首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
2.
The Burkitt lymphoma cell line KK124, which contains a reciprocal t(8;22) translocation, was shown to have rearranged in a region 3' to the c-myc proto-oncogene on chromosome 8 and 5' to the lambda constant region on chromosome 22. The breakpoint was cloned and sequenced, revealing that c-myc and a portion of its 3' region abutted a complete lambda variable gene that had undergone V-J recombination. Since this cell line expresses kappa light chain, this lambda rearrangement violates the previously proposed hierarchy of immunoglobulin gene rearrangement. A novel duplication of normal chromosome 8 sequences was also found at the breakpoint. The first exon of c-myc and its flanking sequence from the translocated allele was sequenced and compared with a normal counterpart. Extensive mutation was found within the first exon in contrast to its 3' and 5' flanking regions. S1 nuclease analysis revealed that it was the translocated c-myc being expressed and that there was a promoter shift from P2 to P1. The detailed structural analysis of this cell line provides clues concerning mechanisms of chromosomal translocation and c-myc deregulation in Burkitt lymphomas.  相似文献   

3.
4.
5.
6.
The variant (6;15) translocations in murine plasmacytomas join the myc oncogene-bearing band of chromosome 15 and the immunoglobulin kappa band of chromosome 6. We recently cloned a region from chromosome 15 linked to C kappa and have now used probes from that region to define the major locus of plasmacytoma variant translocations, which we denote pvt-1. In five of nine plasmacytomas we analysed, the 6;15 translocation resulted from reciprocal recombination between the C kappa locus and a 4.5-kb region of pvt-1. Moreover, nearby we located the region shown by others to have undergone a complex (15;12;6) translocation in plasmacytoma PC7183. All the chromosome 6 breakpoints fell between 1 and 3 kb 5' to C kappa but only two were near J kappa genes. Thus the J kappa -C kappa region appears to be a recombination 'hot spot' in lymphocytes, but the breaks are unlikely to be mediated via V/J recombination enzymes. Comparison of a cloned 108-kb region across pvt-1 and another of 52 kb across c-myc established that the pvt-1 breakpoints lie at least 72 kb from the c-myc promoters. Since c-myc is expressed at a substantial level, the 6;15 translocation apparently activates c-myc. Activation may occur directly, at a remarkable distance along the chromosome, or indirectly, via a putative pvt-1 gene product.  相似文献   

7.
Oncogenes are often dysregulated in B cell tumors as a result of a reciprocal translocation involving an immunoglobulin locus. The translocations are caused by errors in two developmentally regulated DNA recombination processes: V(D)J and IgH switch recombination. Both processes share the property of joining discontinuous sequences from one chromosome and releasing intervening sequences as circles that are lost from progeny cells. Here we show that these intervening sequences may instead insert in the genome and that during productive IgH mu-epsilon switch recombination in U266 myeloma tumor cells, a portion of the excised IgH switch intervening sequences containing the 3' alpha-1 enhancer has inserted on chromosome 11q13, resulting in overexpression of the adjacent cyclin D1 oncogene.  相似文献   

8.
A detailed molecular analysis of both reciprocal recombination products of the variant t(2;8) chromosomal translocation of the Burkitt lymphoma derived cell line JI and their germline counterparts was carried out. The breakpoint on chromosome 8 is localized 28 kb to the 3' side of the c-myc protooncogene, the breakpoint on chromosome 2 was found to be within an aberrantly rearranged VK gene (abbreviations ref. 1). Novel features of the immunoglobulin moiety involved in this process include insertion of extra nucleotides in the V-J junction which have the characteristics of a N segment as it has been found up to now only in heavy chain and T cell receptor genes; the occurrence of somatic mutations in 8q+ and not in 2p-. These data allow a reconstruction of the course of events in the cell line JI; remarkable sequence regularities at the chromosomal breakpoints consisting of symmetrically placed dinucleotides and elements related to the hepta- and nonanucleotide recombinase recognition sequences are discussed in the context of the translocation mechanism.  相似文献   

9.
10.
M Matsuoka  K Yoshida  T Maeda  S Usuda  H Sakano 《Cell》1990,62(1):135-142
We have characterized circular DNA in mouse splenocytes treated with the mitogen lipopolysaccharide (LPS) and various cytokines, including transforming growth factor beta (TGF-beta) and interleukin 4 (IL-4). Using probes of immunoglobulin heavy chain constant genes (CH), excision products of class switch recombination were identified. The majority of the clones contained the 3' portion of the switch mu (S mu) region and the 5' portion of other switch regions. Some clones contained 3'-S gamma sequences instead of 3'-S mu. This indicates that isotype switching may occur not only from C mu, but also from one of the C gamma genes to other CH genes further down-stream. In the presence of LPS, the cytokine TGF-beta enhanced the detection of 5'-S alpha-positive clones, while the lymphokine IL-4 enhanced 5'-S gamma 1 positives. The data support the notion that TGF-beta and IL-4 can direct isotype-specific class switching.  相似文献   

11.
12.
Plasma cells secrete immunoglobulins other than immunoglobulin M (IgM) after a deletion and recombination in which a portion of the immunoglobulin heavy-chain locus (IgH), from the 5'-flanking region of the mu constant-region gene (C mu) to the 5'-flanking region of the secreted heavy-chain constant-region gene (CH), is deleted. The recombination step is believed to be targeted via switch regions, stretches of repetitive DNA which lie in the 5' flank of all CH genes except delta. Although serum levels of IgD are very low, particularly in the mouse, IgD-secreting plasmacytomas of BALB/c and C57BL/6 mice are known. In an earlier study of two BALB/c IgD-secreting hybridomas, we reported that both had deleted the C mu gene, and we concluded that this deletion was common in the normal generation of IgD-secreting cells. To learn how such switch recombinations occur in the absence of a switch region upstream of the C delta 1 exon, we isolated seven more BALB/c and two C57BL/6 IgD-secreting hybridomas. We determined the DNA sequences of the switch recombination junctions in eight of these hybridomas as well as that of the C57BL/6 hybridoma B1-8. delta 1 and of the BALB/c, IgD-secreting plasmacytoma TEPC 1033. All of the lines had deleted the C mu gene, and three had deleted the C delta 1 exon in the switch recombination event. The delta switch recombination junction sequences were similar to those of published productive switch recombinations occurring 5' to other heavy-chain genes, suggesting that nonhomologous, illegitimate recombination is utilized whenever the heavy-chain switch region is involved in recombination.  相似文献   

13.
A specific 14q32 breakpoint is observed in a homologous chromosome 14 translocation [t(14;14)q12q32] occurring in the T-cells of about 10% of patients with ataxia-telangiectasia (AT). To investigate whether the 14q32 breakpoint in AT occurs within the immunoglobulin gene cluster as is frequently detected in B-cell lymphoma, immunoglobulin clones were hybridized to Southern blots of DNA isolated from the T-cells of two AT patients with this chromosome 14 translocation. The 14q32 translocation breakpoints in these patients are apparently not within JH, S mu, C mu, S alpha-1 or -2, or C alpha-1 or -2, but one of the patients has an inverted duplication of at least 26 kilobases (kb) of the C mu region, with an associated 5' flanking deletion. The point of origin of the inverted duplication is within JH near the recombination signal for the J4 gene. This suggests that normal JH recombination mechanisms may have played a role in the development of this 14q32 chromosomal aberration. The presence of AT chromosomal breakpoints near other rearranging genes suggests a role for exaggerated recombination in the pathogenesis of chromosomal instability in AT.  相似文献   

14.
A complex translocation at the murine kappa light-chain locus.   总被引:1,自引:0,他引:1       下载免费PDF全文
We have previously reported that a segment of DNA from a murine plasmacytoma comprises DNA from three chromosomes, the immunoglobulin kappa light-chain locus on chromosome 6, the S mu locus on chromosome 12, and a region on chromosome 15. We now report that the reciprocal product contains DNA from only the kappa locus and chromosome 15 and not from S mu. We conclude that a complex series of events, including both a transposition of DNA and a translocation between chromosomes, generated these imperfect reciprocal products.  相似文献   

15.
An in vitro culture of FLEB14 cells, an Epstein-Barr virus-transformed B cell precursor containing the germ line immunoglobulin genes, gave rise to a uniclonally expanded variant, FLEB14 delta 3, which was rearranged at the immunoglobulin heavy-chain gene locus. Cytogenetic analysis showed that FLEB14 delta 3 had a novel reciprocal translocation, t(6;14)(q15;q32). Molecular cloning of the rearranged DNA fragments and determination of their nucleotide sequence revealed that the recombination event was reciprocal, imprecise, and nonhomologous and took place in the S mu region, like those found in Burkitt's lymphoma cells. We propose a molecular model to explain this genetic event which may be relevant to class switch recombination. The translocated sequence of chromosome 6 did not contain any known oncogenes, although the sequence is conserved among mammals. FLEB14 delta 3 did not show tumorigenicity.  相似文献   

16.
The B cell lymphoma I.29 consists of a mixture of cells expressing membrane-bound immunoglobulin M (IgM) (lambda) and IgA (lambda) of identical idiotypes. Whereas most of the cells express either IgM or IgA alone, 1 to 5% of the cells in this tumor express IgM and IgA simultaneously within the cytoplasm and on the cell membrane (R. Sitia et al., J. Immunol. 127:1388-1394, 1981; R. Sitia, unpublished data). When IgM+ cells are purified from the lymphoma and passaged in mice or cultured, a portion of the cells convert to IgA+. These properties suggest that some cells of the I.29 lymphoma may undergo immunoglobulin heavy chain switching, although it is also possible that the mixed population was derived by a prior switching event in a clone of cells. We performed Southern blotting experiments on genomic DNAs isolated from populations of I.29 cells containing variable proportions of IgM+ and IgA+ cells and on a number of cell lines derived from the lymphoma. The results were consistent with the deletion model for heavy chain switching, as the IgM+ cells contained rearranged mu genes and alpha genes in the germ line configuration on both the expressed and nonexpressed heavy chain chromosomes, whereas the IgA+ cells had deleted both mu genes and contained one rearranged and one germ line alpha gene. In addition, segments of DNA located within the intervening sequence 5' to the mu gene, near the site of switch recombination, were deleted from both the expressed and the nonexpressed chromosomes. Although mu genes were deleted from both chromosomes in the IgA+ cells, the sites of DNA recombination differed on the two chromosomes. On the expressed chromosome, Smu sequences were recombined with S alpha sequences, whereas on the nonexpressed chromosome, Smu sequences were recombined with S gamma 3 sequences.  相似文献   

17.
Transgenic mice carrying an immunoglobulin mu heavy chain transgene exhibit isotype switching of the transgene. We have now characterized the mechanism of transgene switching in these mice. The site of mu transgene insertion in one transgenic line has been localized to chromosome 5 using a series of polymorphic endogenous retroviruses as genetic markers in backcross mice. The endogenous immunoglobulin heavy chain locus resides on mouse chromosome 12, which shows that transgene isotype switching can occur between two different chromosomes even though normal antibody gene switching has generally been thought to occur within one chromosome. We find that transgene isotype switching involves interchromosomal DNA recombination, and our data suggest that the same enzymatic mechanisms mediate both normal isotype switch recombination and interchromosomal transgene switching. Our findings also support the notion that the isotype switching mechanism can induce chromosomal translocations such as observed for the c-myc gene in some B cell tumors.  相似文献   

18.
In addition to the assembled coding regions of immunoglobulin and T-cell receptor (TCR) genes, the V(D)J recombination reaction can in principle generate three types of by-products in normal developing lymphocytes: broken DNA molecules that terminate in a recombination signal sequence or a coding region (termed signal or coding end molecules, respectively) and DNA molecules containing fused recombination signal sequences (termed reciprocal products). Using a quantitative Southern blot analysis of the murine TCR alpha locus, we demonstrate that substantial amounts of signal end molecules and reciprocal products, but not coding end molecules, exist in thymocytes, while peripheral T cells contain substantial amounts of reciprocal products. At the 5' end of the J alpha locus, 20% of thymus DNA exists as signal end molecules. An additional 30 to 40% of the TCR alpha/delta locus exists as remarkably stable reciprocal products throughout T-cell development, with the consequence that the TCR C delta region is substantially retained in alpha beta committed T cells. The disappearance of the broken DNA molecules occurs in the same developmental transition as termination of expression of the recombination activating genes, RAG-1 and RAG-2. These findings raise important questions concerning the mechanism of V(D)J recombination and the maintenance of genome integrity during lymphoid development.  相似文献   

19.
Homologous recombination was used in a previous study to correct a 2-base-pair deletion in the third constant domain (Cmu3) of the haploid chromosomal mu gene in a mutant hybridoma cell line by transfer of a pSV2neo vector bearing a subfragment of the normal Cmu region (M.D. Baker, N. Pennell, L. Bosnoyan, and M.J. Shulman, Proc. Natl. Acad. Sci. USA 85:6432-6436, 1988). In these experiments, both gene replacement and single reciprocal crossover events were found to restore normal, cytolytic 2,4,6-trinitrophenyl-specific immunoglobulin M production to the mutant cells. In the cases of single reciprocal recombination, the structure of the recombinant mu gene is such that the normal Cmu region, in its correct position 3' of the expressed 2,4,6-trinitrophenyl-specific heavy-chain variable region, is separated from the mutant Cmu region by the integrated vector sequences. I report here that homologous recombination occurs with high frequency between the duplicate Cmu regions in mitotically growing hybridoma cells. The homologous recombination events were easily detected since they generated hybridomas that were phenotypically different from the parental cells. Analysis of the recombinant cells suggests that gene conversion is the most frequent event, occurring between 60 and 73% of the time. The remaining events consisted of single reciprocal crossovers. Intrachromatid double reciprocal recombination was not detected. The high frequency of recombination, the ability to isolate and analyze the participants in the recombination reactions, and the capacity to generate specific modifications in the immunoglobulin Cmu regions by gene targeting suggest that this system will be useful for studying mammalian chromosomal homologous recombination. Moreover, the ability to specifically modify the chromosomal immunoglobulin genes by homologous recombination should facilitate studies of immunoglobulin gene regulation and expression and provide a more convenient of engineering specifically modified antibody.  相似文献   

20.
During B lymphocyte differentiation, immunoglobulin heavy chain constant region (CH) genes undergo a unique series of DNA recombination events culminating in the CH class switch. CH switch (S) regions are located 2 kb 5' of each CH gene except delta (i.e. mu, gamma 3, gamma 1, gamma 2b, gamma 2a, epsilon and alpha). We describe the structural features of the gamma 3 switch region. Hybridization experiments show that S gamma 3 has remarkable homology to both S mu and other S gamma regions while S mu possesses limited homology to the other S gamma sequences. However, S mu possesses extensive sequence homology with S epsilon and S alpha. The nucleotide sequence of S gamma 3 reveals higher densities of S mu repetitive sequences (GAGCT and GGGGT) and another S region common sequence (YAGGTTG) than observed for S gamma 1, S gamma 2b or S gamma 2a. In addition, the conservation of S mu like repetitive sequences in S gamma regions is correlated with the 5' leads to 3' gamma gene order (i.e. S gamma 3 greater than S gamma 1 greater than S gamma 2b greater than S gamma 2a). A model is presented which suggests that the unique features of S gamma 3 may allow for successive switches from C mu to any C gamma gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号