首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Moth pheromone glands contain desaturases that catalyze the formation of conjugated dienoic fatty acids. In this article we present the first stereochemical study on one of these enzymes, namely the Delta(9) desaturase of (E)-11-tetradecenoic acid, using the moth Spodoptera littoralis as a biological model and enantiopure deuterated probes derived from tridecanoic acid. Gas chromatography coupled to mass spectrometry analysis of methanolyzed lipidic extracts from glands incubated with each individual probe showed that in the transformation of (E)-11-tetradecenoic acid into (Z,E)-9,11-tetradecadienoic acid both pro-(R) hydrogen atoms at C9 and C10 are removed from the substrate.  相似文献   

2.
Pinilla A  Camps F  Fabrias G 《Biochemistry》1999,38(46):15272-15277
Many moth species biosynthesize their sex pheromones by the action of unique desaturases. These membrane-bound family of enzymes are especially interesting, since some of them produce (E)-unsaturated fatty acids either exclusively or along with the (Z)-isomer. In this article we present the first mechanistic study on one of these enzymes, namely, the Delta11-myristoyl-CoA desaturase of the moth Spodoptera littoralis. Intermolecular primary isotope effect determinations were performed in competition experiments. The unusual use of odd-number fatty acids, tridecanoic acid and deuterium-labeled tridecanoic acid, in these experiments showed the existence of a large isotope effect for the carbon-hydrogen bond cleavage at C11, but no isotope discrimination occurred in the removal of C12-H. The results of the competitive experiments are consistent with the hypothesis that this Delta11-desaturase involves a first slow, isotope-sensitive C11-H bond cleavage, with probable formation of an unstable intermediate, followed by a second fast C12-H bond removal. We suggest that a single enzyme may be responsible for the formation of both (Z)- and (E)-11-tetradecenoic acids by accommodating both gauche and anti conformers of the substrate, respectively. It is also possible that two mechanistically identical discrete enzymes are involved in each desaturation. In this case, the geometry of the resulting double bond would result from the different conformation adopted by the acyl substrate at each enzyme active site.  相似文献   

3.
In the biosynthetic pathway of Spodoptera littoralis sex pheromone, (E,E)-10,12-tetradecadienoic acid is produced from (Z)-11-tetradecenoic acid by desaturation and concomitant migration of the precursor double bond. With the aim of identifying the enzyme involved in this biotransformation, yeast Deltaelo1/Deltaole mutants, which are both elongase 1 and Delta9 desaturase-deficient, were transformed with the S. littoralis Delta11 desaturase gene using a Cu+2 inducible expression vector. The transformants produced a recombinant polyhistidine-tagged Delta11 desaturase that could be detected by immunoblotting from cell lysates. Lipid analysis revealed that besides producing large quantities of C11-monounsaturated fatty acids, mainly (Z)-11-hexadecenoic acid, (E,E)-10,12-tetradecadienoic acid and minor amounts of (E,Z)-10,12-hexadecadienoic acid were also produced, as well as very low quantities of another tetradecadienoate, which was tentatively identified as the (E,Z)-10,12-tetradecadienoic isomer. None of these dienes was detected with the Delta11 desaturase gene of Trichoplusia ni, which does not produce conjugated dienes as pheromone components. We conclude that the Delta11 desaturase of S. littoralis is a bifunctional enzyme with both Delta11 and Delta10,12 desaturation activities. The relationship between the substrate structure and the stereochemical outcome of the reaction is discussed.  相似文献   

4.
A survey of the three kinetoplastid genome projects revealed the presence of three putative front-end desaturase genes in Leishmania major, one in Trypanosoma brucei and two highly identical ones (98%) in T. cruzi. The encoded gene products were tentatively annotated as Delta8, Delta5 and Delta6 desaturases for L. major, and Delta6 desaturase for both trypanosomes. After phylogenetic and structural analysis of the deduced proteins, we predicted that the putative Delta6 desaturases could have Delta4 desaturase activity, based mainly on the conserved HX(3)HH motif for the second histidine box, when compared with Delta4 desaturases from Thraustochytrium, Euglena gracilis and the microalga, Pavlova lutheri, which are more than 30% identical to the trypanosomatid enzymes. After cloning and expression in Saccharomyces cerevisiae, it was possible to functionally characterize each of the front-end desaturases present in L. major and T. brucei. Our prediction about the presence of Delta4 desaturase activity in the three kinetoplastids was corroborated. In the same way, Delta5 desaturase activity was confirmed to be present in L. major. Interestingly, the putative Delta8 desaturase turned out to be a functional Delta6 desaturase, being 35% and 31% identical to Rhizopus oryzae and Pythium irregulareDelta6 desaturases, respectively. Our results indicate that no conclusive predictions can be made about the function of this class of enzymes merely on the basis of sequence homology. Moreover, they indicate that a complete pathway for very-long-chain polyunsaturated fatty acid biosynthesis is functional in L. major using Delta6, Delta5 and Delta4 desaturases. In trypanosomes, only Delta4 desaturases are present. The putative algal origin of the pathway in kinetoplastids is discussed.  相似文献   

5.
Analysis of a draft nuclear genome sequence of the diatom Thalassiosira pseudonana revealed the presence of 11 open reading frames showing significant similarity to functionally characterized fatty acid front-end desaturases. The corresponding genes occupy discrete chromosomal locations as determined by comparison with the recently published genome sequence. Phylogenetic analysis showed that two of the T. pseudonana desaturase (Tpdes) sequences grouped with proteobacterial desaturases that lack a fused cytochrome b5 domain. Among the nine remaining gene sequences, temporal expression analysis revealed that seven were expressed in T. pseudonana cells. One of these, TpdesN, was previously characterized as encoding a Delta11-desaturase active on palmitic acid. From the six remaining putative desaturase genes, we report here that three, TpdesI, TpdesO and TpdesK, respectively encode Delta6-, Delta5- and Delta4-desaturases involved in production of the health beneficial polyunsaturated fatty acid DHA (docosahexaenoic acid). Furthermore, we show that one of the remaining genes, TpdesB, encodes a Delta8-sphingolipid desaturase with strong preference for dihydroxylated substrates.  相似文献   

6.
7.
A cDNA with homology to fatty acid desaturases was selected by searching the cDNA data bank of Dictyostelium discoideum (http://www. csm.biol.tsukuba.ac.jp/cDNAproject.html) with conserved histidine box motifs. Using this sequence, genomic DNA encoding the Delta5 desaturase was amplified from the genomic DNA of D. discoideum, and its desaturase activity was confirmed by the overexpression mutation in D. discoideum and the gain-of-function mutation in yeast. The cloned cDNA is 1565 nucleotides in length, and the deduced amino-acid sequence comprised 467 amino-acid residues containing an N-terminal cytochrome b5 domain that shared 43% identity with cytochrome b5 of Oryza sativa. The whole sequence was 42% identical to the Delta5 desaturase of Mortierella alpina. This desaturase is a novel member of the cytochrome b5-containing Delta5 fatty acid desaturase. As we have already reported one other Delta5 desaturase in Dictyostelium, this organism is the first to be confirmed as having two functional Delta5 fatty acid desaturase genes. The substrate specificities of the two functional Delta5 desaturases of D. discoideum were also examined.  相似文献   

8.
The desaturase inhibitory activity of the cyclopropenyl alcohols 9,10-methylene-9-tetradecen-1-ol (9-MTOL), 10,11-methylene-10-tetradecen-1-ol (10-MTOL) and 11,12-methylene-11-tetradecen-1-ol (11-MTOL), which are structural analogs of 10,11-methylene-10-tetradecenoic acid (10-MTA), is reported. At equimolar ratios with respect to the different substrates, the three compounds completely inhibited the three desaturation reactions involved in the biosynthesis of Spodoptera littoralis sex pheromone. The dose-dependence of inhibition was determined for 10-MTA and its alcohol derivative. Both compounds inhibited the transformation of perdeuterated palmitic acid into perdeuterated (Z)-11-hexadecenoic acid and that of (E)-11-tridecenoic acid into (Z,E)-9,11-tridecadienoic acid with similar IC(50) values. The overall results presented in this work support scattered data that neither the free carboxyl groups nor their acyl-CoA esters are a requisite for inhibition of desaturases. Since the synthesis of cyclopropenols is much more convenient than that of cyclopropene fatty acids, this finding is of economical relevance regarding the putative use of cyclopropene derivatives in pest control.  相似文献   

9.
Fish are the most important dietary source of the n-3 highly unsaturated fatty acids (HUFA), eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), that have particularly important roles in human nutrition reflecting their roles in critical physiological processes. The objective of the study described here was to clone, functionally characterize and compare expressed fatty acid desaturase genes involved in the production of EPA and DHA in freshwater and marine teleost fish species. Putative fatty acid desaturase cDNAs were isolated and cloned from common carp (Cyprinus carpio) and turbot (Psetta maximus). The enzymic activities of the products of these cDNAs, together with those of cDNAs previously cloned from rainbow trout (Oncorhynchus mykiss) and gilthead sea bream (Sparus aurata), were determined by heterologous expression in the yeast Saccharomyces cerevisiae. The carp and turbot desaturase cDNAs included open reading frames (ORFs) of 1335 and 1338 base pairs, respectively, specifying proteins of 444 and 445 amino acids. The protein sequences possessed all the characteristic features of microsomal fatty acid desaturases, including three histidine boxes, two transmembrane regions, and N-terminal cytochrome b(5) domains containing the haem-binding motif, HPGG. Functional expression showed all four fish cDNAs encode basically unifunctional Delta6 fatty acid desaturase enzymes responsible for the first and rate-limiting step in the biosynthesis of HUFA from 18:3n-3 and 18:2n-6. All the fish desaturases were more active towards the n-3 substrate with 59.5%, 31.5%, 23.1% and 7.0% of 18:3n-3 being converted to 18:4n-3 in the case of turbot, trout, sea bream and carp, respectively. The enzymes also showed very low, probably physiologically insignificant, levels of Delta5 desaturase activity, but none of the products showed Delta4 desaturase activity. The cloning and characterization of desaturases from these fish is an important advance, as they are species in which there is a relative wealth of data on the nutritional regulation of fatty acid desaturation and HUFA synthesis, and between which substantive differences occur.  相似文献   

10.
Liu W  Rooney AP  Xue B  Roelofs WL 《Gene》2004,342(2):303-311
Six acyl-CoA desaturase-encoding cDNAs from mRNA isolated from the spotted fireworm moth, Choristoneura parallela (Lepidoptera: Tortricidae) were characterized and assayed for functionality. The expression levels of these cDNAs were determined in the pheromone gland and fat body by real-time PCR and the resulting patterns are in line with results from published studies on other moth sex pheromone desaturases. The cDNAs were found to correspond to six genes. Using both biochemical and phylogenetic analyses, four of these were found to belong to previously characterized desaturase functional groups [the Delta 10,11, the Delta 9 (16>18) and the Delta 9 (18>16) groups]. A desaturase highly expressed in the pheromone gland was a novel E11 desaturase that was specific to 14-carbon precursor acids. The fifth gene [CpaZ9(14-26)] was found to display a novel Z9 activity indicating that it belongs to a new Delta 9 functional group, whereas the sixth gene was determined to be nonfunctional with respect to desaturase activity. In accordance with previous studies, we find that desaturases of the Delta 10,11 and Delta 14 groups, which are the fastest evolving desaturases and possess the novel pheromone biosynthetic function, are expressed primarily in the pheromone gland whereas all other desaturases, which do not possess the novel reproductive function, evolve more slowly and display the ancestral metabolic function and pattern of gene expression.  相似文献   

11.
Transgenic tobacco plants O9 and T16 expressing the yeast acyl-CoA Delta9 desaturase and an insect acyl-CoA Delta11 desaturase, respectively, displayed altered profiles of fatty acids compared to wild-type tobacco plants and marked increases in cis-3-hexenal, a major leaf volatile derived from alpha-linolenic acid (18:3). As expected, O9 and T16 plants had increased levels of the major unsaturated fatty acid products formed by the transgenic desaturases they expressed, viz., palmitoleic acid (16:1(Delta9)) and palmitvaccenic acid (16:1(Delta11)), respectively. In addition, levels of 18:3 lipid declined slightly and the pool of free 18:3, which accounts for about 30% of free fatty acids in wild-type plants, disappeared completely in both transgenics. Both O9 and T16 plants were found to have a two-fold increase in 13-lipoxygenase (13-LOX) activity, which catalyzes the first of two steps leading to hexenal production from 18:3. In O9 and T16 plants, the activity of 9-lipoxygenase and hydroperoxide lyase, the latter catalyzing the formation of cis-3-hexenal from alpha-linolenic acid hydroperoxide, was significantly different from that of the wild-type plants. Although 16:1(Delta9) and 16:1(Delta11) had no direct effects on 13-LOX activity in vitro, cis-3-hexenal production increased in tobacco leaves treated with these fatty acids, suggesting that they may act in vivo by stimulating 13-LOX gene expression.  相似文献   

12.
Fatty acid desaturases catalyze the introduction of double bonds at specific positions of an acyl chain and are categorized according to their substrate specificity and regioselectivity. The current understanding of membrane-bound desaturases is based on mutant studies, biochemical topology analysis, and the comparison of related enzymes with divergent functionality. Because structural information is lacking, the principles of membrane-bound desaturase specificity are still not understood despite of substantial research efforts. Here we compare two membrane-bound fatty acid desaturases from Aspergillus nidulans: a strictly monofunctional oleoyl-Delta12 desaturase and a processive bifunctional oleoyl-Delta12/linoleoyl-omega3 desaturase. The high similarities in the primary sequences of the enzymes provide an ideal starting point for the systematic analysis of factors determining substrate specificity and bifunctionality. Based on the most current topology models, both desaturases were divided into nine domains, and the domains of the monofunctional Delta12 desaturase were systematically exchanged for their respective corresponding matches of the bifunctional sister enzyme. Catalytic capacities of hybrid enzymes were tested by heterologous expression in yeast, followed by biochemical characterization of the resulting fatty acid patterns. The individual exchange of two domains of a length of 18 or 49 amino acids each resulted in bifunctional Delta12/omega3 activity of the previously monofunctional parental enzyme. Sufficient determinants of fatty acid desaturase substrate specificity and bifunctionality could, thus, be narrowed down to a membrane-peripheral region close to the catalytic site defined by conserved histidine-rich motifs in the topology model.  相似文献   

13.
The pheromone blend produced by the tobacco hornworm moth (Manduca sexta) (L.) female is unusually complex and contains two conjugated dienals and trienals together with two monounsaturated alkenals. Here, we describe the identification and construction of two genes encoding MsexKPSE and MsexAPTQ desaturases from a cDNA library prepared from the total RNA of the M. sexta pheromone gland. The MsexKPSE desaturase shares a high degree of similarity with Delta(9)-desaturases from different moth species. The functional expression of MsexAPTQ desaturase in Saccharomyces cerevisiae followed by a detailed GC-MS analysis of fatty acid methyl esters (FAME) and their derivatized products and gas-phase Fourier transform infrared (FTIR) spectroscopy of the extracted FAME confirms that this enzyme is a bifunctional Z-Delta(11)-desaturase. MsexAPTQ desaturase catalyses the production of Z11-hexadecenoate (Z11-16) and Z10E12- and E10E12-hexadecadienoates (Z10E12-16) via 1,4-desaturation of the Z11-16 substrate. The stereochemistry of 1,4-desaturation and formation of isomers is discussed.  相似文献   

14.
Tonon T  Harvey D  Qing R  Li Y  Larson TR  Graham IA 《FEBS letters》2004,563(1-3):28-34
A set of genomic DNA sequences putatively encoding front-end desaturases were identified by in silico analysis of the draft genome of the marine microalga Thalassiosira pseudonana. Among these candidate genes, an open reading frame named TpdesN was found to be full-length, intronless, and constitutively expressed during cell cultivation. The predicted amino acid sequence of the corresponding protein, TpDESN, exhibited typical features of desaturases involved in the production of polyunsaturated fatty acids (PUFAs) in algae, i.e. a cytochrome b5-like domain at the N-terminus and three conserved histidine-rich motifs in the desaturase domain. Expression of TpDESN in Saccharomyces cerevisiae revealed that this enzyme was not involved in PUFA synthesis, but specifically desaturated palmitic acid 16:0 to 16:1Delta11. To our knowledge, until this report, Delta11-desaturase activity had only been detected in insect cells.  相似文献   

15.
An open reading frame with fatty acid desaturase similarity was identified in the genome of Trypanosoma brucei. The 1224 bp sequence specifies a protein of 408 amino acids with 59% and 58% similarity to Mortierella alpina and Arabidopsis thaliana Delta12 desaturase, respectively, and 51% with A. thaliana omega3 desaturases. The histidine tracks that compose the iron-binding active centers of the enzyme were more similar to those of the omega3 desaturases. Expression of the trypanosome gene in Saccharomyces cerevisiae resulted in the production of fatty acids that are normally not synthesized in yeast, namely linoleic acid (18:2Delta9,12) and hexadecadienoic acid (16:2Delta9,12), the levels of which were dependent on the culture temperature. At low temperature, the production of bi-unsaturated fatty acids and the 16:2/18:2 ratio were higher. Transformed yeast cultures supplemented with 19:1Delta10 fatty acid yielded 19:2Delta10,13, indicating that the enzyme is able to introduce a double bond at three carbon atoms from a pre-existent olefinic bond. The expression of the gene in a S. cerevisiae mutant defective in cytochrome b5 showed a significant reduction in bi-unsaturated fatty acid production, although it was not totally abolished. Based on the regioselectivity and substrate preferences, we characterized the trypanosome enzyme as a cytochrome b5-dependent oleate desaturase. Expression of the ORF in a double mutant (ole1Delta,cytb5Delta) abolished all oleate desaturase activity completely. OLE1 codes for the endogenous stearoyl-CoA desaturase. Thus, Ole1p has, like Cytb5p, an additional cytochrome b5 function (actually an electron donor function), which is responsible for the activity detected when using the cytb5Delta single mutant.  相似文献   

16.
Unlike most other plant microsomal desaturases, the Delta6-fatty acid desaturase from borage (Borago officinalis) contains an N-terminal extension that shows homology to the small hemoprotein cytochrome (Cyt) b5. To determine if this domain serves as a functional electron donor for the Delta6-fatty acid desaturase, mutagenesis and functional analysis by expression in transgenic Arabidopsis was carried out. Although expression of the wild-type borage Delta6-fatty acid desaturase resulted in the synthesis and accumulation of Delta6-unsaturated fatty acids, this was not observed in plants transformed with N-terminally deleted forms of the desaturase. Site-directed mutagenesis was used to disrupt one of the axial heme-binding residues (histidine-41) of the Cyt b5 domain; expression of this mutant form of the Delta6-desaturase in transgenic plants failed to produce Delta6-unsaturated fatty acids. These data indicate that the Cyt b5 domain of the borage Delta6-fatty acid desaturase is essential for enzymatic activity.  相似文献   

17.
The Bacillus subtilis acyl-lipid desaturase (Delta5-Des) is an iron-dependent integral membrane protein, able to selectively introduce double bonds into long chain fatty acids. Structural information on membrane-bound desaturases is still limited, and the present topological information is restricted to hydropathy plots or sequence comparison with the evolutionary related alkane hydroxylase. The topology of Delta5-Des was determined experimentally in Escherichia coli using a set of nine different fusions of N-terminal fragments of Delta5-Des with the reporter alkaline phosphatase (Delta5-Des-PhoA). The alkaline phosphatase activities of cells expressing the Delta5-Des-PhoA fusions, combined with site-directed mutagenesis of His residues identified in most desaturases, suggest that a tripartite motif of His essential for catalysis is located on the cytoplasmic phase of the membrane. These data, together with surface Lys biotinylation experiments, support a model for Delta5-Des as a polytopic membrane protein with six transmembrane- and one membrane-associated domain, which likely represents a substrate-binding motif. This study provides the first experimental evidence for the topology of a plasma membrane fatty acid desaturase. On the basis of our results and the presently available hydrophobicity profile of many acyl-lipid desaturases, we propose that these enzymes contain a new transmembrane domain that might play a critical role in the desaturation of fatty acids esterified in glycerolipids.  相似文献   

18.
Deuterium-labeled fatty acids have been used to elucidate the sex pheromone biosynthetic pathway in Spodoptera littoralis. Label from palmitic acid was incorporated during the scotophase into all the pheromone acetates and their corresponding fatty acyl intermediates. (Z,E)-9,11-tetradecadienyl acetate, the major component of the pheromone blend, is synthesized from palmitic acid via tetradecanoic acid, which, by the action of a specific (E)-11 desaturase and subsequently a (Z)-9 desaturase, is converted into (Z,E)-9,11-tetradecadienoate. By further reduction and acetylation, this compound leads to the dienne acetate. Deuterated precursors applied to the pheromone gland during the photophase were also incorporated into the pheromone. The percentage of labeled (Z,E)-9,11-tetradecadienyl acetate relative to natural compound was significantly higher during the light period. Label incorporation from different intermediates into the pheromone was stimulated by injection of brain-subesophageal ganglion extract during the photophase. The influence of the pheromone biosynthesis-activating neuropeptide on the biosynthetic pathway is discussed.  相似文献   

19.
Suh MC  Schultz DJ  Ohlrogge JB 《Planta》2002,215(4):584-595
Unusual monounsaturated fatty acids are major constituents (greater than 80%) in seeds of Coriandrum sativum L. (coriander) and Thunbergia alata Bojer, as well as in glandular trichomes (greater than 80% derived products) of Pelargonium x hortorum (geranium). These diverged fatty acid structures are produced via distinct plastidial acyl-acyl carrier protein (ACP) desaturases. When expressed in Arabidopsis thaliana (L.) Heynh. under strong seed-specific promoters the unusual acyl-ACP desaturases resulted in accumulation of unusual monoene fatty acids at 1-15% of seed fatty acid mass. In this study, we have examined several factors that potentially limit higher production of unusual monoenes in transgenic oilseeds. (i) Immunoblots indicated that the introduced desaturases were expressed at levels equivalent to or higher than the endogenous delta9 18:0-ACP desaturase. However, the level of unusual fatty acid produced in transgenic plants was not correlated with the level of desaturase expression. (ii) The unusual desaturases were expressed in several backgrounds, including antisense 18:0-ACP desaturase plants, in fab1 mutants, and co-expressed with specialized ACP or ferredoxin isoforms. None of these experiments led to high production of expected products. (iii) No evidence was found for degradation of the unusual fatty acids during seed development. (iv) Petroselinic acid added to developing seeds was incorporated into triacylglycerol as readily as oleic acid, suggesting no major barriers to its metabolism by enzymes of glycerolipid assembly. (v) In vitro and in situ assay of acyl-ACP desaturases revealed a large discrepancy of activity when comparing unusual acyl-ACP desaturases with the endogenous delta9 18:0-ACP desaturase. The combined results, coupled with the sensitivity of acyl-ACP desaturase activity to centrifugation and low salt or detergent suggests low production of unusual monoenes in transgenic plants may be due to the lack of, or incorrect assemble of, a necessary multi-component enzyme association.  相似文献   

20.
Acyl-lipid desaturases are enzymes that convert a C-C single bond into a C=C double bond in fatty acids that are esterified to membrane-bound glycerolipids. Four types of acyl-lipid desaturase, namely DesA, DesB, DesC, and DesD, acting at the Delta12, Delta15, Delta9, and Delta6 positions of fatty acids respectively, have been characterized in cyanobacteria. These enzymes are specific for fatty acids bound to the sn-1 position of glycerolipids. In the present study, we have cloned two putative genes for a Delta9 desaturase, designated desC1 and desC2, from Nostoc species. The desC1 gene is highly similar to the desC gene that encodes a Delta9 desaturase that acts on C18 fatty acids at the sn-1 position. Homologues of desC2 are found in genomes of cyanobacterial species in which Delta9-desaturated fatty acids are esterified to the sn-2 position. Heterologous expression of the desC2 gene in Synechocystis sp. PCC 6803, in which a saturated fatty acid is found at the sn-2 position, revealed that DesC2 could desaturate this fatty acid at the sn-2 position. These results suggest that the desC2 gene is a novel gene for a Delta9 acyl-lipid desaturase that acts on fatty acids esterified to the sn-2 position of glycerolipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号