首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study represents a first step in investigating the possible involvement of cyclic AMP in the stimulation of somite chondrogenesis elicited by extracellular matrix components produced by the embryonic notochord. Dibutyryl cyclic AMP (db-cAMP) at 1.0 mM severely impairs “spontaneous” somite chondrogenesis, i.e., inhibits the formation of the small amount of cartilaginous matrix normally formed by embryonic somites in vitro in the absence of inducing tissues. This inhibition of cartilaginous matrix formation is reflected in a 30–40% reduction in sulfated glycosaminoglycan (GAG) accumulation. 8-Bromo-cyclic AMP also severely inhibits cartilage formation and sulfated GAG accumulation by somite explants. This impairment is limited to cyclic AMP derivatives; dibutyryl cyclic GMP, 5′-AMP, and 2′,3′-AMP have no effect. The inhibitory effect of cyclic AMP derivatives is mimicked by the cyclic AMP-phosphodiesterase inhibitor, theophylline, and potentiated by the addition of both db-cAMP and theophylline. Dibutyryl cyclic AMP and/or theophylline also inhibit the stimulation of cartilaginous matrix formation and sulfated GAG accumulation normally elicited by the embryonic notochord, reducing accumulation to a level similar to that found in somite explants without notochord. The inhibition of chondrogenesis by cyclic AMP in notochord-somite explants appears to result from an inability of somites to respond and not from an effect on the inductive capacity of the notochord, since db-cAMP has no detectable effect on the synthesis of molecules (sulfated GAG and collagen) by the notochord that have been implicated in its inductive activity. Finally, db-cAMP and/or theophylline inhibit the stimulation of somite chondrogenesis normally elicited by purified Type I collagen substrates. Dibutyryl cyclic AMP and theophylline reduce sulfated GAG accumulation by somites cultured on collagen to a level even below that accumulated by somites cultured in the absence of collagen, i.e., on Millipore filters.  相似文献   

2.
Cyclic AMP (cAMP) levels have been shown to have a positive influence on chondrogenesis in limb buds and pelvic cartilage. In the present study the level of cAMP was measured during somite chondrogenesis in vitro and found to decrease from 1.38 pmol/micrograms DNA on day 0 to 0.9 pmol/micrograms DNA on day 6. Inclusion of notochord with somites caused a marked reduction, with levels decreasing from 1.41 pmol/micrograms DNA on day 0 to 0.36 pmol/micrograms DNA on day 6. Concurrently, the incorporation of radioactive sulfate into sulfated glycosaminoglycans increased from day 3 to day 6 by 38% in somite and 77% in somite-notochord explants. The aggregation of proteoglycans was analyzed by gel chromatography and found to increase with a corresponding decrease in cAMP levels. The results indicate that a decrease in cAMP levels may be necessary for chondrogenic expression in somites.  相似文献   

3.
The influence of the axial structures on somite formation was investigated by culturing, on a nutritive agar substrate, segmental plates from chick embryos having 8 to 20 pairs of somites. In the first set of experiments, segmental plate was explanted together with adjacent notochord and approximately the lateral halves of the neural tube and node region. These explants formed 18 to 20 somites within 30 hr. In a second series of experiments, the notochord and neural tube were included as before, but further regression movements in the explants were prevented by removing the node region. These explants formed only 11.9 ± 1.1 somites. Finally, explants of segmental plate that included no neural tube, notochord, or node region were made. These explants had formed 10.7 ± 1.1 somites 14 to 17 hr later. When such explants were cultured for periods longer than 17 hr, there was a marked tendency for the more posterior somites to disperse and for all of the somites to develop a peculiar “hollow” morphology. It was concluded from these results that during the period of development when chick embryos possess 8 to 20 pairs of somites, the segmental plate mesoderm (1) represents about 12 prospective somites, (2) may segment into its full complement of somites without further contact with the axial structures, but (3) requires continued intimate contact with the axial structures for normal somite morphologic differentiation and stability.  相似文献   

4.
In the present investigation, evidence is presented directly implicating proteoglycans produced by the embryonic notochord in the control of somite chondrogenesis. It has been demonstrated by several histochemical techniques that during the period of its interaction with somites, the notochord synthesizes perinotochordal proteoglycans, and these proteoglycans have been shown to contain chondroitin 4-sulfate (40%), chondroitin 6-sulfate (40%), and heparan sulfate (20%). Dissection of notochords from embryos with the aid of a brief treatment with trypsin results in the removal of perinotochordal extracellular matrix materials including proteoglycans, while dissection of notochords without the aid of enzyme treatment or with a low concentration of collagenase results in their retention. There is a considerable increase in the rate and amount of cartilage formation and a corresponding 2 to 3-fold increase in the amount of sulfated glycosaminoglycan accumulated by somites cultured in association with notochords dissected under conditions in which perinotochordal materials are retained. Treatment of collagenase-dissected or freely dissected notochords with highly purified enzymes (chondroitinase ABC, AC, and testicular hyaluronidase) which specifically degrade proteoglycans causes a loss of histochemically detectable perinotochordal proteoglycans. These notochords are considerably impaired in their ability to support in vitro somite chondrogenesis. In addition, when trypsin-treated notochords are cultured (“precultured”) for 24 hr on nutrient agar (in the absence of somites), perinotochordal material reaccumulates. Somites cultured in association with such “precultured” notochords exhibit considerable increase in the amount of cartilage formed and a 2- to 3-fold increase in the amount of sulfated glycosaminoglycan accumulated as compared to somites cultured in association with trypsin-treated notochords which have not been “precultured.” This observation indicates that trypsin-treated notochords reacquire their ability to maximally stimulate in vitro somite chondrogenesis by resynthesizing and accumulating perinotochordal material. Finally, “precultured” notochords treated with chondroitinase to remove perinotochordal proteoglycans are considerably impaired in their ability to support in vitro somite chondrogenesis. These observations are consonant with the concept that proteoglycans produced by the embryonic notochord play an important role in somite chondrogenesis.  相似文献   

5.
The role of hyaluronic acid in limb morphogenesis (chondrogenesis) has been well defined. In the present study, we found that hyaluronic acid synthesis in somite explants steadily increased until day 6, then decreased, and inclusion of notochord did not accelerate the rate of synthesis. Analysis of hyaluronidase activity in the somite explants indicated an increase in the enzyme level in day-6 cultures. Again, inclusion of notochord did not alter this pattern. The decrease in hyaluronic acid after day 6 and the increase in sulfated proteoglycan synthesis from day 6 resemble the pattern described during limb development. Subsequent studies showed that, with time, the size of the hyaluronic acid synthesized by somites increased and, again, inclusion of notochord did not influence this pattern. The results indicate that unstimulated somites are capable of synthesizing cartilage-specific proteoglycans in a relatively restricted manner, and the inclusion of notochord resulted in accelerated synthesis of stable proteoglycan aggregates typical of differentiated chondrocytes. Metabolic events in somites related to hyaluronic acid are not influenced by the notochord.  相似文献   

6.
The present study represents a first step in investigating the possible involvement of calcium (Ca2+) in the stimulation of somite chondrogenesis elicited by extracellular matrix components produced by the embryonic notochord. The ionophore, A23187, a drug that facilitates Ca2+ uptake leading to elevation of cytoplasmic Ca2+ levels, at concentrations of 0.25-1.0 microgram/ml severely impairs "spontaneous" somite chondrogenesis, i.e., inhibits the formation of the small amount of cartilaginous matrix normally formed by embryonic somites in vitro in the absence of inducing tissues. This inhibition is reflected in a considerable reduction in sulfated glycosaminoglycan (GAG) accumulation by A23187-treated somite explants. Furthermore, A23187 inhibits the striking stimulation of cartilaginous matrix formation and sulfated GAG accumulation normally elicited by the embryonic notochord and collagen substrates. In fact, 1.0 microgram/ml of A23187 reduces sulfated GAG accumulation by somites cultured in association with notochord or on collagen to a level even below that accumulated by somites cultured in the absence of these inductive agents. Although these results must be interpreted with caution, they provide incentive for considering a possible regulatory role for Ca2+ in the chondrogenic response of somites to extracellular matrix components produced by the embryonic notochord.  相似文献   

7.
The contribution of active cell movement to somite formation (segmentation) and the later dispersal of the somite sclerotome was examined using cytochalasin D (CD). Stage 14–16 chick embryos were grown over liquid medium. After 8 hr in culture, control embryos had an average of six additional pairs of somites while CD (1–2 μg/ml dissolved in DMSO)-treated embryos had no new somites. DMSO alone had no effect on somitogenesis. CD-treated embryos transferred to drug-free medium recovered and segmentation resumed. Normal and CD-treated segmental plates were examined by SEM. Drug-treated segmental plate cells rounded up, consistent with the interaction of CD on contractile microfilaments. Embryos cultured 8 hr with or without CD were fractured through somite pair 20 and examined by SEM. In untreated embryos the sclerotome had dispersed and was migrating toward the notochord. CD stopped sclerotome dispersal. To test whether CD interfered with elaboration of extracellular matrix material associated with somite development, incorporation of [3H]glucosamine and Na235SO4 by somites and segmental plate was determined. There was no difference in total label incorporation. Molecular-weight profiles of proteoglycan obtained using controlled-pore glass-bead columns showed only small proteoglycans for both treated and control tissues. Therefore, the alteration of segmentation and somite morphogenesis by CD was not due to detectable changes in proteoglycan synthesis.  相似文献   

8.
The stimulation of somite chondrogenesis by extracellular materials was studied using scanning and transmission electron microscopy and light microscopy. Analysis of control somite explants (no additives to the medium) cultured on Nuclepore filters for 24 h demonstrates cell processes extending to the undersurface of the filter. The cell processes secrete a matrix of fibers sparsely coated with granules which form amorphous sheets after 3 days in culture. Somite explants treated with proteoglycan complex, extracted from 13-day chick sterna, produce a dense matrix of fibers heavily coated with granules. Selective enzymatic digestions with chondroitinase ABC and purified collagenase demonstrate that the fibers are collagen and the granules are proteoglycans. Proteoglycan complex was separated into its components using cesium chloride density centrifugation. Each of these fractions was tested for its stimulating capacity in somite explants as analyzed using scanning electron microscopy. The importance of these components in relationship to the perinotochordal materials is discussed. When somite explants are cultured with the notochord, the matrix produced by somitic cells in the region of the notochord is similar to that of explants treated with proteoglycan complex. Away from the region of the notochord, the somitic cells produce a matrix similar to that of control explants. The evidence presented in this report suggests that it is the presence of the perinotochordal materials which creates the proper environment in vivo for the precise timing and phenotypic expression of somite chondrogenesis.  相似文献   

9.
The effect of mechanical extension on the differentiation of axial mesoderm in double explants (sandwiches) of Xenopus laevis embryonic tissues isolated during the early gastrula–late neurula developmen-tal period is studied. In explants at the early gastrula stage, artificial extension orients and stimulates isolated differentiation of the notochord and somites as well as their joint formation. Moreover, extension facilitated the formation of the normal anatomical structure of the notochord and affected expression of Chordin gene. At the late gastrula stage, the effect of artificial extension on joint somite–notochord differentiation was weaker. At the stage of late neurula, somites were sometimes formed in explants lacking a notochord anlage. Thus, at earlier stages, the formation of somites was stimulated by contacts with the notochord and joint development of both structures was mechanical dependent, while at the later stages, somites developed inde-pendently of the notochord. Thus, the role of tissue extension is primarily the establishment of normal mor-phology and expression of Chordin was located in the direction of extension.  相似文献   

10.
A simple manipulation, altering the potassium concentration of the nutrient medium, has a pronounced effect upon the in vitro chondrogenic differentiation of chick somites, as measured by chondroitin sulfate synthesis and cartilage formation. Medium containing K+ ions in the balanced salt solution at a concentration of 2.69 mM promotes chondrogenesis over the 48-hr period studied. By increasing the K+ concentration to 4.68 mM there is a striking enhancement of initial chondroitin sulfate synthesis during the first 24 hr only. If the somite explants in a high K+ environment are transferred after 24 hr to a lower K+ concentration, the chondrogenic stimulation (chondroitin sulfate synthesis) continues. These effects can be obtained by altering only one variable in the nutrient medium, the K+ concentration.  相似文献   

11.
Proteoglycan complex extracted from embryonic cartilage (chondromucoprotein) with 4.0 M guanidinium chloride greatly stimulates in vitro somite chondrogenesis. In the presence of exogenous chondromucoprotein (CMP) which consists predominantly of proteochondroitin sulfate, there is a large increase in the amount of differentiating cartilage which can be detected visually in somite explants. There is a 2–3-fold increase in the amount of sulfated glycosaminoglycans (including chondroitin 4- and 6-sulfate) accumulated by somite explants supplied with exogenous CMP complex. These results are of potential significance, since during the period of interaction between the notochord or spinal cord and somitic mesoderm, the notochord and spinal cord synthesize and secrete proteoglycan.  相似文献   

12.
Recent studies have shown that in the developing chick embryo, at physiological level retinoic acid (RA) causes mirror-image duplication of limb skeletal elements. This has led to the suggestion that RA could be the endogenous morphogen or isgnal substance. In this study, in order to explore the effect of RA on somite chondrogenesis, we have standardized a serum-free chemically defined medium that supports the growth of somite explants in vitro. The results indicate that in somites RA at 10 ng/ml level induces cell proliferation, DNA and sulfated proteoglycan synthesis, and at higher concentrations is toxic. The results further show that RA induced stimulation of somite chondrogenesis is sclerotomal specific and the dermamyotemal portion of the somites does not exihibit a similar response. Retinoic acid also increases heparan sulfate synthesis and aggregation of isolated sclerotomal cells in culture. These results thus suggest that in amplifying chondrogenesis, RA acts at all phases such as cell proliferation (may increase cell viability) and aggregation, increased DNA synthesis and increased synthesis of matrix components. In otherwords, RA seems to initiate a chain of inter-related events.  相似文献   

13.
Experimental analysis of the mechanisms of somite morphogenesis   总被引:1,自引:0,他引:1  
Earlier studies have suggested influences on somite morphogenesis by “somite-forming centers,” primitive streak regression, Hensen's node and notochord, and neural plate. Contradictions among these studies were unresolved.Our experiments resolve these conflicts and reveal roles of the primitive streak and notochord in shearing the prospective somite mesoderm into right and left halves and releasing somite-forming capabilities already present. The neural plate appears to be the principal inductor of somites.Embryo fragments containing no somite-forming centers, node, notochord, or streak nevertheless formed somites within 10 hr. Such somites disperse within the next 14–24 hr, which may explain why others failed to see them. In these fragments, an incision alongside the streak substitutes for streak regression in releasing somite formation. All such somites form simultaneously rather than in the normal anteroposterior progression. These fragments contain neural plate, but not notochord. We believe that physical attachment of somites to notochord in normal embryos stabilizes them and prevents dispersal.Pieces of epiblast were rotated 180° putting neural plate over lateral plate mesoderm regions. Somites were induced from the lateral plate by the displaced neural plate region. This is additional evidence of the powerful ability of neuroepithelium to induce somites.  相似文献   

14.
The regulatory role of cyclic AMP in various cellular activities is well known. It has been documented that both the notochord and extracellular matrix materials (ECM) induce somite chrondrogenesis. We believe that the ECM modulates the intracellular cAMP level during chondrogenic differentiation. The studies indicated that notochordal induction, which resulted in somite chondrogenesis (reflected by increased sulfated glycosaminoglycan synthesis) reduced the intracellular cAMP level in somites. Addition of forskolin and dibutyryl cAMP resulted in increased intracellular cAMP levels and decreased synthesis of sulfated glycosaminoglycans (decreased chondrogenesis). In the case of dibutyryl cAMP, the inhibition of sulfated glycosaminoglycan synthesis was related to the length of exposure time. Thus, the inverse relationship between cAMP content and enhanced chondrogenesis supports the theory that, in somites, a decrease in the intracellular cAMP level may be necessary to trigger chondrogenic differentiation.  相似文献   

15.
Previous studies have demonstrated that collagen substrates stimulate in vitro somite chondrogenesis, and that agents that elevate intracellular cyclic AMP levels in hibit the ability of somites to respond to the inductive influence of collagen. In the present investigation, radiommunoassay was utilized to compare the cyclic AMP content of somite explants cultured on purified Type I collagen substrates with control explants cultured on Millipore filters. During the period of culture, the cyclic AMP content of collagen-treated explants is significantly lower than the cyclic AMP content of control explants. The cyclic AMP content of collagen-treated explants is 66% of control values as early as one hour following the initiation of culture, and the cyclic AMP content of collagen-treated explants remains lower than controls throughout the 3-day cultured period. The greatest difference in the cyclic AMP content of collagen-treated and control explants is observed at the seventeenth hour of culture, at which time the cyclic AMP content of collagen-treated explants is 56% of controls. These results combined with previous studies provides support for the hypothesis that collagen elicits a reduction in the cyclic AMP content of embroyic somites and that this reduction is necessary to trigger chondrogenic differentiation.  相似文献   

16.
The tissue interaction between the notochord and the somites of the vertebrate embryo establishes the proper shape and constitution of the vertebral cartilage. Soon after somite formation, the somite differentiates into a cartilage-forming part, the sclerotome, and a muscle and skin-forming part, the dermamyotome. These components of the somite were dissected from 312-day-old chick embryos (stage 1812–19 and cultured in vitro in the presence or absence of notochord. It was found that the sclerotome cells respond to the notochord by an increased incidence of hyaline cartilage nodules, greater accumulation of sulfated glycosaminoglycans, synthesis of larger aggregates of proteoglycans, increased DNA accumulation, and accelerated DNA synthesis. The dermamyotome did not show these changes. These results indicate that the notochord enhances cartilage differentiation in the sclerotome. Under these conditions, the notochord did not elicit cartilage formation in the dermamyotome.  相似文献   

17.
The stimulation of somite chondrogenesis by extracellular matrix components was studied by monitering the synthesis of cartilage-specific large proteoglycan aggregates. Chick embryonic sternal proteoglycans were separated into various components: monomers, hyaluronic acid, link protein and glycosaminoglycan side chains. The effects of these components, either individually or in various combinations, on somite chondrogenesis was examined. Proteoglycan monomers, alone or in a mixture with other components, induced chondrogenesis. The other components did not have any stimulating effect of their own. The results of these induction studies were also observed on a Sepharose CL–2B column and correlated using electron microscopy. Stimulation of somites resulted in an increase in the amount of proteoglycan aggregation (material excluded from the column) and was in agreement with the morphological appearance of the matrix in that there was increased accumulation of large proteoglycan granules. A matrix mixture of collagen and proteoglycans showed significant stimulation. When the matrix environment of the somites was altered to be unfavorable to the explants (medium containing hyaluronic acid) there was altered synthesis of cartilage-specific molecules. The results presented in this report strongly suggest that the composition of the extracellular matrix material is critical for somite chondrogenesis.  相似文献   

18.
Perinotochordal proteoglycans have been shown to influence somite chondrogenic differentiation. However, information concerning the composition of the proteoglycan molecules synthesized by the notochord, or the exact type of molecule necessary for the induction of somite chondrogenesis is not known. The results of the present study indicate that the proteoglycan extracted from the 8 day old notochord culture consists of predominantly small proteoglycans, while the large aggregates form less than 30% of the total. The chondroitin sulfate composition also shows a cartilage type of proteoglycan molecules synthesized by the notochord.  相似文献   

19.
The axial structures, the notochord and the neural tube, play an essential role in the dorsoventral patterning of somites and in the differentiation of their many cell lineages. Here, we investigated the role of the axial structures in the mediolateral patterning of the somite by using a newly identified murine homeobox gene, Nkx-3.1, as a medial somitic marker in explant in vitro assays. Nkx-3.1 is dynamically expressed during somitogenesis only in the youngest, most newly-formed somites at the caudal end of the embryo. We found that the expression of Nkx-3.1 in pre-somitic tissue explants is induced by the notochord and maintained in newly-differentiated somites by the notochord and both ventral and dorsal parts of the neural tube. We showed that Sonic hedgehog (Shh) is one of the signaling molecules that can reproduce the effect of the axial structures by exposing explants to either COS cells transfected with a Shh expression construct or to recombinant SHH. Shh could induce and maintain Nkx-3.1 expression in pre-somitic mesoderm and young somites but not in more mature, differentiated ones. The effects of Shh on Nkx-3.1 expression were antagonized by a forskolin-induced increase in the activity of cyclic AMP-dependent protein kinase A. Additionally, we confirmed that the expression of the earliest expressed murine myogenic marker, myf 5, is also regulated by the axial strucutres but that Shh by itself is not capable of inducing or maintaining it. We suggest that the establishment of somitic medial and lateral compartments and the early events in myogenesis are governed by a combination of positive and inhibitory signals derived from the neighboring structures, as has previously been proposed for the dorsoventral patterning of somites.  相似文献   

20.
The role of somites and notochords in neuroectoderm differentiation from the embryonic ectoderm and its subsequent patterning into regional compartments along rostro-caudal and dorso-ventral axes, especially in humans, remains elusive. Here, we demonstrate the co-culture effect of somites and notochords isolated from chicken embryos on the neuronal differentiation and regional identity of an adherent culture of human embryonic stem cells (hESCs). Notochord increased the efficiency and speed of neuronal induction, whereas somites had a weak neuronal inducing effect on hESCs. However, a synergistic effect was not observed when notochords and somites were used together. Moreover, in somite and notochord co-culture groups, hESCs-derived neuronal cells expressed HOXB4, OTX2, IRX3 and PAX6, indicative of dorsal hindbrain and ventral anterior identities, respectively. Our results reveal the influence of embryonic notochord and somite co-culture in providing neuronal induction as well as rostro-caudal and dorso-ventral regional identity of hESCs-derived neuronal cells. This study provides a model through which in vivo neuronal induction events may be imitated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号