首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Phosphorylation of tRNA by T4 polynucleotide kinase.   总被引:3,自引:3,他引:0       下载免费PDF全文
The phosphorylation of various intact tRNA species by T4 polynucleotide kinase has been studied. The apparent Michaelis constant was on the average found to be 100 times lower than for some single-stranded DNAs previously studied. (J.R. Lillehaug and K. Kleppe, (1975) Biochemistry, 14, 1221). Conditions which result in complete phosphorylation of different tRNA species have also been established. Studies on equilibrium constants and the reversibility of the reaction revealed that the phosphorylation reaction is not a true equilibrium reaction under the conditions used in this work.  相似文献   

3.
Phosphorylation of double-stranded DNAs by T4 polynucleotide kinase.   总被引:4,自引:0,他引:4  
The phosphorylation by T4 polynucleotide kinase of various double-stranded DNAs containing defined 5'-hydroxyl end group structures has been studied. Particular emphasis was placed on finding conditions that allow complete phosphorylation. The DNAs employed were homodeoxyoligonucleotides annealed on the corresponding homopolymers, DNA duplexes corresponding to parts of the genes for alanine yeast tRNA, and a suppressor tyrosine tRNA from Escherichia coli. The rate of phosphoylation of DNAs with 5'-hydroxyl groups in gaps was approximately ten times slower than for the corresponding single-stranded DNA. At low concentrations of ATP, 1 muM, incomplete phosphorylation was obtained, whereas with higher concentrations of ATP, 30 muM, complete phosphorylation was achieved. In the case of DNAs with 5'-hydroxyl groups at nicks approximately 30% phosphorylation could be detected using 30 muM ATP. A DNA containing protruding 5'-hydroxyl group ends was phosphorylated to completion using the same conditions as for single-stranded DNA, i.e., a ratio between the concentrations of ATP and 5'-hydroxyl groups of 5:1 and a concentration of ATP of approximately 1 muM. For a number of DNAs containing protruding 3'-hydroxyl group ends and one DNA containing even ends incomplete phosphorylation was found under similar conditions. For all these DNAs a plateau level was observed varying from 20 to 45% of complete phosphorylation. At 20 muM and higher ATP concentrations, the phosphorylation was complete also for these DNAs. With low concentrations of ATP a rapid production of inorganic phosphate was noted for all the latter DNAs. The apparent equilibrium constants for the forward and reverse reaction were determined for a number of different DNAs, and these data revealed that the plateau levels of phosphorylation obtained at low concentrations of ATP for DNAs with protruding 3'-hydroxyl group and even ends is not a true equilibrium resulting from the forward and reverse reaction. It is suggested that the plateau levels are due to formation of inactive enzyme-substrate and enzyme-product complexes. For all double-stranded DNAs tested, except DNAs containing protruding 5'-hydroxyl group ends, addition of KCl to the reaction mixture resulted in a drastic decrease in the rate of phosphorylation, as well as in the maximum level phosphorylated. Spermine, on the other hand, had little influence. Both of these agents have previously been shown to activate T4 polynucleotide kinase using single-stranded DNAs as substrates (Lillehaug, J.R., and Kleppe, K. (1975), Biochemistry 14, 1221). The inhibition of phosphorylation of double-stranded DNAs by salt might be the result of stabilization of the 5'-hydroxyl group regions of these DNAs.  相似文献   

4.
T4 polynucleotide kinase rapidly loses activity during its reaction on duplex DNA termini. Addition of high concentrations of nonspecific polymers reverses or prevents this inactivation. In contrast, additions of related materials of lower molecular weight are relatively ineffective in stabilizing the kinase. Such a pattern suggests that the stabilizing effects of polymers on kinase activity are due to macromolecular crowding. An effect of crowding on the known tendency of the kinase to undergo oligomerization reactions is consistent with our observations.  相似文献   

5.
Some physicochemical properties of T4 polynucleotide kinase (EC2.7.1.78) have been studied. The enzyme is an oligomer of one polypeptide chain. The molecular weight of the monomer is 33000, as determined from the amino acid analysis. Phenylalanine is the N-terminal amino acid. Each monomer contains two --SH groups, one exposed and one more buried. Circular dichroic spectra suggest a high content of alpha-helical structure, 45--55%. Excitation at 280 nm gave a strong emission fluorescence spectrum with a maximum centering at 340 nm. Sedimentation studies suggested the enzymically active form to be a tetramer. High ionic strength (0.1 M KC1), spermine, and the substrates ATP and thymidine 3'-monophosphate were found to be essential factors in order to stabilize the protein in an oligomeric structure. The association constants for ATP, thymidine 3'-monphosphate, and P1 were determined fluorimetrically to be 7.9 x 105, 4.8 x 105, and 7.2 x 10(2) M-1 respectively.  相似文献   

6.
The ability of T4 polynucleotide kinase (PNK) to phosphorylate non-nucleosidic moieties 5'-attached to oligodeoxynucleotides (ODNs) has been investigated. Non-nucleosidic phosphoramidite units were prepared from ethane-1,2-diol and propane-1,3-diol backbones. Some of them corresponded to pure enantiomers. They were used to obtain the corresponding 5'-end modified oligothymidylates X(pdT)10. The free primary hydroxyl of the non-nucleosidic moieties (X) of these oligomers was phosphorylated by PNK. We report the stereoselective phosphorylation of the L form of the 5'-end attached non-nucleosidic chiral fragments; the non-chiral moieties were completely phosphorylated. Dimers of glycerol analogue and thymidine 3'-phosphate were not recognized by PNK and the shortest modified ODN able to be phosphorylated was a trinucleotide X(pdT)3. A modified X(pdT)10, bearing a cyclic abasic site (X) at its 5'-end, was prepared by chemical synthesis from 1,2-dideoxyribose phosphoramidite and was phosphorylated with a 90% yield.  相似文献   

7.
A novel method for characterizing the kinetics of protein kinase inhibitors is described. This method uses glycogen synthase kinase beta as the model protein kinase and looks at the shift in IC50 of inhibitors using the nonhydrolyzable ATP analog, beta, gamma-methyleneadenosine 5'-triphosphate, also known as AMP-PCP. Due to its inability to be hydrolyzed, AMP-PCP is being used to characterize known glycogen synthase kinase inhibitors by determining the shift in IC50 at concentrations above its calculated Ki of 490 microM. The assay format for the detection of inhibition is a scintillation proximity assay which is robust and reproducible at very low levels of [gamma-33P]ATP. The use of AMP-PCP coupled with the use of the scintillation proximity assay allows this characterization of inhibition without increasing [gamma-33P]ATP and without significantly diluting the overall assay signal. We have used this method in kinetic analyses to demonstrate that we can detect a significant shift in IC50 with the known ATP competitive inhibitors, staurosporine, Ro 31-8220, and olomoucine. The IC50 for glycogen synthase peptide and lithium chloride, which has been reported to be uncompetitive, remains unchanged.  相似文献   

8.
9.
Kinetics and specificity of T4 polynucleotide kinase.   总被引:12,自引:0,他引:12  
J R Lillehaug  K Kleppe 《Biochemistry》1975,14(6):1221-1225
The kinetics of T4 polynucleotide kinase has been investigated at pH 8.0 and 37 degrees. Double reciprocal plots of initial rates vs. substrate concentrations as well as product inhibition studies have indicated that the enzyme reacts according to the ordered sequential mechanism shown in eq 2 in the text for phosphorylation of a DNA molecule. Based on this mechanism the rate equation for the overall reaction was deduced and the various kinetic constants estimated. Hill plots indicated little or no interaction between active sites in the enzyme. The apparent Michaelis constants and V-max were determined at a fixed ATP concentration, 66 muM, for a number of different substrates varying in chain length, base composition, and nature of the sugar, and a wide variation was found. For the nucleoside 3'-monophosphates tested both the apparent Michaelis constant and V-max values were from approximately 2 to 5 times larger than for the corresponding oligonucleotide. The following orders were obtained with regard to apparent Michaelis constants and V-max for the nucleoside 3'-monophosphates investigated: Michaelis constant, rGP greater than rUp greater than rCp greater than rAp greater than dTp; V-max, rGp greater than rCp greater than rAp greater than dTp greater than rUp. Somewhat similar results were also obtained with the deoxyoligonucleotides tested.  相似文献   

10.
3'-Phosphatase activity in T4 polynucleotide kinase.   总被引:26,自引:0,他引:26  
V Cameron  O C Uhlenbeck 《Biochemistry》1977,16(23):5120-5126
The purification of T4 polynucleotide kinase results in the copurification of an activity which will specifically remove the 3'-terminal phosphate from a variety of deoxyribonucleotides and ribonucleotides in the absence of ATP. This phosphatase activity requires magnesium, has a pH optiumum of 6.0, and is more active with deoxyribonucleotides than ribonucleotides. T4 polynucleotide kinase and the 3'-phosphatase activity copurify by gradient elution column chromatography on DEAE-cellulose, phosphocellulose, and hydroxylapatite. The two activities are included in and comigrate on Sephadex G-200. Polyacrylamide gel electrophoresis at PH 9.2 results in conigration of the two activities together with the major protein band. The two activities respond in parallel to heat inactivation at 35 degrees C and ATP, a substrate for the kinase only, protects both activities from heat inactivation. It is therefore suggested that the two activities are functions of the same protein molecule.  相似文献   

11.
12.
T4 phage polynucleotide kinase (PNK) displays 5′-hydroxyl kinase, 3′-phosphatase and 2′,3′-cyclic phosphodiesterase activities. The enzyme phosphorylates the 5′ hydroxyl termini of a wide variety of nucleic acid substrates, a behavior studied here through the determination of a series of crystal structures with single-stranded (ss)DNA oligonucleotide substrates of various lengths and sequences. In these structures, the 5′ ribose hydroxyl is buried in the kinase active site in proper alignment for phosphoryl transfer. Depending on the ssDNA length, the first two or three nucleotide bases are well ordered. Numerous contacts are made both to the phosphoribosyl backbone and to the ordered bases. The position, side chain contacts and internucleotide stacking interactions of the ordered bases are strikingly different for a 5′-GT DNA end than for a 5′-TG end. The base preferences displayed at those positions by PNK are attributable to differences in the enzyme binding interactions and in the DNA conformation for each unique substrate molecule.  相似文献   

13.
The 18 S dynein from the outer arm of Chlamydomonas flagella is composed of an alpha subunit containing an alpha heavy chain (Mr = approximately 340,000) and an Mr = 16,000 light chain, and a beta subunit containing a beta heavy chain (Mr = approximately 340,000), two intermediate chains (Mr = 78,000 and 69,000), and seven light chains (Mr = 8,000-20,000). Both subunits contain ATPase activity. We have used 8-azidoadenosine 5'-triphosphate (8-N3 ATP), a photoaffinity analog of ATP, to investigate the ATP-binding sites of intact 18 S dynein. 8-N3ATP is a competitive inhibitor of 18 S dynein's ATPase activity and is itself hydrolyzed by 18 S dynein; moreover, 18 S dynein's hydrolysis of ATP and 8-N3ATP is inhibited by vanadate to the same extent. 8-N3ATP therefore appears to interact with at least one of 18 S dynein's ATP hydrolytic sites in the same way as does ATP. When [alpha- or gamma-32P]8-N3ATP is incubated with 18 S dynein in the presence of UV irradiation, label is incorporated primarily into the alpha, beta, and Mr = 78,000 chains; a much smaller amount is incorporated into the Mr = 69,000 chain. The light chains are not labeled. The incorporation is UV-dependent, ATP-sensitive, and blocked by preincubation of the enzyme with vanadate plus low concentrations of ATP or ADP. These results suggest that the alpha heavy chain contains the site of ATP binding and hydrolysis in the alpha subunit. In the beta subunit, the beta heavy chain and one or both intermediate chains may contain ATP-binding sites.  相似文献   

14.
15.
Effect of salts and polyamines on T4 polynucleotide kinase.   总被引:21,自引:0,他引:21  
J R Lillehaug  K Kleppe 《Biochemistry》1975,14(6):1225-1229
The activity of T4 polynucleotide kinase (EC 2.7.1.78) was found to be greatly stimulated by salts, such as NaCl and KCl, and polyamines such as spermine and spermidine. Up to a sixfold increase in initial rates was observed with a variety of different single-stranded DNAs and mono- and oligonucleotides. The optimal concentrations of salts were 0.125 M, corresponding to a total ionic strength of mu equals 0.19. For polyamines the optimal concentrations were found to be at approximately 2 mM. With low enzyme concentration and in the absence of activators complete phosphorylation was not achieved for a number of substrates. In the presence of salts or polyamines or high concentration of enzyme the phosphorylation proceeded to completion. Addition of salt led to an increase in both the apparent V-max and the Michaelis constant for the DNA substrate whereas the Michaelis constant of ATP remained unchanged. Polyamines had a similar influence on the kinetic constants for the DNA substrate whereas a decrease was found for the apparent Michaelis constant for ATP. The overall mechanism in the presence of activators was found to be sequential but probably of a rapid equilibrium random type. Of the inorganic anions tested both P-i and PP-i inhibited the enzyme in a competitive manner with both substrates.  相似文献   

16.
T4 polynucleotide kinase (Pnk) is a bifunctional 5′-kinase/3′-phosphatase that aids in the repair of broken termini in RNA by converting 3′-PO4/5′-OH ends into 3′-OH/5′-PO4 ends, which are then sealed by RNA ligase. Here we have employed site-directed mutagenesis (introducing 31 mutations at 16 positions) to locate candidate catalytic residues within the 301 amino acid Pnk polypeptide. We found that alanine substitutions for Arg38 and Arg126 inactivated the 5′-kinase, but spared the 3′-phosphatase activity. Conservative substitutions of lysine or glutamine for Arg38 and Arg126 did not restore 5′-kinase activity. These results, together with previous mutational studies, highlight a constellation of five amino acids (Lys15, Ser16, Asp35, Arg38 and Arg126) that likely comprise the 5′-kinase active site. Four of these residues are conserved at the active sites of adenylate kinases (Adk), suggesting that Pnk and Adk are structurally and mechanistically related. We found that alanine substitutions for Asp165, Asp167, Arg176, Arg213, Asp254 and Asp278 inactivated the 3′-phosphatase, but spared the 5′-kinase. Conservative substitutions of asparagine or glutamate for Asp165, Asp167 and Asp254 did not revive the 3′-phosphatase activity, nor did lysine substitutions for Arg176 and Arg213. Glutamate in lieu of Asp278 partially restored activity, whereas asparagine had no salutary effect. Alanine substitutions for Arg246 and Arg279 partially inactivated the 3′-phosphatase; the conservative R246K change restored activity, whereas R279K had no benefit. The essential phosphatase residues Asp165 and Asp167 are located within a 165DxDxT169 motif that defines a superfamily of phosphotransferases. Our data suggest that the 3′-phosphatase active site incorporates multiple additional functional groups.  相似文献   

17.
T4 polynucleotide kinase (Pnk) is the founding member of a family of 5'-kinase/3'-phosphatase enzymes that heal broken termini in RNA or DNA by converting 3'-PO(4)/5'-OH ends into 3'-OH/5'-PO(4) ends, which are then suitable for sealing by RNA or DNA ligases. Here we employed site-directed mutagenesis and biochemical methods to dissect the domain structure of the homotetrameric T4 Pnk protein and to localize essential constituents of the apparently separate active sites for the 5'-kinase and 3'-phosphatase activities. We characterized deletion mutants Pnk(42-301) and Pnk(1-181), which correspond to domains defined by proteolysis with chymotrypsin. Pnk(1-181) is a monomer with no 3'-phosphatase and low residual 5'-kinase activity. Pnk(42-301) is a dimer with no 5'-kinase and low residual 3'-phosphatase activity. Four classes of missense mutational effects were observed. (i) Mutations K15A, S16A, and D35A inactivated the 5'-kinase but did not affect the 3'-phosphatase or the tetrameric quaternary structure of T4 Pnk. 5'-kinase activity was ablated by the conservative mutations K15R, K15Q, and D35N; however, kinase activity was restored by the S16T change. (ii) Mutation D167A inactivated the 3'-phosphatase without affecting the 5'-kinase or tetramerization. (iii) Mutation D85A caused a severe decrement in 5'-kinase activity and only a modest effect on the 3'-phosphatase; the nearby N87A mutation resulted in a significantly reduced 3'-phosphatase activity and slightly reduced 5'-kinase activity. D85A and N87A both affected the quaternary structure, resulting in a mixed population of tetramer and dimer species. (iv) Alanine mutations at 11 other conserved positions had no significant effect on either 5'-kinase or 3'-phosphatase activity.  相似文献   

18.
A new ATP analog, adenosine-5-N'-(2,4-dinitro-5-fluorophenyl) phosphohydrazide (DNPH-AMP), has been synthesized, which is an irreversible inhibitor of Na,K-ATPase. Interaction of the analog with the enzyme in the presence of K+ is described by the scheme: [formula: see text] and corresponding kinetic constants k3 and Ki are found equal to 2.5 min-1 and 1.6 mM. In the presence of Na+ the time course of enzyme inactivation by DNPH-AMP is a biphasic curve in the semilogarithmic plot. The k3 and Ki values calculated for this case according to Fritzsch [Fritzsch (1985) J. Theor. Biol. 117, 397] are equal to 2.45 min-1 and 2.5 mM, respectively. ATP transforms the K(+)-type of Na,K-ATPase inactivation into the one that takes place in the presence of Na+.  相似文献   

19.
The stereochemical course of the phosphoryl transfer reaction catalyzed by T4 polynucleotide kinase has been determined using the chiral ATP analog, (Sp)-adenosine-5'-(3-thio-3-[18O]triphosphate). T4 polynucleotide kinase catalyzes the transfer of the gamma-thiophosphoryl group of (Sp)-adenosine-5'-(3-thio-3-[18O]triphosphate) to the 5'-hydroxyl group of ApA to give the thiophosphorylated dinucleotide adenyl-5'-[18O]phosphorothioate-(3'-5')adenosine. A sample of adenyl-5'-[18O]phosphorothioate-(3'-5')adenosine was subjected to venom phosphodiesterase digestion. The resulting adenosine-5'-[18O]phosphorothioate was shown to have the Rp configuration, thus indicating that the thiophosphoryl transfer reaction occurs with overall inversion of configuration of phosphorus.  相似文献   

20.
A rapid batch procedure is described for purification of T4 polynucleotide kinase (ATP:5'-dephosphopolynucleotide 5'-phosphotransferase, EC 2.7.1.78) to near homogeneity using Blue Dextran-Sepharose chromatography. The enzyme preparation is sufficiently free of contaminating endonuclease and alkaline phosphatase activities to be suitable for radioactively labeling nucleic acids in vitro. Kinetic measurements indicate that the chromophore of Blue Dextran, Cibacron Blue F3GA, inhibits the activity of T4 polynucleotide kinase competitively with respect to single stranded DNA substrate and non-competitively with respect to the rATP substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号