of a 1:1 complex that subsequently decays through an electron transfer reaction. On reaction with iron(III), ferulic and sinapic acids undergo an electron transfer without the prior formation of any complex. There was no evidence of electron transfer occurring in the complex formed when iron(III) is reacted with naringin. Rate constants for k1 (formation) and k(-1) (dissociation) have been evaluated for the complex formation reactions of [Fe(H2O)6(OH)]2+ with caffeic acid, chlorogenic acid and naringin. Analysis of the kinetic data yielded stability constants, equilibrium constants for protonation of the iron(III) chlorogenic acid complex initially formed, together with the rate constants for complex decomposition through intramolecular electron transfers and in the case of caffeic acid and chlorogenic acid, rate constants for the iron(III) assisted decomposition of the initial complex formed. Some of the suggested mechanisms and calculated rate constants are validated by calculations carried out using global analysis of time dependent spectra.  相似文献   

12.
p-Hydroxycinnamic acid was found to be located within the plastids of the green alga Dunaliella marina. Thylakoid fractions desintegrated by ultrasonic treatment were capable of converting L-phenylalanine into o- and p-hydroxycinnamic acids; the hydroxylation reaction was increased by addition of NADPH. Hydroxycinnamic acids produced when [3-14C]cinnamate was incubated with varying amounts of [4'-3H]L-phenylalanine exhibited a 3H/14C ratio 10-150 times higher than that of the cinnamic acid reisolated from the incubation mixture. The lack of equilibration between cinnamate formed from L-phenylalanine and cinnamate added to the solution supports the hypothesis that cinnamate as an intermediate in hydroxycinnamate formation remains bound to the membrane enzyme complex. A model of membrane-bound multienzyme complexes is proposed for the conversion of aromatic amino acids into phenols.  相似文献   

13.
Thirty-five derivatives of cinnamic acid and related compounds were tested for inhibition against phenylalanine ammonia-lyase (PAL) derived from sweet potato, pea and yeast. Caffeic and gallic acids showed inhibition against PAL originating from higher plants, but not against yeast PAL. In contrast, yeast PAL was specifically inhibited by p-hydroxycinnamic and p-hydroxybenzoic acids. The results suggest that caffeic and gallic acids may act as regulatory substances in phenylpropanoid metabolism in higher plants. Inhibition experiments with synthetic cinnamic acid derivatives have revealed that the presence of a hydrophobic aromatic ring, α,β-double bond and carboxyl group is essential for inhibitory activity. 2-Naphthoic acid which fulfills these structural requirements showed a strong inhibition. The size and shape of the active site is discussed from structure-activity relationships of cinnamic acid derivatives. o-Chlorocinnamic acid, one of the strongest inhibitors found in this study showed an inhibitory effect on the growth of the roots of rice seedlings.  相似文献   

14.
Introduction – Salicis Cortex, made from willow bark is a herbal remedy, which is standardised based on the content of salicin, a compound with analgesic and antiphlogistic properties. However, clinical trials suggest that other compounds also present in Salicis Cortex can contribute to the pharmacological effects. Objective – To characterise the composition of phenolic acids in the barks of different species and clones from the genus Salix by use of chromatographic methods—HPTLC and HPLC. Methodology – The phenolic acid composition was analysed by MGD (multiple gradient development)–HPTLC technique. The separation was performed on HPTLC Diol plates with gradient elution using a mixture of chloroform:hexane:ethyl acetate with increasing concentration of ethyl acetate from 10 to 25%. Derivatisation with thymol reagent was employed for the first time for specific detection of phenolic acids containing methoxyl groups. Results – The presence of all phenolic acids previously reported in the genus Salix was confirmed, namely p‐hydroxybenzoic, vanillic, cinnamic, p‐coumaric, ferulic and caffeic acids. Furthermore, pyrocatechol as a constituent of willow bark was revealed. The highest concentration of this compound was observed in the S. purpurea bark (2.25 mg/g). Conclusion – The presence of a relatively high content of pyrocatechol in Salix species may raise doubts about the safe application of this herbal medicine. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
To perform the lipase-catalyzed synthesis of L-ascorbic acid derivatives from plant-based compounds such as cinnamic and ferulic acid under mild reaction conditions, the activities of immobilized Candida ntarctica lipase with different cinnamic acid esters and substituted cinnamic acids were compared. As a result, immobilized C. ntarctica lipase was found to prefer vinyl cinnamic acid to other esters such as allyl-, ethyl-, and isobutyl cinnamic acids as well as substituted cinnamic acids such as p-coumaric acid, caffeic acid, ferulic acid, and sinapic acid. Based on these results, large-scale synthesis of 6-O-cinnamyl-L-ascorbic acid ester was performed using immobilized C. ntarctica lipase in dry organic solvent, resulting in 68% yield (493 mg) as confirmed by 13C-NMR.  相似文献   

16.
Yuvamoto PD  Said S 《Mikrobiologiia》2007,76(6):830-833
Phenolic and benzene compounds from vegetables have been described as being responsible for many biological activities including antifungal effects. Caffeine, cinnamic and caffeic acids were here investigated for their action on a model fungus, Aspergillus nidulans, at its initial stage of germination. Conidia did not germinate in the presence of (1 mM) cinnamic acid. Caffeine and caffeic acid exerted a negative effect on germination, on the nuclear duplication cycle and on first septum formation. The effects of caffeine were dose-dependent; effects of (1 mM) caffeic acid were more intense than those of (10 mM) caffeine.  相似文献   

17.
Using young plants of Lycopersicum esculentum Mill., we attempt to define a system for a new evaluation of the physiological role of polyphenols, particularly of their regulating properties on growth and development, Exogenously supplied qoinic acid causes an important increase of the phenolic content and a reduced growth of the plants. The decrease in size is proportional to the stimulation of the phenolic pool and is equally obtained using other precursors of aromatic compounds like phenylalanine and cinnamic acid. Non-precursors of polyphenols structurally related to quinic acid are ineffective. It appears from these data that polyphenol levels and growth could be related in tomato plant and that this material would be convenient for studies on interactions between growth and polyphenols.  相似文献   

18.
High performance liquid chromatographic (HPLC) analysis of culture filtrates of plant growth promoting rhizobacteria (PGPR) and medium of inhibitory zone of interaction of Sclerotium rolfsii with PGPR, viz. Pseudomonas aeruginosa, Pseudomonas fluorescens 4, Pseudomonas fluorescens 4 (new) and Pseudomonas sp. varied from sample to sample. In all the culture filtrates of PGPRs, P. aeruginosa had nine phenolic acids in which ferulic acid (14.52 μg/ml) was maximum followed by other phenolic acids. However, the culture filtrates of P. fluorescens 4 had six phenolic acids with maximum ferulic acid (20.54 μg/ml) followed by indole acetic acid (IAA), caffeic, salicylic, o-coumeric acid and cinnamic acids. However, P. fluorescens 4 culture filtrate had seven phenolic acids in which salicylic acid was maximum (18.03 μg) followed by IAA, caffeic, vanillic, ferulic, o-coumeric and cinnamic acids. Pseudomonas sp. also showed eight phenolic acids where caffeic acid (2.75 μg) was maximum followed by trace amounts of ferulic, salicylic, IAA, vanillic, cinnamic, o-coumeric and tannic acids. The analysis of antibiosis zone of PGPRs showed fairly rich phenolic acids. A total of nine phenolic acids were detected in which caffeic acid was maximum (29.14 μg/g) followed by gallic (17.64 μg/g) and vanillic (3.52 μg/g) acids but others were in traces. In P. aeruginosa, antibiosis zone had seven phenolic acids where IAA was maximum (3.48 μg/g) followed by o-coumeric acid (2.08 μg/g), others were in traces. The medium of antibiosis zone of P. fluorescens 4 and P. fluorescens 4 new had eight phenolic acids in which IAA was maximum with other phenolic acids in traces.  相似文献   

19.
A cell suspension culture, prepared fromPerilla frutescens var.crispa callus induced by Murashige and Skoog (1962) medium containing 2,4-dichlorophenoxyacetic acid (2,4-D, 1.0 ml/l) and kinetin (0.1 mg/l), contained caffeic acid derivatives as the phenolic components. Fresh and dry weights of the cells increased exponentially for about 11 days after transfer to a fresh medium. The contents of caffeic acid and protein also reached a maximum on the 11th day, but α-amino nitrogen phenylalanine and tyrosine continued to increase in amount until the 20th to 23rd day. Caffeic acid formation in the cells was increased by lowering the concentration of 2,4-D. The administration ofl-2-aminooxy-3-phenylpropionic acid (l-AOPP), 2-aminooxyacetic acid (AOA) andN-(phosphonomethyl)glycine (glyphosate) to the cells inhibited caffeic acid formation to a large extent. An 80% inhibition of caffeic acid formation was caused by 10−4Ml-AOPP whereas phenylalanine and tyrosine contents of the cells became 7.5 and 2.3 times higher at thisl-AOPP concentration than those in the control. An 85% inhibition of caffeic acid formation was achieved at 10−3M glyphosate concentration, while 10−3M AOA inhibited caffeic acid formation by 95% and also growth rate by 80%. The influence of inhibitors on caffeic acid formation is discussed in relation to the level of α-amino nitrogen, particularly aromatic amino acids, in the cell suspension cultures.  相似文献   

20.
We present the results of an in vitro investigation of the inhibitory effects of phenylpropanoid metabolites on copper-induced protein oxidative modification of mice brain homogenate. The effects of caffeic acid, 3-(3, 4-dihydroxyphenyl)-l-alanine, esculetin, ferulic acid, and scopoletin were stronger than that of mannitol as a free-radical scavenger, whereas the effects of other phenylpropanoid metabolites, cinnamic acid, coniferyl alcohol, p-coumaric acid, coumarin, phenylalanine, tyrosine, and umbelliferone, were weak. These results demonstrated that phenolic carboxylic acids with 3,4-dihydroxy or 4-hydroxy-3-methoxy substituents and benzo-α-pyrons with 6,7-dihydroxy or 7-hydroxy-6-methoxy substituents in phenylpropanoid metabolites inhibit metal-induced protein oxidative modification of the brain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号