首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dimethyl ester of bovine pancreatic ribonuclease-A (dimethyl RNAase-A), the initial product of esterification of RNAase-A in anhydrous methanolic HCl, was isolated in a homogeneous form. The two carboxy functions esterified in this derivative are those of glutamic acid-49 and aspartic acid-53. There were no changes in the u.v.-absorption spectral characteristics, the accessibility of the methionine residues, the resistance of the protein to proteolysis by trypsin and the antigenic behaviour of RNAase-A as a result of the esterification of these two carboxy groups. Dimethyl RNAase-A exhibited only 65% of the specific activity of RNAase-A, but still had the same Km value for both RNA and 2′:3′-cyclic CMP. However, the Vmax. was decreased by about 35%. On careful hydrolysis of the methyl ester groups at pH9.5, dimethyl RNAase-A was converted back into RNAase-A. Limited proteolysis of dimethyl RNAase-A by subtilisin resulted in the formation of an active RNAase-S-type derivative, namely dimethyl RNAase-S, which was chromatographically distinct from dimethyl RNAase-A and had very nearly the same enzymic activity as dimethyl RNAase-A. Fractionation of dimethyl RNAase-S by trichloroacetic acid yielded dimethyl RNAase-S-protein and dimethyl RNAase-S-peptide, both of which were inactive by themselves but regenerated dimethyl RNAase-S when mixed together. Dimethyl RNAase-A-peptide was identical with RNAase-S-peptide. RNAase-S-protein could be generated from dimethyl RNAase-S-protein by careful hydrolysis of the methyl ester groups at pH9.5. The interaction of dimethyl RNAase-S-protein with RNAase-S-peptide appears to be about 4-fold weaker than that between the RNAase-S-protein and RNAase-S-peptide. Conceivably, the binding of the S-peptide `tail' of dimethyl RNAase-A with the remainder of the molecule is similarly weaker than that in RNAase-A, and this brings about subtle changes in the geometrical orientation of the active-site amino acid residues of these modified methyl ester derivatives. It is suggested that these changes could be responsible for the generation of the catalytically less-efficient RNAase-A and RNAase-S molecules (dimethyl RNAase-A and dimethyl RNAase-S respectively).  相似文献   

2.
Ribonuclease S-peptide as a carrier in fusion proteins.   总被引:16,自引:1,他引:15       下载免费PDF全文
S-peptide (residues 1-20) and S-protein (residues 21-124) are the enzymatically inactive products of the limited digestion of ribonuclease A by subtilisin. S-peptide binds S-protein with high affinity to form ribonuclease S, which has full enzymatic activity. Recombinant DNA technology was used to produce a fusion protein having three parts: carrier, spacer, and target. The two carriers used were the first 15 residues of S-peptide (S15) and a mutant S15 in which Asp 14 had been changed to Asn (D14N S15). The spacer consisted of three proline residues and a four-residue sequence recognized by factor Xa protease. The target was beta-galactosidase. The interaction between the S-peptide portion of the fusion protein and immobilized S-protein allowed for affinity purification of the fusion protein under denaturing (S15 as carrier) or nondenaturing (D14N S15 as carrier) conditions. A sensitive method was developed to detect the fusion protein after sodium dodecyl sulfate-polyacrylamide gel electrophoresis by its ribonuclease activity following activation with S-protein. S-peptide has distinct advantages over existing carriers in fusion proteins in that it combines a small size (> or = 15 residues), a tunable affinity for ligand (Kd > or = 10(-9) M), and a high sensitivity of detection (> or = 10(-16) mol in a gel).  相似文献   

3.
At pH 1.7 S-peptide dissociates from S-protein but S-protein remains partly folded below 30 °C. A folded form of S-protein, labeled I3, is detected and measured by its ability to combine rapidly with S-peptide at pH 6.8 and then to form native ribonuclease S. The second-order combination reaction (k = 0.7 × 106m?1s?1 at 20 °C) can be monitored either by tyrosine absorbance or fluorescence emission; the subsequent first-order folding reaction (half-time, 68 ms; 20 °C) is monitored by 2′CMP 2 binding. Combination with S-peptide and folding to form native RNAase S is considerably slower for both classes of unfolded S-protein (see preceding paper).I3 shows a thermal folding transition at pH 1.7: it is completely unfolded above 32 °C and reaches a limiting low-temperature value of 65% below 10 °C. The 35% S-protein remaining at 10 °C is unfolded as judged by its refolding behavior in forming native RNAase S at pH 6.8. The folding transition of S-protein at pH 1.7 is a broad, multi-state transition. This is shown both by the large fraction of unfolded S-protein remaining at low temperatures and by the large differences between the folding transition curves monitored by I3 and by tyrosine absorbance.The fact that S-protein remains partly folded after dissociation of S-peptide at pH 1.7 but not at pH 6.8 may be explained by two earlier observations. (1) Native RNAase A is stable in the temperature range of the S-protein folding transition at pH 1.7, and (2) the binding constant of S-protein for S-peptide falls steadily as the pH is lowered, by more than four orders of magnitude between pH 8.3 and pH 2.7, at 0 °C. The following explanation is suggested for why folding intermediates are observed easily in the transition of S-protein but not of RNAase A. The S-protein transition is shifted to lower temperatures, where folding intermediates should be more stable: consequently, intermediates in the folding of RNAase A which do not involve the S-peptide moiety and which are populated to almost detectable levels can be observed at the lower temperatures of the S-protein transition.  相似文献   

4.
5.
The refolding kinetics of ribonuclease S have been measured by tyrosine absorbance, by tyrosine fluorescence emission, and by rapid binding of the specific inhibitor 2′CMP 2 to folded RNAase S. The S-protein is first unfolded at pH 1.7 and then either mixed with S-peptide as refolding is initiated by a stopped-flow pH jump to pH 6.8, or the same results are obtained if S-protein and S-peptide are present together before refolding is initiated. The refolding kinetics of RNAase S have been measured as a function of temperature (10 to 40 °C) and of protein concentration (10 to 120 μm). The results are compared to the folding kinetics of S-protein alone and to earlier studies of RNAase A. A thermal folding transition of S-protein has been found below 30 °C at pH 1.7; its effects on the refolding kinetics are described in the following paper (Labhardt &; Baldwin, 1979).In this paper we characterize the refolding kinetics of unfolded S-protein, as it is found above 30 °C at pH 1.7, together with the kinetics of combination between S-peptide and S-protein during folding at pH 6.8. Two classes of unfolded S-protein molecules are found, fast-folding and slow-folding molecules, in a 20: 80 ratio. This is the same result as that found earlier for RNAase A; it is expected if the slow-folding molecules are produced by the slow cis-trans isomerization of proline residues after unfolding, since S-protein contains all four proline residues of RNAase A.The refolding kinetics of the fast-folding molecules show clearly that combination between S-peptide and S-protein occurs before folding of S-protein is complete. If combination occurred only after complete folding, then the kinetics of formation of RNAase S should be rather slow (5 s and 100 s at 30 °C) and nearly independent of protein concentration, as shown by separate measurements of the folding kinetics of S-protein, and of the combination between S-peptide and folded S-protein. The observed folding kinetics are faster than predicted by this model and also the folding rate increases strongly with protein concentration (apparent 1.6 order kinetics). The fact that RNAase S is formed more rapidly than S-protein alone is sufficient by itself to show that combination with S-peptide precedes complete folding of S-protein. Computer simulation of a simple, parallel-pathway scheme is able to reproduce the folding kinetics of the fast-folding molecules. All three probes give the same folding kinetics.These results exclude the model for protein folding in which the rate-limiting step is an initial diffusion of the polypeptide chain into a restricted range of three-dimensional configurations (“nueleation”) followed by rapid folding (“propagation”). If this model were valid, one would expect comparable rates of folding for RNAase A and for S-protein and one would also expect to find no populated folding intermediates, so that combination between S-peptide and S-protein should occur after folding is complete. Instead, RNAase A folds 60 times more rapidly than S-protein and also combination with S-peptide occurs before folding of S-protein is complete. The results demonstrate that the folding rate of S-protein increases after the formation, or stabilization, of an intermediate which results from combination with S-peptide. They support a sequential model for protein folding in which the rates of successive steps in folding depend on the stabilities of preceding intermediates.The refolding kinetics of the slow-folding molecules are complex. Two results demonstrate the presence of folding intermediates: (1) the three probes show different kinetic progress curves, and (2) the folding kinetics are concentration-dependent, in contrast to the results expected if complete folding of S-protein precedes combination with S-peptide. A faster phase of the slow-refolding reaction is detected both by tyrosine absorbance and fluorescence emission but not by 2′CMP binding, indicating that native RNAase S is not formed in this phase. Comparison of the kinetic progress curves measured by different probes is made with the use of the kinetic ratio test, which is defined here.  相似文献   

6.
The hydrogen exchange kinetics of the S-peptide in ribonuclease S can be measured by first tritiating the S-peptide in the absence of S-protein and then allowing it to recombine rapidly with S-protein. Afterwards the exchange reactions of this specific segment of ribonuclease S can be studied. The exchange kinetics of bound S-peptide are complex, indicating that different protons exchange at markedly different rates. The terminal exchange reaction, involving at least five highly protected protons, has been studied as a function of pH.At low concentrations of ribonuclease S the exchange kinetics become concentration-dependent, owing to the dissociation of the S-peptide. Although the fraction of free S-peptide is always very small, its rate of exchange is several orders of magnitude faster than that of bound S-peptide, and the concentration dependence of the exchange kinetics is readily measurable. It provides a highly sensitive method for determining small dissociation constants (KD). Values of KD ranging from 10?6m at pH 2.7, 0 °C, to 2 × 10?10m at pH 7.0, 0 °C, are reported here. Our value for KD at pH 7.0, 0 °C, confirms the data and extrapolation to 0 °C of Hearn et al. (1971).At high concentrations of ribonuclease S the terminal exchange reaction is independent of concentration. It probably results from a local unfolding reaction of the bound S-peptide. Above pH 4 the strong pH dependence of KD closely resembles that of the apparent equilibrium constant for this local unfolding reaction. The latter may be one step in the dissociation process and we present such a model for ribonuclease S dissociation.Measurement of concentration-dependent exchange kinetics should provide a useful method of determining small dissociation constants in other systems: for example, in studies of protein-nucleic acid interactions.  相似文献   

7.
Limited digestion of fructose 1,6-bisphosphatase with subtilisin produces an S-peptide with an about 60-residue peptide fragment that is non-covalently associated with the enzyme. The 60-residue peptide fragment con-sists of the most part of allosteric site for AMP binding. It could be separated from S-protein by gel filtration with a Sephadex G-75 column equilibrated with 9% formic acid. According to X-ray diffraction results the S-peptide consists of two α-helices without β-strand and the α-helix content is about 60% in the 60-residue-peptide fragment. When the enzyme is subjected to limited proteolysis with subtilisin, the secondary structure of the enzyme does not show a de-tectable change in CD spectrum. The CD spectra of the isolated S-peptide were measured under different concentra-tions. In the absence of GuHCl, S-peptide had 30% a-helix and 38.5% turn-like structure but had no β-strand, sug-gesting that the N-terminal 60-residue fragment, which is synthesized initially by ribosome, would fo  相似文献   

8.
The kinetics of regain of 2′-CMP binding are monitored during renaturation of RNAase S. Experiments were performed by mixing equimolar amounts of S-peptide with S-protein. The S-protein fragment was incubated initially (i.e. before mixing with S-peptide) at pH 6.2 or 1.7 and various guanidine hydrochloride (GuHCl) concentrations. Three well-resolved phases are observed. The fastest phase is second-order. The reciprocal half-time increases linearly with fragment concentration and is independent of initial conditions for the S-protein fragment. An apparent on rate of kon = 2 × 105m?1s?1 is measured in 0.5 m-GuHCl (pH 6.2) and 20 ° C. Identical association kinetics are observed by changes in tyrosine absorbance. The fraction of native RNAase S formed in this second-order reaction strictly equals the fraction of S-protein molecules with intact β-sheet in initial conditions. The relation holds for different pH values, GuHCl concentrations and temperatures. The fraction of apparent helical content of S-protein in initial conditions may also vary but this is not reflected by the association reaction. We interpret this to mean that the β-sheet but not the α-helices must be preformed in initial conditions in order to generate the high-affinity peptide binding site of S-protein. Furthermore, it is concluded that the S-protein moiety β-sheet forms or unfolds in a single one-step reaction. 2′-CMP binding reports, additionally, two slower phases of renaturation. These are produced by S-protein molecules that have their β-sheet unfolded in initial conditions. It is observed that a unique dependence of these two folding rates exists for RNAase A, RNAase S and S-protein as function of tm, the temperature of half-completion of thermal denaturation as measured by unfolding of the β-sheet in the respective compound in final conditions. The tm value varies with changing pH, with GuHCl concentration and (for RNAase S) with changing fragment concentration. The findings are interpreted to argue in favor of a sequential mechanism of folding, where the stability of a structural precursor determines the rate of folding.  相似文献   

9.
A. M. Labhardt 《Biopolymers》1981,20(7):1459-1480
The thermal-denaturation transition of ribonuclease S (RNAase S) is measured by circular dichroism at 225 nm. Only conformational transitions involving the S-peptide–S-protein complex are detected at this wavelength. Different pathways of thermal unfolding at high and low concentrations are apparent: at low concentrations the temperature of half-completion of denaturation (Tm) varies with concentration. Above a total enzyme concentration of 50 μM, Tm remains constant. The observed data can be explained on the basis of a model where the association–dissociation step occurs between S-peptide and thermally (at least partly) unfolded S-protein. The complex as a whole undergoes a major folding–unfolding transition in the course of which the S-peptide μ-helix appears to be formed. The unfolded complex is well populated in the unfolding transition region for enzyme concentrations of 100 μM or more. The model succeeds in deducing thermodynamic parameters from the thermal denaturation curves in various different ways. The values thus obtained are fully self-consistent and, moreover, consistent with the values for the apparent association constant and apparent association enthalpy as measured in enzyme-dilution experiments and by batch calorimetry.  相似文献   

10.
RNase S is a unique protein comprising the non-covalent association of two components, the S-peptide and the S-protein. An RNA-recognition segment derived from the human immunodeficiency virus (HIV)-1 Rev protein was conjugated with the S-peptide to form a complex with the S-protein. The resulting RNase S bearing the RNA-recognition segment preferentially hydrolyzed a single position of the RNA stem-loop derived from the specific binding site for the Rev protein.  相似文献   

11.
Digestion of rabbit liver fructose 1,6-bisphosphatase with subtilisin results in a several-fold increase in catalytic activity measured at pH 9.2. This change is due to cleavage of a peptide bond located 60 amino acid residues from the NH2-terminus. The S-peptide and the residual subunit appear as separate peptides in sodium dodecyl sulfate polyacrylamide gel electrophoresis and the S-peptide can be isolated by gel filtration in 9% HCOOH. Under nondissociating conditions, however, the S-peptide remains associated with the protein, and the tetrameric structure and original molecular weight are preserved. Thus the nicking of the peptide chain by subtilisin causes a conformation change that alters the catalytic properties of the enzyme.  相似文献   

12.
Pancreatic ribonuclease A may be cleaved to produce two fragments: the S-peptide (residues 1-20) and the S-protein (residues 21-124). The S-peptide, or a truncated version designated as the S15 peptide (residues 1-15), combines with the S-protein to produce catalytically active complexes. The conformation of these peptides and many of their analogues is predominantly random coil at room temperature; however, they populate a significant fraction of helical form at low temperature under certain solution conditions. Moreover, they adopt a helical conformation when bound to the S-protein. A hybrid sequence, disulfide-stabilized peptide (ApaS-25), designed to stabilize the helical structure of the S-peptide in solution, also combines with the S-protein to yield a catalytically active complex. We have performed high-precision titration microcalorimetric measurements to determine the free energy, enthalpy, entropy, and heat capacity changes for the binding of ApaS-25 to S-protein within the temperature range 5-25 degrees C. The thermodynamic parameters for both the complex formation reactions and the helix-to-coil transition also were calculated, using a structure-based approach, by calculating changes in accessible surface area and using published empirical parameters. A simple thermodynamic model is presented in an attempt to account for the differences between the binding of ApaS-25 and the S-peptide. From this model, the thermodynamic parameters of the helix-to-coil transition of S15 can be calculated.  相似文献   

13.
The isolation and characterization of the products formed during the irreversible thermal denaturation of enzyme RNAase-A are described. RNAase-A, when maintained in aqueous solution at pH 7.0 and 70 degrees for 2 h, gives soluble products which have been fractionated by gel filtration on Sephadex G-75 into four components. These components are designated RNAase-At1, RNAase-At2, RNAase-At3 and RNAase-At4 according to the order of their elution from Sephadex G-75. RNAase-At4 shows the same specific activity towards yeast RNA as native RNAase-A and is virtually indistinguishable from it by the physical methods employed. However, chromatography on CM-cellulose separates it into three components that show the same u.v. spectra and specific activity towards yeast RNA as native RNAase-A. RNAase-At1, RNAase-At2 and RNAase-At3 are all structurally altered derivatives of RNAase-A and they exhibit low specific activity (5-10%) towards yeast RNA. In the presence of added S-protein, all these derivatives show greatly enhanced enzymic activity. RNAase-At1 and RNAase-At2 are polymers, covalently crosslinked by intermolecular disulfide bridges; whereas RNAase-At3 is a monomer. Physical studies such as 1H-n.m.r., sedimentation analysis, u.v. absorption spectra and CD spectra reveal that RNAase-At3 is a unfolded derivative of RNAase-A. However, it is seen to possess sufficient residual structure which gives rise to a low but easily detectable enzymic activity.  相似文献   

14.
We make use of the known exchange rates of individual amide proton in the S-peptide moiety of ribonuclease S (RNAase S) to determine when during folding the alpha-helix formed by residues 3 to 13 becomes stable. The method is based on pulse-labeling with [3H]H2O during the folding followed by an exchange-out step after folding that removes 3H from all amide protons of the S-peptide except from residues 7 to 14, after which S-peptide is separated rapidly from S-protein by high performance liquid chromatography. The slow-folding species of unfolded RNAase S are studied. Folding takes place in strongly native conditions (pH 6.0, 10 degrees C). The seven H-bonded amide protons of the 3-13 helix become stable to exchange at a late stage in folding at the same time as the tertiary structure of RNAase S is formed, as monitored by tyrosine absorbance. At this stage in folding, the isomerization reaction that creates the major slow-folding species has not yet been reversed. Our result for the 3-13 helix is consistent with the finding of Labhardt (1984), who has studied the kinetics of folding of RNAase S at 32 degrees C by fast circular dichroism. He finds the dichroic change expected for formation of the 3-13 helix occurring when the tertiary structure is formed. Protected amide protons are found in the S-protein moiety earlier in folding. Formation or stabilization of this folding intermediate depends upon S-peptide: the intermediate is not observed when S-protein folds alone, and folding of S-protein is twice as slow in the absence of S-peptide. Although S-peptide combines with S-protein early in folding and is needed to stabilize an S-protein folding intermediate, the S-peptide helix does not itself become stable until the tertiary structure of RNAase S is formed.  相似文献   

15.
A medium resolution hydrogen exchange method (Rosa & Richards, 1979) has been used to measure the average rates of amide hydrogen exchange for known segments of the S-protein portion of ribonuclease-S. The analytical procedure permitted exchange rates to be monitored for seven S-protein fragments distributed throughout the structure, including regions of α-helix and β-sheet. Kinetics were measured as a function of pH, temperature and S-peptide binding.The pH dependence of exchange from isolated S-protein between pH 2·8 and pH 7·0 was found to deviate significantly from a first-order dependence on hydroxide ion concentration. The protection against exchange with increasing pH appeared to be closely related to the electrostatic stabilization of S-protein. It is suggested that such favorable electrostatic interactions result in increased energy barriers to the conformational fluctuations that provide solvent access to the time-average crystallographic structure. This explanation of the observed correlation between stability and exchange kinetics is also consistent with the calculated apparent activation energies for exchange from S-protein between 5·5 and 20 °C.S-peptide binding dramatically slows exchange from many S-protein sites, even those distant from the area of S-peptide contact. Interestingly, the effects of complex formation are not evenly propagated throughout S-protein. The most significantly perturbed sites (≥103-fold reduction in exchange rate constants) lie within fragments derived from regions of secondary structure. Exchange from several other fragments is not significantly affected. The S-peptide—S-protein dissociation constant at neutral pH is so small that the measured exchange must have occurred from the complex and not from the dissociated parts.  相似文献   

16.
Intracellular serine protease, termed ISP-103, was isolated from Bacillus subtilis, strain 103. The substrate specificity of the enzyme was compared to that of secretory subtilisins. Similar to subtilisins, ISP-103 cleaves a single peptide bond Ala20-Ser21 within the native pancreatic ribonuclease A, which results in the accumulation of trypsin-sensitive ribonuclease S, consisting of a non-covalently bound S-peptide (20 amino acid residues) and S-protein (104 amino acid residues). The enzyme hydrolyzes a single peptide bond Leu15-Tyr16 of the B-chain of oxidized bovine insulin, in contrast to the subtilisins cleaving four additional bonds. ISP prefers Leu rather than Phe in the P1 binding site of the rho-nitroanilide peptide substrates and shows a more strict dependence of the activity on the presence of the hydrophobic residues in the P2 and P3 sites. The data obtained indicate that the substrate specificity of ISP, being within the borders of subtilisin specificity, is nevertheless much more restricted.  相似文献   

17.
Digestion of the native pig kidney fructose 1,6-bisphosphatase tetramer with subtilisin cleaves each of the 35,000-molecular-weight subunits to yield two major fragments: the S-subunit (Mr ca. 29,000), and the S-peptide (Mr 6,500). The following amino acid sequence has been determined for the S peptide: AcThrAspGlnAlaAlaPheAspThrAsnIle Val ThrLeuThrArgPheValMetGluGlnGlyArgLysAla ArgGlyThrGlyGlu MetThrGlnLeuLeuAsnSerLeuCysThrAlaValLys AlaIleSerThrAla z.sbnd;ValArgLysAlaGlyIleAlaHisLeuTyrGlyIleAla. Comparison of this sequence with that of the NH2-terminal 60 residues of the enzyme from rabbit liver (El-Dorry et al., 1977, Arch. Biochem. Biophys.182, 763) reveals strong homology with 52 identical positions and absolute identity in sequence from residues 26 to 60.Although subtilisin cleavage of fructose 1,6-bisphosphatase results in diminished sensitivity of the enzyme to AMP inhibition, we have found no AMP inhibition-related amino acid residues in the sequenced S-peptide. The loss of AMP sensitivity that occurs upon pyridoxal-P modification of the enzyme does not result in the modification of lysyl residues in the S-peptide. Neither photoaffinity labeling of fructose 1,6-bisphosphatase with 8-azido-AMP nor modification of the cysteinyl residue proximal to the AMP allosteric site resulted in the modification of residues located in the NH2-terminal 60-amino acid peptide.  相似文献   

18.
Two fragments of pancreatic ribonuclease A, a truncated version of S-peptide (residues 1-15) and S-protein (residues 21-124), combine to give a catalytically active complex designated ribonuclease S. Residue 13 in the peptide is methionine. According to the X-ray structure of the complex of S-protein and S-peptide (1-20), this residue is almost fully buried. We have substituted Met-13 with seven other hydrophobic residues ranging in size from glycine to phenylalanine and have determined the thermodynamic parameters associated with the binding of these analogues to S-protein by titration calorimetry at 25 degrees C. These data should provide useful quantitative information for evaluating the contribution of hydrophobic interactions in the stabilization of protein structures.  相似文献   

19.
Recent work has shown that, with synthetic analogues of C-peptide (residues 1-13 of ribonuclease A), the stability of the peptide helix in H2O depends strongly on the charge on the N-terminal residue. We have asked whether, in semisynthetic ribonuclease S reconstituted from S-protein plus an analogue of S-peptide (1-15), the stability of the peptide helix is correlated with the Tm of the reconstituted ribonuclease S. Six peptides have been made, which contain Glu9----Leu, a blocked alpha-COO- group (-CONH2), and either Gln11 or Glu11. The N-terminal residue has been varied; its charge varies from +2 (Lys) to -1 (succinyl-Ala). We have measured the stability of the peptide helix, the affinity of the peptide for S-protein (by C.D. titration), and the thermal stability of the reconstituted ribonuclease S. All six peptide analogues show strongly enhanced helix formation compared to either S-peptide (1-15) or (1-19), and the helix content increases as the charge on the N-terminal residue changes from +2 to -1. All six peptides show increased affinity for S-protein compared to S-peptide (1-19), and all six reconstituted ribonucleases S show an increase in Tm compared to the protein with S-peptide (1-19). The Tm increases as the charge on residue 1 changes from +2 to -1. The largest increment in Tm is 6 degrees. The results suggest that the stability of a protein can be increased by enhancing the stability of its secondary structure.  相似文献   

20.
The relationship of structure to function in the recognition of ribonuclease S-peptide by S-protein was studied by several methods. Liquid phase peptide synthesis was employed to generate analogs of S-peptide in which from 1 to 8 residues were deleted from the NH2-terminal end of the S-peptide. Additional derivatives were made by substitutions in the NH2-terminal three amino acids or by modifying the S-peptide analogs by trifluoroacetylation. The analogs were generated in the following way. S-Peptide was cleaved with chymotrypsin. The fragment obtained, RNase(9-20), was purified and lengthened step by step using liquid phase peptide synthesis. A second set of analogs were prepared by cleavage of CF3CO-S-peptide with elastase and the resulting CF3CO-RNase(7-20), similarly lengthened. The various analogs of S-peptide were tested in their capacity to combine with S-protein and regenerate biological activity as measured by Vmax and Kb. This work shows a positive contribution of every one of the first 8 NH2-terminal residues of S-peptide to the molecular recognition of S-protein in the presence of RNA substrate. Substitution of the first 3 residues by alanine or blocking of the free amino groups decreases recognition, indicating that the original primary structure is the most favorable one.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号