首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Patterning along the anteroposterior axis is a critical step during animal embryogenesis. Although mechanisms of anteroposterior patterning in the neural tube have been studied in various chordates, little is known about those of the epidermis. To approach this issue, we investigated patterning mechanisms of the epidermis in the ascidian embryo. First we examined expression of homeobox genes (Hrdll-1, Hroth, HrHox-1 and Hrcad) in the epidermis. Hrdll-1 is expressed in the anterior tip of the epidermis that later forms the adhesive papillae, while Hroth is expressed in the anterior part of the trunk epidermis. HrHox-1 and Hrcad are expressed in middle and posterior parts of the epidermis, respectively. These data suggested that the epidermis of the ascidian embryo is patterned anteroposteriorly. In ascidian embryogenesis, the epidermis is exclusively derived from animal hemisphere cells. To investigate regulation of expression of the four homeobox genes in the epidermis by vegetal hemisphere cells, we next performed hemisphere isolation and cell ablation experiments. We showed that removal of the vegetal cells before the late 16-cell stage results in loss of expression of these homeobox genes in the animal hemisphere cells. Expression of Hrdll-1 and Hroth depends on contact with the anterior-vegetal (the A-line) cells, while expression of HrHox-1 and Hrcad requires contact with the posterior-vegetal (the B-line) cells. We also demonstrated that contact with the vegetal cells until the late 32-cell stage is sufficient for animal cells to express Hrdll-1, Hroth and Hrcad, while longer contact is necessary for HrHox-1 expression. Contact with the A-line cells until the late 32-cell stage is also sufficient for formation of the adhesive papillae. Our data indicate that the epidermis of the ascidian embryo is patterned along the anteroposterior axis by multiple inductive influences from the vegetal hemisphere cells and provide the first insight into mechanisms of epidermis patterning in the chordate embryos.  相似文献   

2.
3.
We have produced two monoclonal antibodies (Epi-1 and Epi-2) which specifically recognize epidermal cells and their derivative, the larval tunic, of developing embryos of the ascidian Halocynthia roretzi. The antigens, examined by indirect immunofluorescence staining, first appear at the early tailbud stage and are present until at least the swimming larval stage. There were distinct and separate puromycin and actinomycin D sensitivity periods for each antigen. Aphidicolin, a specific inhibitor of DNA synthesis, prevented the appearance of each antigen when embryos were exposed to the drug continuously from cleavage stages. These results suggest that the antigens are synthesized during embryogenesis by developing epidermal cells and that several rounds of DNA replication are required for the antigen expression. Early cleavage stage embryos, including fertilized but unsegmented eggs, in which cytokinesis had been blocked with cytochalasin B expressed the antigens, and blastomeres exhibiting the antigens were always of the epidermis lineage. In partial embryos produced by four separated blastomere pairs of the 8-cell embryos, the expression of antigens was seen only in those developed from the animal blastomere pairs, which are progenitors of epidermal cells. These observations indicate that differentiation of epidermal cells in ascidian embryos takes place in a typical "mosaic" fashion.  相似文献   

4.
In the ascidian embryo, a fibroblast growth factor (FGF)-like signal from presumptive endoderm blastomeres between the 32-cell and early 64-cell stages induces the formation of notochord and mesenchyme cells. However, it has not been known whether endogenous FGF signaling is involved in the process. Here it is shown that 64-cell embryos exhibit a marked increase in endogenous extracellular signal-regulated kinase (ERK/MAPK) activity. The increase in ERK activity was reduced by treatment with an FGF receptor 1 inhibitor, SU5402, and a MEK (ERK kinase/MAPKK) inhibitor, U0126. Both drugs blocked the formation of notochord and mesenchyme when embryos were treated at the 32-cell stage, but not at the 2- or 110-cell stages. The dominant-negative form of Ras also suppressed notochord and mesenchyme formation. Both inhibitors suppressed induction by exogenous basic FGF. These results suggest that the FGF signaling cascade is indeed necessary for the formation of notochord and mesenchyme cells during ascidian embryogenesis. It is also shown that FGF signaling is required for formation of the secondary notochord, secondary muscle and neural tissues, and at least ERK activity is necessary for the formation of trunk lateral cells and posterior endoderm. Therefore, FGF and MEK signaling are required for the formation of various tissues in the ascidian embryo.  相似文献   

5.
We previously showed that FGF was capable of inducing Xenopus gastrula ectoderm cells in culture to express position-specific neural markers along the anteroposterior axis in a dose-dependent manner. However, conflicting results have been obtained concerning involvement of FGF signaling in the anterior neural induction in vivo using the same dominant-negative construct of Xenopus FGF receptor type-1 (delta XFGFR-1 or XFD). We explored this issue by employing a similar construct of receptor type-4a (XFGFR-4a) in addition, since expression of XFGFR-4a was seen to peak between gastrula and neurula stages, when the neural induction and patterning take place, whereas expression of XFGFR-1 had not a distinct peak during that period. Further, these two FGFRs are most distantly related in amino acid sequence in the Xenopus FGFR family. When we injected mRNA of a dominant-negative version of XFGFR-4a (delta XFGFR-4a) into eight animal pole blastomeres at 32-cell stage, anterior defects including loss of normal structure in telencephalon and eye regions became prominent as examined morphologically or by in situ hybridization. Overexpression of delta XFGFR-1 appeared far less effective than that of delta XFGFR-4a. Requirement of FGF signaling in ectoderm for anterior neural development was further confirmed in culture: when ectoderm cells that were overexpressing delta XFGFR-4a were cocultured with intact organizer cells from either early or late gastrula embryos, expression of anterior and posterior neural markers was inhibited, respectively. We also showed that autonomous neuralization of the anterior-type observed in ectoderm cells that were subjected to prolonged dissociation was strongly suppressed by delta XFGFR-4a, but not as much by delta XFGFR-1. It is thus indicated that FGF signaling in ectoderm, mainly through XFGFR-4, is required for the anterior neural induction by organizer. We may reconcile our data to the current "neural default model," which features the central roles of BMP4 signaling in ectoderm and BMP4 antagonists from organizer, simply postulating that the neural default pathway in ectoderm includes constitutive FGF signaling step.  相似文献   

6.
Blastomere composition and expression profiles of wnt8 and hox11/13b orthologues were examined in the primitive indirect-developing echinoid Prionocidaris baculosa. We found that blastomere composition in the 16-cell-stage Prionocidaris embryos was different from that of the indirect-developing echinoids belonging to Euechinoidea, a derived group of the echinoids. The sizes of the blastomeres in the 16-cell-stage embryo varied, and no embryos formed a "micromere quartet," a group of four equal-sized micromeres. The smallest blastomere was usually located around the vegetal pole. We also found significant differences in early expression profiles of wnt8 orthologues of the Prionocidaris and euechinoids. Unlike euechinoids, the expression of wnt8 orthologue of Prionocidaris was not detected at the 16-cell stage; it began at the 32-cell stage in the broad area containing the vegetal pole. However, in later stages, the expression profiles of hox11/13b and wnt8 orthologues of Prionocidaris were similar to that of euechinoid orthologues. The present study suggests that there are considerable differences between Prionocidaris and euechinoids in early developmental mechanisms in the vicinity of the vegetal pole.  相似文献   

7.
8.
9.
An individual retina descends from a restricted and invariant group of nine animal blastomeres at the 32-cell stage. We tested which molecular signaling pathways are responsible for the competence of animal blastomeres to contribute to the retina. Inactivation of activin/Vg1 or fibroblast growth factor (FGF) signaling by expression of dominant-negative receptors does not prevent an animal blastomere from contributing to the retina. However, increasing bone morphogenetic protein (BMP) signaling in the retina-producing blastomeres significantly reduces their contribution. Conversely, reducing BMP signaling by expression of a dominant-negative BMP receptor or Noggin allows other animal blastomeres to contribute to the retina. Thus, the initial step in the retinal lineage is regulated by position within the BMP/Noggin field of epidermal versus neural induction. Vegetal tier blastomeres, in contrast, cannot contribute to the retina even when given access to the appropriate position and signaling fields by transplantation to the dorsal animal pole. We tested whether expression of molecules within the mesoderm inducing (activin, FGF), mesoderm-modifying (Wnt), or neural-inducing (BMP, Noggin) pathways impart a retinal fate on vegetal cell descendants. None of these, several of which induce secondary head structures, caused vegetal cells to contribute to retina. This was true even if the injected blastomeres were transplanted to the dorsal animal pole. Two pathways that specifically induce head tissues also were investigated. The simultaneous blockade of Wnt and BMP signaling, which results in the formation of a complete secondary axis with head and eyes, did not cause the vegetal clone to give rise to retina. However, Cerberus, a secreted protein that also induces an ectopic head with eyes, redirected vegetal progeny into the retina. These experiments indicate that vegetal blastomere incompetence to express a retinal fate is not due to a lack of components of known signaling pathways, but relies on a specific pathway of head induction.  相似文献   

10.
The major mesodermal tissues of ascidian larvae are muscle, notochord and mesenchyme. They are derived from the marginal zone surrounding the endoderm area in the vegetal hemisphere. Muscle fate is specified by localized ooplasmic determinants, whereas specification of notochord and mesenchyme requires inducing signals from endoderm at the 32-cell stage. In the present study, we demonstrated that all endoderm precursors were able to induce formation of notochord and mesenchyme cells in presumptive notochord and mesenchyme blastomeres, respectively, indicating that the type of tissue induced depends on differences in the responsiveness of the signal-receiving blastomeres. Basic fibroblast growth factor (bFGF), but not activin A, induced formation of mesenchyme cells as well as notochord cells. Treatment of mesenchyme-muscle precursors isolated from early 32-cell embryos with bFGF promoted mesenchyme fate and suppressed muscle fate, which is a default fate assigned by the posterior-vegetal cytoplasm (PVC) of the eggs. The sensitivity of the mesenchyme precursors to bFGF reached a maximum at the 32-cell stage, and the time required for effective induction of mesenchyme cells was only 10 minutes, features similar to those of notochord induction. These results support the idea that the distinct tissue types, notochord and mesenchyme, are induced by the same signaling molecule originating from endoderm precursors. We also demonstrated that the PVC causes the difference in the responsiveness of notochord and mesenchyme precursor blastomeres. Removal of the PVC resulted in loss of mesenchyme and in ectopic notochord formation. In contrast, transplantation of the PVC led to ectopic formation of mesenchyme cells and loss of notochord. Thus, in normal development, notochord is induced by an FGF-like signal in the anterior margin of the vegetal hemisphere, where PVC is absent, and mesenchyme is induced by an FGF-like signal in the posterior margin, where PVC is present. The whole picture of mesodermal patterning in ascidian embryos is now known. We also discuss the importance of FGF induced asymmetric divisions, of notochord and mesenchyme precursor blastomeres at the 64-cell stage.  相似文献   

11.
The use of a novel inducible FGF signalling system in the frog Xenopus laevis is reported. We show that the lipophilic, synthetic, dimerizing agent AP20187 is able to rapidly activate signalling through an ectopically expressed mutant form of FGFR1 (iFGFR1) in Xenopus embryos. iFGFR1 lacks an extracellular ligand binding domain and contains an AP20187 binding domain fused to the intracellular domain of mouse FGFR1. Induction of signalling by AP20187 is possible until at least early neurula stages, and we demonstrate that ectopically expressed iFGFR1 protein persists until late neurula stages. We show that activation of signalling through iFGFR1 can mimic a number of previously reported FGF activities, including mesoderm induction, repression of anterior development, and neural posteriorization. We show that competence to morphological posteriorization of the anteroposterior axis by FGF signalling only extends until about stage 10.5. We demonstrate that the competence of neural tissue to express the posterior markers Hoxa7 and Xcad3, in response to FGF signalling, is lost by the end of gastrula stages. We also show that activation of FGF signalling stimulates morphogenetic movements in neural tissue until at least the end of the gastrula stage.  相似文献   

12.
Ornithine decarboxylase (ODC) is involved in the biosynthesis of polyamines and hence has been found in almost all types of cells studied. Therefore it is frequently used as internal standard. We isolated a cDNA, XODC2, which is a paralogue to ubiquitous ODC and expressed in a spatial and temporal manner during the early embryogenesis of Xenopus laevis. Expression of XODC2was first detected at the animal pole at stage 9. During neurula stages the signals were found both in the extreme anterior and posterior part of the dorsal body axis. In tailbud stages the expression is further shifted to both the tail and head areas and gradually restricted to distinct tissues: forebrain, inner layer of epidermis of the head area, stomodeal-hypophyseal anlage, frontal gland, ear vesicle, branchial arches, the front tip of neural tube and proctodeum. In addition, signals were also found in the inner layer of epidermis underneath the cement gland during early tailbud stages while in later tailbud stages signals were detected at the apical zone of the cement gland. Comparative studies indeed could confirm that XODC1 in contrast to XODC2 is expressed ubiquitously throughout the whole embryos during early development of Xenopus laevis.  相似文献   

13.
14.
Pattern regulation in defect embryos of Xenopus laevis   总被引:4,自引:0,他引:4  
Defect embryos of 24 series were prepared by removing increasing numbers of blastomeres from an 8-cell embryo of Xenopus laevis. They were cultured and their development was examined macroscopically when controls reached a tailbud stage or later. Results show that most of defect embryos of 12 series develop normally, and some of them become normal frogs. Each of these defect embryos contain at least two animal blastomeres, one dorsal, and one ventral blastomere of the vegetal hemisphere. This suggests that a set of these four blastomeres of the three types is essential for complete pattern regulation.  相似文献   

15.
A single blastomere containing the "germ plasm" of 32-cell stage Xenopus embryos was cultured with [3H]thymidine until the control embryos developed to the neurula stage. The explants, showing a spherical mass in which the nuclei of all cells were labeled, were implanted into the prospective place of presumptive primordial germ cells (pPGCs) in the endodermal cell mass of unlabeled host embryos of the neurula stage. Labeled PGCs as well as unlabeled, host PGCs were found in the genital ridges of experimental tadpoles. This indicates that the precursor of germ cells, corresponding to pPGCs in normal embryos of the neurula stage, in the explants migrated to genital ridges just at the right moment to become PGCs, and suggests that the developmental process progressed normally, even in the explants, as far as the differentiation of pPGCs is concerned.  相似文献   

16.
In order to determine the time window for induction of lateral line placodes in the axolotl, we performed two series of heterotopic and isochronic transplantations from pigmented to albino embryos at different stages of embryogenesis and assessed the distribution of pigmented neuromasts in the hosts at later stages. First, ectoderm from the prospective placodal region was transplanted to the belly between early neurula and mid tailbud stages (stages 13-27). Whereas grafts from early neurulae typically differentiated only into epidermis, grafts from late neural fold stages on reliably resulted in differentiation of ectopic pigmented neuromasts. Second, belly ectoderm was transplanted to the prospective placodal region between early neurula and tailbud stages (stages 13-35). Normal lateral lines containing pigmented neuromasts formed in most embryos when grafts were performed prior to early tailbud stages (stage 24) but not when they were performed later. Our findings indicate that lateral line placodes, from which neuromasts originate, are already determined at late neural fold stages (first series of grafts) but are inducible until early tailbud stages (second series of grafts). A further series of heterochronic transplantations demonstrated that the decline of inducibility at mid tailbud stages is mainly due to the loss of ectodermal competence.  相似文献   

17.
At the end of gastrulation in avians and mammals, the endoderm germ layer is an undetermined sheet of cells. Over the next 24-48 h, endoderm forms a primitive tube and becomes regionally specified along the anterior-posterior axis. Fgf4 is expressed in gastrulation and somite stage embryos in the vicinity of posterior endoderm that gives rise to the posterior gut. Moreover, the posterior endoderm adjacent to Fgf4-expressing mesoderm expresses the FGF-target genes Sprouty1 and 2 suggesting that endoderm respond to an FGF signal in vivo. Here, we report the first evidence suggesting that FGF4-mediated signaling is required for establishing gut tube domains along the A-P axis in vivo. At the gastrula stage, exposing endoderm to recombinant FGF4 protein results in an anterior shift in the Pdx1 and CdxB expression domains. These expression domains remain sensitive to FGF4 levels throughout early somite stages. Additionally, FGF4 represses the anterior endoderm markers Hex1 and Nkx2.1 and disrupts foregut morphogenesis. FGF signaling directly patterns endoderm and not via a secondary induction from another germ layer, as shown by expression of dominant-active FGFR1 specifically in endoderm, which results in ectopic anterior expression of Pdx1. Loss-of-function studies using the FGF receptor antagonist SU5402 demonstrate that FGF signaling is necessary for establishing midgut gene expression and for maintaining gene expression boundaries between the midgut and hindgut from gastrulation through somitogenesis. Moreover, FGF signaling in the primitive streak is necessary to restrict Hex1 expression to anterior endoderm. These data show that FGF signaling is critical for patterning the gut tube by promoting posterior and inhibiting anterior endoderm cell fate.  相似文献   

18.
19.
Utilizing a muscle-specific monoclonal antibody (Mu-2) as a probe, we analysed developmental mechanisms involved in muscle cell differentiation in ascidian embryos. The antigen recognized by Mu-2 was a single polypeptide with a relative molecular mass of about 220 X 10(3). It first appeared at the early tailbud stage and continued to be expressed until the swimming larva stage. There were distinct and separate puromycin and actinomycin D sensitivity periods during the occurrence of the antigen, suggesting the new synthesis of the polypeptide by developing muscle cells. Embryos that had been permanently arrested with aphidicolin in the early cleavage stages up to the 32-cell stage did not express the antigen. DNA replications may be required for the antigen expression. Embryos that had been arrested with cytochalasin B in the 8-cell and later stages developed the antigen, and the number and position of the arrested blastomeres exhibiting the differentiation marker almost corresponded to those of the B4.1-line muscle lineage. Furthermore, in quarter embryos developed from each blastomere pair isolated from the 8-cell embryo, all the B4.1 as well as a part of b4.2 partial embryos expressed the antigen, while the a4.2 and A4.1 partial embryos did not show the antigen expression. These results may provide further support for the existence of cytoplasmic determinants for muscle cell differentiation in this mosaic egg.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号