首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Adaptation in nature is ubiquitous, yet characterizing its genomic basis is difficult because population demographics cause correlations with nonadaptive loci. Introduction events provide opportunities to observe adaptation over known spatial and temporal scales, facilitating the identification of genes involved in adaptation. The pathogen causing avian malaria, Plasmodium relictum, was introduced to Hawai'i in the 1930s and elicited extinctions and precipitous population declines in native honeycreepers. After a sharp initial population decline, the Hawai'i ‘amakihi (Chlorodrepanis virens) has evolved tolerance to the parasite at low elevations where P. relictum exists, and can sustain infection without major fitness consequences. High‐elevation, unexposed populations of ‘amakihi display little to no tolerance. To explore the genomic basis of adaptation to P. relictum in low‐elevation ‘amakihi, we genotyped 125 ‘amakihi from the island of Hawai'i via hybridization capture to 40,000 oligonucleotide baits containing SNPs and used the reference ‘amakihi genome to identify genes potentially under selection from malaria. We tested for outlier loci between low‐ and high‐elevation population pairs and identified loci with signatures of selection within low‐elevation populations. In some cases, genes commonly involved in the immune response (e.g., major histocompatibility complex) were associated with malaria presence in the population. We also detected several novel candidate loci that may be implicated in surviving malaria infection (e.g., beta‐defensin, glycoproteins and interleukin‐related genes). Our results suggest that rapid adaptation to pathogens may occur through changes in different immune genes, but in the same classes of genes, across populations.  相似文献   

2.
The introduction of avian malaria (Plasmodium relictum) and mosquitoes (Culex quinquefasciatus) to the Hawaiian Islands (USA) is believed to have played a major role in the decline and extinction of native Hawaiian honeycreepers (Drepanidinae). This introduced disease is thought to be one of the primary factors limiting recovery of honeycreepers at elevations below 1,200 m where native forest habitats are still relatively intact. One of the few remaining species of honeycreepers with a wide elevational distribution is the Hawaii Amakihi (Hernignathus virens). We measured morbidity and mortality in experimentally-infected Hawaii Amakihi that were captured in a high elevation, xeric habitat that is above the current range of the mosquito vector. Mortality among amakihi exposed to a single infective mosquito bite was 65% (13/20). All infected birds had significant declines in food consumption and a corresponding loss in body weight over the 60 day course of the experiment. Gross and microscopic lesions in birds that succumbed to malaria included enlargement and discoloration of the spleen and liver and parasitemias as high as 50% of circulating erythrocytes. Mortality in experimentally-infected amakihi was similar to that observed in Apapane (Himnatione sanguinea) and lower than that observed in Iiwi (Vestiaria coccinea) infected under similar conditions with the same parasite isolate. We conclude that the current elevational and geographic distribution of Hawaiian honeycreepers is determined by relative susceptibility to avian malaria.  相似文献   

3.
Little is known about how important social behaviors such as song vary within and among populations for any of the endemic Hawaiian honeycreepers. Habitat loss and non‐native diseases (e.g., avian malaria) have resulted in isolation and fragmentation of Hawaiian honeycreepers within primarily high elevation forests. In this study, we examined how isolation of Hawai'i ‘amakihi (Chlorodrepanis virens) populations within a fragmented landscape influences acoustic variability in song. In the last decade, small, isolated populations of disease tolerant ‘amakihi have been found within low elevation forests, allowing us to record ‘amakihi songs across a large elevational gradient (10–1800 m) that parallels disease susceptibility on Hawai'i island. To understand underlying differences among populations, we examined the role of geographic distance, elevation, and habitat structure on acoustic characteristics of ‘amakihi songs. We found that the acoustic characteristics of ‘amakihi songs and song‐type repertoires varied most strongly across an elevational gradient. Differences in ‘amakihi song types were primarily driven by less complex songs (e.g., fewer frequency changes, shorter songs) of individuals recorded at low elevation sites compared to mid and high elevation populations. The reduced complexity of ‘amakihi songs at low elevation sites is most likely shaped by the effects of habitat fragmentation and a disease‐driven population bottleneck associated with avian malaria, and maintained through isolation, localized song learning and sharing, and cultural drift. These results highlight how a non‐native disease through its influence on population demographics may have also indirectly played a role in shaping the acoustic characteristics of a species.  相似文献   

4.
The southern house mosquito, Culex quinquefasciatus, is a widespread tropical and subtropical disease vector. In the Hawaiian Islands, where it was introduced accidentally almost two centuries ago, it is considered the primary vector of avian malaria and pox. Avian malaria in particular has contributed to the extinction and endangerment of Hawaii's native avifauna, and has altered the altitudinal distribution of native bird populations. We examined the population genetic structure of Cx. quinquefasciatus on the island of Hawaii at a smaller spatial scale than has previously been attempted, with particular emphasis on the effects of elevation on population genetic structure. We found significant genetic differentiation among populations and patterns of isolation by distance within the island. Elevation per se did not have a limiting effect on gene flow; however, there was significantly lower genetic diversity among populations at mid elevations compared to those at low elevations. A recent sample taken from just above the predicted upper altitudinal distribution of Cx. quinquefasciatus on the island of Hawaii was confirmed as being a temporary summer population and appeared to consist of individuals from more than one source population. Our results indicate effects of elevation gradients on genetic structure that are consistent with known effects of elevation on population dynamics of this disease vector.  相似文献   

5.
We report the isolation and characterization of five polymorphic microsatellite loci in the Hawaii amakihi, Hemignathus virens, one of the most common native Hawaiian forest birds. These loci exhibit high levels of allelic diversity and heterozygosity in the three honeycreeper species we screened, and promise to be useful in our investigation of differences between honeycreeper populations at different elevations.  相似文献   

6.
The role of introduced avian malaria Plasmodium relictum in the decline and extinction of native Hawaiian forest birds has become a classic example of the potential effect of invasive diseases on biological diversity of naïve populations. However, empirical evidence describing the impact of avian malaria on fitness of Hawai‵i's endemic forest birds is limited, making it difficult to determine the importance of disease among the suite of potential limiting factors affecting the distribution and abundance of this threatened avifauna. We combined epidemiological force‐of‐infection with multistate capture––recapture models to evaluate a 7‐year longitudinal study of avian malaria in ‵apapane, a relatively common native honeycreeper within mid‐elevation Hawaiian forests. We found that malaria transmission was seasonal in this mid‐elevation forest; transmission peaked during fall and during some years produced epizootic mortality events. Estimated annual mortality of hatch‐year birds typically exceeded 50% and mortality of adults exceeded 25% during epizootics. The substantial impact of avian malaria on this relatively common native species demonstrates the key role this disease has played in the decline and extinction of Hawaiian forest birds.  相似文献   

7.
Animals often increase their fitness by moving across space in response to temporal variation in habitat quality and resource availability, and as a result of intra and inter‐specific interactions. The long‐term persistence of populations and even whole species depends on the collective patterns of individual movements, yet animal movements have been poorly studied at the landscape level. We quantified movement behavior within four native species of Hawaiian forest birds in a complex lava‐fragmented landscape: Hawai?i ‘amakihi Chlorodrepanis virens, ‘oma‘o Myadestes obscurus, ‘apapane Himatione sanguinea, and ‘i‘iwi Drepanis coccinea. We evaluated the relative importance of six potential intrinsic and extrinsic drivers of movement behavior and patch fidelity: 1) forest fragment size, 2) the presence or absence of invasive rats (Rattus sp.), 3) season, 4) species, 5) age, and 6) sex. The study was conducted across a landscape of 34 forest fragments varying in size from 0.07 to 12.37 ha, of which 16 had rats removed using a treatment‐control design. We found the largest movements in the nectivorous ‘apapane and ‘i‘iwi, intermediate levels in the generalist Hawai?i ‘amakihi, and shortest average movement for the ‘oma‘o, a frugivore. We found evidence for larger patch sizes increasing patch fidelity only in the ‘oma‘o, and an effect of rat‐removal increasing patch fidelity of Hawai?i ‘amakihi only after two years of rat‐removal. Greater movement during the non‐breeding season was observed in all species, and season was an important factor in explaining higher patch fidelity in the breeding season for ‘apapane and ‘i‘iwi. Sex was important in explaining patch fidelity in ‘oma‘o only, with males showing higher patch fidelity. Our results provide new insights into how these native Hawaiian species will respond to a changing environment, including habitat fragmentation and changing distribution of threats from climate change.  相似文献   

8.
9.
A PCR test for avian malaria in Hawaiian birds   总被引:1,自引:0,他引:1  
The decline of native Hawaiian forest birds since European contact is attributed to factors ranging from habitat destruction to interactions with introduced species. Remaining populations of Hawaiian honeycreepers (Fringillidae: Drepanidinae) are most abundant and diverse in high elevation refuges above the normal range of disease-carrying mosquitoes. Challenge experiments suggest that honeycreepers are highly susceptible to avian malaria (Plasmodium sp.) but resistance exists in some species. In order to detect low levels of malarial infection and quantify prevalence of Plasmodium in high elevation natural populations of Hawaiian birds, a polymerase chain reaction (PCR) based diagnostic test was developed that identifies rRNA genes of Plasmodium in avian blood samples. Quantitative competitive PCR (QC-PCR) experiments indicate that the detection limit of our test is an order of magnitude greater than that reported for human malaria DNA blot tests. Compared with standard histological methods, the PCR test detected a higher prevalence of diseased birds at mid-elevations. Malaria was detected in three species of native birds living in a high elevation wildlife refuge on the island of Hawaii and in four species from Maui. Our results show that avian malaria is more widespread in Hawaiian forests than previously thought, a finding that has important conservation implications for these threatened species.  相似文献   

10.
Morphologies of bird species often vary along elevation gradients, yet causes of the variation have not been examined experimentally. We investigated variation in morphological traits of the dark‐eyed junco Junco hyemalis, breeding at 1,000 m a.s.l. (low‐elevation; i.e. low) and 2,000 m asl (high‐elevation; i.e. high) in the Rocky Mountains, Canada. Eight morphological traits were measured in free‐living birds. We found two consistent differences in populations between elevations: at high‐elevation sites, females had longer wings and males had longer tails than birds from low‐ elevation sites. Other age‐ and gender‐ specific results were observed in free‐living birds between elevations: tarsi were shorter in high‐elevation second year (SY) females and after second year (ASY) males, beak lengths were slightly longer in low‐elevation SY females, and high‐elevation ASY females tended to have lower fat than low‐elevation ASY females. Morphological differences may result from genetic differences between elevations, or phenotypic flexibility resulting from exposure to the different environmental conditions. To identify which mechanism caused the difference in morphometrics, hand‐reared birds from low‐ and high‐elevation habitats were raised in identical conditions with unlimited access to high quality food until they had replaced all feathers. The traits measured in the lab (wing and rectrix length, weight and fat score) tended to increase in magnitude compared to field values. Juncos from high‐ and low‐elevations had similar responses to the aviary environment, with one exception: males from high‐elevation sites had greater weight gain relative to free‐living juncos than males from low‐elevation sites. Thus, morphological traits in dark‐eyed juncos were phenotypically flexible, capable of growing larger in the laboratory environment. However, there were also persistent genetic or perinatal/maternal differences underlying population responses that prevented traits from converging under aviary conditions. As a result, trait size differences between high‐ and low‐elevation populations were maintained or exacerbated in the common aviary environment.  相似文献   

11.
Introduced vector-borne diseases, particularly avian malaria (Plasmodium relictum) and avian pox virus (Avipoxvirus spp.), continue to play significant roles in the decline and extinction of native forest birds in the Hawaiian Islands. Hawaiian honeycreepers are particularly susceptible to avian malaria and have survived into this century largely because of persistence of high elevation refugia on Kaua‘i, Maui, and Hawai‘i Islands, where transmission is limited by cool temperatures. The long term stability of these refugia is increasingly threatened by warming trends associated with global climate change. Since cost effective and practical methods of vector control in many of these remote, rugged areas are lacking, adaptation through processes of natural selection may be the best long-term hope for recovery of many of these species. We document emergence of tolerance rather than resistance to avian malaria in a recent, rapidly expanding low elevation population of Hawai‘i ‘Amakihi (Hemignathus virens) on the island of Hawai‘i. Experimentally infected low elevation birds had lower mortality, lower reticulocyte counts during recovery from acute infection, lower weight loss, and no declines in food consumption relative to experimentally infected high elevation Hawai‘i ‘Amakihi in spite of similar intensities of infection. Emergence of this population provides an exceptional opportunity for determining physiological mechanisms and genetic markers associated with malaria tolerance that can be used to evaluate whether other, more threatened species have the capacity to adapt to this disease.  相似文献   

12.
Black‐grass (Alopecurus myosuroides) is an allogamous grass weed common in cereal fields of northern Europe, which developed resistance to a widely used family of herbicides, the ACCase‐inhibiting herbicides. Resistance is caused by mutations at the ACCase gene and other, metabolism‐based, mechanisms. We investigated the genetic structure of 36 populations of black‐grass collected in one region of France (Côte d’Or), using 116 amplified fragment length polymorphism (AFLP) loci and sequence data at the ACCase gene. The samples were characterized for their level of herbicide resistance and genotyped for seven known ACCase mutations conferring resistance. All samples contained herbicide‐resistant plants, and 19 contained ACCase mutations. The genetic diversity at AFLP loci was high (HT = 0.246), while differentiation among samples was low (FST = 0.023) and no isolation by distance was detected. Genetic diversity within samples did not vary with the frequency of herbicide resistance. A Bayesian algorithm was used to infer population structure. The two genetic clusters inferred were not associated with any geographical structure or with herbicide resistance. A high haplotype diversity (Hd = 0.873) and low differentiation (GST = 0.056) were observed at ACCase. However, haplotype diversity within samples decreased with the frequency of ACCase‐based resistance. We suggest that the genetic structure of black‐grass is affected by its recent expansion as a weed. Our data demonstrate that the strong selection imposed by herbicides did not modify the genome‐wide genetic structure of an allogamous weed that probably has large effective population sizes. Our study gives keys to a better understanding of the evolution of successful, noxious weeds in modern agriculture.  相似文献   

13.
An avian malaria parasite (genus Plasmodium) has been detected consistently in the Galapagos Penguin (Spheniscus mendiculus) and less frequently in some passerines. We sampled three resident mosquito species (Aedes taeniorhynchus, Culex quinquefasciatus, and Aedes aegypti) using CDC light and gravid traps on three islands in 2012, 2013, and 2014. We sampled along altitudinal gradients to ask whether there are mosquito‐free refugia at higher elevations as there are in Hawaii. We captured both Ae. taeniorhynchus and Cx. quinquefasciatus at all sites. However, abundances differed across islands and years and declined significantly with elevation. Aedes aegypti were scarce and limited to areas of human inhabitation. These results were corroborated by two negative binomial regression models which found altitude, year, trap type, and island as categorized by human inhabitation to be significant factors influencing the distributions of both Ae. taeniorhynchus and Cx. quinquefasciatus. Annual differences at the highest altitudes in Isabela and Santa Cruz indicate the lack of a stable highland refuge if either species is found to be a major vector of a parasite, such as avian malaria in Galapagos. Further work is needed to confirm the vector potential of both species to understand the disease dynamics of avian malaria in Galapagos.  相似文献   

14.
Virulence analysis and two polymerase chain reaction–based assays were used to evaluate the population structure of Xanthomonas oryzae pv. oryzae (Xoo) from different elevations ranging from 150 to 2600 m in south‐west China. Among the 218 isolates of Xoo, 18 pathotypes were identified using six near‐isogenic rice lines, each containing a single resistance gene. Among them, pathotype 9 predominated in low and mid‐elevations was virulent to all resistance genes, including Xa2, Xa3, xa5, xa13, Xa14 and Xa18. However, pathotype 2 was predominant at high elevation and was virulent to Xa18 only. The 18 pathotypes were grouped into four clusters. Isolates belonging to cluster 1 were mainly found at high and mid‐elevations, while those of cluster 4 were mainly found at low elevations. There were significant trends of virulence of isolates from low to high with the elevation from high to low. The ERIC and J3 primers were used to screen the genomes of 218 isolates, and 56 molecular haplotypes were found. Multiple correspondence analyses revealed that 56 haplotypes were divided into four putative genetic lineages. Lineage 2 was the most frequently detected from 150 to 2600 m; it was clearly shown that isolates from high elevation with 80% is much more than from low and mid‐elevation in the lineage. It is intriguing that genetic variation of Xoo is restricted by physical geographical barriers of elevations. This is the first report on the relationship of pathotypic and genotypic diversity of Xoo at different elevations.  相似文献   

15.
We tested the hypothesis that trees growing at high elevations with occasional freezing temperatures have smaller diameter xylem vessels than trees of the same species growing at lower and warmer elevations. The young branch wood of the wide-ranging Hawaiian tree species Metrosideros polymorpha (Myrtaceae) was examined in three natural field populations (high, middle, and low elevations: 2469, 1280, and 107 m a.s.l., respectively) and contrasted with seedlings from these populations that were grown in a common garden at middle elevation (1190 m). Previous studies showed that these populations have some genetic differences and have distinctive leaf structure and ecophysiological traits. Vessel diameter was significantly smaller in the high elevation field and common garden plants than in middle elevation plants. However, high elevation vessels were wider in common garden plants compared to field plants, indicating that vessel diameter is determined both by genotype (parental populations) and environment (growing conditions different from those of parents). Reduced vessel diameter has implications for resistance to cavitation induced by freezing and/or drought in plants growing near tree line in Hawaii.  相似文献   

16.
Understanding the factors determining the distribution of parasites and pathogens in natural systems is essential for making predictions about the spread of emerging infectious disease. Here, we report the distribution of the fungal anther‐smut disease, caused by Microbotryum spp., on populations of the European wildflower Silene vulgaris over a range of elevations. A survey of several geographically distinct mountains in the southern French alps found that anther‐smut disease was restricted to high elevations, rarely observed below 1300 m despite availability of hosts below this elevation. Anther smut causes host‐sterility, and is recognized as a model system for natural host–pathogen interactions, sharing common features with vector‐borne and sexually‐transmitted disease in animals. In such systems, many biotic and abiotic factors likely to change over ecological gradients can influence disease epidemiology, including host spatial structure, pathogen infectivity, host resistance, and vector behavior. Here, we tested whether host population size, density, or connectivity also declined across elevation, and whether these epidemiologically relevant factors explained the observed disease distribution. We found that while none of these factor means changed across elevation, disease was significantly more likely to occur at both higher elevations and in larger populations, the majority of which were found above 1300 m. The break in disease incidence was also associated with an apparent scarcity of these larger host populations between 1000 and 1300 m in elevation. Examining variation in climatic factors among host populations, we also showed that the probability of disease was higher in areas with historically colder, wetter, and more stable conditions. The restricted distribution of anther‐smut disease in high‐elevation S. vulgaris provides an opportunity for empirical study on range limits and disease distribution in natural alpine communities that are considered particularly sensitive to the effects of climate change.  相似文献   

17.
Western populations of the Italian agile frog (Rana latastei) experience widespread genetic depletion. Based on population genetic theory, molecular models of immunity and previous empirical studies, population genetic depletion predicts increased susceptibility of populations to emergent pathogens. We experimentally compared susceptibility of R. latastei populations upon exposure to an emerging strain of Ranavirus, frog virus 3 (FV3), using six populations spanning the geographical range and range of population genetic diversity found in nature. Our findings confirm this prediction, suggesting that the loss of genetic diversity accompanying range expansion and population isolation is coincident with increased mortality risk from an emergent pathogen. Loss of heterozygosity and escape from selection imposed by immunologically cross‐reactive pathogens may potentially generate range‐wide variation in disease resistance.  相似文献   

18.
Genomewide markers enable us to study genetic differentiation within a species and the factors underlying it at a much higher resolution than before, which advances our understanding of adaptation in organisms. We investigated genomic divergence in Metrosideros polymorpha, a woody species that occupies a wide range of ecological habitats across the Hawaiian Islands and shows remarkable phenotypic variation. Using 1659 single nucleotide polymorphism (SNP) markers annotated with the genome assembly, we examined the population genetic structure and demographic history of nine populations across five elevations and two ages of substrates on Mauna Loa, the island of Hawaii. The nine populations were differentiated into two genetic clusters distributed on the lower and higher elevations and were largely admixed on the middle elevation. Demographic modelling revealed that the two genetic clusters have been maintained in the face of gene flow, and the effective population size of the high‐altitude cluster was much smaller. A FST‐based outlier search among the 1659 SNPs revealed that 34 SNPs (2.05%) were likely to be under divergent selection and the allele frequencies of 21 of them were associated with environmental changes along elevations, such as temperature and precipitation. This study shows a genomic mosaic of M. polymorpha, in which contrasting divergence patterns were found. While most genomic polymorphisms were shared among populations, a small fraction of the genome was significantly differentiated between populations in diverse environments and could be responsible for the dramatic adaptation to a wide range of environments.  相似文献   

19.
Identifying genomic signatures of natural selection can be challenging against a background of demographic changes such as bottlenecks and population expansions. Here, we disentangle the effects of demography from selection in the House Finch (Haemorhous mexicanus) using samples collected before and after a pathogen‐induced selection event. Using ddRADseq, we genotyped over 18,000 SNPs across the genome in native pre‐epizootic western US birds, introduced birds from Hawaii and the eastern United States, post‐epizootic eastern birds, and western birds sampled across a similar time span. We found 14% and 7% reductions in nucleotide diversity, respectively, in Hawaiian and pre‐epizootic eastern birds relative to pre‐epizootic western birds, as well as elevated levels of linkage disequilibrium and other signatures of founder events. Despite finding numerous significant frequency shifts (outlier loci) between pre‐epizootic native and introduced populations, we found no signal of reduced genetic diversity, elevated linkage disequilibrium, or outlier loci as a result of the epizootic. Simulations demonstrate that the proportion of outliers associated with founder events could be explained by genetic drift. This rare view of genetic evolution across time in an invasive species provides direct evidence that demographic shifts like founder events have genetic consequences more widespread across the genome than natural selection.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号