首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Two sets of cross-correlated relaxation rates involving chemical shift anisotropy and dipolar interactions have been measured in an RNA kissing complex. In one case, both the CSA and dipolar interaction tensors are located on the same nucleotide base and are rigidly fixed with respect to each other. In the other case, the CSA tensor is located on the nucleotide base whereas the dipolar interaction is located on the adjoining ribose unit. Analysis of the measured rates in terms of isotropic or anisotropic rotational diffusion has been carried out for both cases. A marked difference between the two models is observed for the cross-correlation rates involving rigidly fixed spin interactions. The influence of internal motions about the glycosidic linkage between the nucleotide base and the ribose unit on cross-correlated relaxation rates has been estimated by applying a model of restricted rotational diffusion. Local motions seem to have a more pronounced effect on cross-correlated relaxation rates when the two spin interactions are not rigidly fixed with respect to each other.  相似文献   

4.
Summary A heteronuclear correlation experiment is described which permits simultaneous characterization of both 15N longitudinal decay rates and slow conformational exchange rates. Data pertaining to the exchange between folded and unfolded forms of an SH3 domain is used to illustrate the technique. Because the unfolded form of the molecule, on average, shows significantly higher NH exchange rates than the folded form, and approach which minimizes the degree of water saturation is employed, enabling the extraction of accurate rate constants.  相似文献   

5.
Chemical (conformational) exchange on the ms-s time scale is reliably identified by the observation of transverse relaxation rates, Rex, that depend upon the strength of the effective field (1eff=B1eff) used in spin lock or CPMG experiments. In order to determine if the exchange correlation time, ex, is the fast or slow limit, measurements of (i) signal line shape and (ii) temperature dependence of Rex have been commonly used in studies of stable, small molecules. However, these approaches are often not applicable to proteins, because sample stability and solubility, respectively, limit the temperature range and signal sensitivity of experiments. Herein we use a complex, but general, two-site exchange equation to show when the simple fast exchange equations for Rex are good approximations, in the case of proteins. We then present a simple empirical equation that approximately predicts Rex in all exchange regimes, and explains these results in a clear, straightforward manner. Finally we show how one can reliably determine whether ex is in the fast or slow exchange limit.  相似文献   

6.
For a detailed NMR study of the dynamics of the cold shock protein CspB from Bacillus subtilis, we determined 15N transverse and longitudinal relaxation rates and heteronuclear nuclear Overhauser effects at different solvent viscosities. Up to a relative viscosity of 2, which is equivalent to 27% ethylene glycol (EG), the overall correlation time follows the linear Stokes-Einstein equation. At a relative viscosity of 6 (70% EG) the correlation time deviates from linearity by 30%, indicating that CspB tumbles at a higher rate as expected from the solvent viscosity probably due to a preferential binding of water molecules at the protein surface. The corresponding hydrodynamic radii, determined by NMR diffusion experiments, show no variation with viscosity. The amplitudes of intramolecular motions on a sub-nanosecond time scale revealed by an extended Lipari–Szabo analysis were mainly independent of the solvent viscosity. The lower limit of the NMR `observation window' for the internal correlation time shifts above 0.5 ns at 70% EG, which is directly reflected in the experimentally derived internal correlation times. Chemical exchange contributions to the transverse relaxation rates derived from the Lipari-Szabo approach coincide with the experimentally determined values from the transverse 1H-15N dipolar/15N chemical shift anisotropy relaxation interference. These contributions originate from fast protein folding reactions on a millisecond timescale, which get retarded at increased solvent viscosities.  相似文献   

7.
Current approaches to 15N relaxation in proteins assume that the 15N-1H dipolar and 15N CSA tensors are collinear. We show theoretically that, when there is significant anisotropy of molecular rotation, different orientations of the two tensors, experimentally observed in proteins, nucleic acids, and small peptides, will result in differences in site- specific correlation functions and spectral densities. The standard treatments of the rates of longitudinal and transverse relaxation of amide 15N nuclei, of the 15N CSA/15N-1H dipolar cross correlation, and of the TROSY experiment are extended to account for the effect of noncollinearity of the 15N-1H dipolar and 15N CSA (chemical shift anisotropy) tensors. This effect, proportional to the degree of anisotropy of the overall motion, (D/D–1), is sensitive to the relative orientation of the two tensors and to the orientation of the peptide plane with respect to the diffusion coordinate frame. The effect is negligible at small degrees of anisotropy, but is predicted to become significant for D/D1.5, and at high magnetic fields. The effect of noncollinearity of 15N CSA and 15N-1H dipolar interaction is sensitive to both gross (hydrodynamic) properties and atomic-level details of protein structure. Incorporation of this effect into relaxation data analysis is likely to improve both precision and accuracy of the derived characteristics of protein dynamics, especially at high magnetic fields and for molecules with a high degree of anisotropy of the overall motion. The effect will also make TROSY efficiency dependent on local orientation in moderately anisotropic systems.  相似文献   

8.
A set of TROSY-HNCO (tHNCO)-based 3D experiments is presented for measuring 15N relaxation parameters in large, membrane-associated proteins, characterized by slow tumbling times and significant spectral overlap. Measurement of backbone 15N R 1, R , 15N–{1H} NOE, and 15N CSA/dipolar cross correlation is demonstrated and applied to study the dynamic behavior of the homotetrameric KcsA potassium channel in SDS micelles under conditions where this channel is in the closed state. The micelle-encapsulated transmembrane domain, KcsATM, exhibits a high degree of order, tumbling as an oblate ellipsoid with a global rotational correlation time, τc = 38 ± 2.5 ns, at 50 °C and a diffusion anisotropy, , corresponding to an aspect ratio a/b ≥ 1.4. The N- and C-terminal intracellular segments of KcsA exhibit considerable internal dynamics (S 2 values in the 0.2–0.45 range), but are distinctly more ordered than what has been observed for unstructured random coils. Relaxation behavior in these domains confirms the position of the C-terminal helix, and indicates that in SDS micelles, this amphiphilic helix does not associate into a stable homotetrameric helical bundle. The relaxation data indicate the absence of elevated backbone dynamics on the ps–ns time scale for the 5-residue selectivity filter, which selects K+ ions to enter the channel. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at . An erratum to this article can be found at  相似文献   

9.
Transverse 13CO-1HN (dipole-dipole)/13CO (CSA) cross-correlated relaxation rates were measured for the 13CO resonances of the protein ribonuclease Binase from Bacillus intermedius (12.3 kDa). This was carried out with a novel E.COSY-type triple-resonance experiment, which allows the measurement of cross-correlated transverse relaxation rate from multiplet effects in the absence of resolved scalar coupling. The 13CO-1HN (dipole-dipole)/13CO (CSA) cross-correlated relaxation rates were determined with an average precision of ±5% and cover a range of values between –1.5 and +0.6 Hz. The average (–0.44 Hz) is to be compared with the computed value of –0.83 Hz for this interaction. Mechanisms that potentially can cause the average to be smaller than the theoretical value and the unexpected large spread in observed values are discussed. It is suggested that large contributions to the variations are due to large amplitude local anisotropic motions.  相似文献   

10.
In proteins, dynamic mobility is an important feature of structure, stability, and biomolecular recognition. Uniquely sensitive to motion throughout the milli- to picosecond range, rates of transverse relaxation, R2, are commonly obtained for the characterization of chemical exchange, and the construction of motional models that attempt to separate overall and internal mobility. We have performed an in-depth study of transverse relaxation rates of backbone 15N nuclei in TNfn31–90, the third fibronectin type III domain from human tenascin. By combining the results of spin-echo (CPMG) and off-resonance T1 experiments, we present R2 rates at effective field strengths of 2 to 40 krad/s, obtaining a full spectrum of 16 independent R2 data points for most residues. Collecting such a large number of replicate measurements provides insight into intrinsic uncertainties. The median standard deviation in R2 for non-exchanging residues is 0.31, indicating that isolated measurements may not be sufficiently accurate for a precise interpretation of motional models. Chemical exchange events on a timescale of 570 s were observed in a cluster of residues at the C terminus. Rates of exchange for five other residues were faster than the sampled range of frequencies and could not be determined. Averaged 'exchange free' transverse relaxation rates, R20, were used to calculate the diffusion tensor for rotational motion. Despite a highly asymmetric moment of inertia, the narrow angular dispersion of N-H vectors within the sandwich proves insufficient to define deviations from isotropic rotation. Loop residues provide exclusive evidence for axially symmetric diffusion (Dpar/Dper=1.55).  相似文献   

11.
Here we propose a method for the measurement of the 15N CSA/dipolar relaxation interference based on direct comparison of the 15N doublet components observed in a 1H-coupled 1H-15N HSQC-type spectrum. This allows the determination of the cross-correlation rates with no need for correction factors associated with other methods. The signal overlap problem of coupled HSQC spectra is addressed here by using the IPAP scheme (Ottiger et al., 1998). The approach is applied to the B3 domain of protein G to show that the method provides accurate measurements of the 15N CSA/dipolar cross-correlation rates.  相似文献   

12.
15N chemical shielding tensors contain useful structural information, and their knowledge is essential for accurate analysis of protein backbone dynamics. The anisotropic component (CSA) of 15N chemical shielding can be obtained from 15N relaxation measurements in solution. However, the predominant contribution to nitrogen relaxation from 15N-(1)H dipolar coupling in amide groups limits the sensitivity of these measurements to the actual CSA values. Here we present nitrogen-detected NMR experiments for measuring 15N relaxation in deuterated amide groups in proteins, where the dipolar contribution to 15N relaxation is significantly reduced by the deuteration. Under these conditions nitrogen spin relaxation becomes a sensitive probe for variations in 15N chemical shielding tensors. Using the nitrogen direct-detection experiments we measured the rates of longitudinal and transverse 15N relaxation for backbone amides in protein G in D(2)O at 11.7 T. The measured relaxation rates are validated by comparing the overall rotational diffusion tensor obtained from these data with that from the conventional 15N relaxation measurements in H(2)O. This analysis revealed a 17-24 degree angle between the NH-bond and the unique axis of the 15N chemical shielding tensor.  相似文献   

13.
J B Long  B X Ou 《Mutation research》1985,144(4):243-245
A single injection method of halogenated nucleosides for analysis in vivo of SCE is reported. Halogenated nucleosides were suspended in plant oils, such as peanut oil, and injected into mice subcutaneously. When the dosage of halogenated nucleosides reached 500 mg/kg, satisfactory differential sister chromatid staining of bone marrow cells was obtained. This technique was simple, neither special equipment nor surgical procedure was needed, and the dosage of halogenated nucleosides was relatively low.  相似文献   

14.
Peptide GFSKAELAKARAAKRGGY folds in an alpha-helical conformation that is stabilized by formation of a hydrophobic staple motif and an N-terminal capping box (Munoz V. Blanco FJ, Serrano L, 1995, Struct Biol 2:380-385). To investigate backbone and side-chain internal motions within the helix and hydrophobic staple, residues F2, A5, L7, A8, and A10 were selectively 13C- and 15N-enriched and NMR relaxation experiments were performed in water and in water/trifluoroethanol (TFE) solution at four Larmor frequencies (62.5, 125, 150, and 200 MHz for 13C). Relaxation data were analyzed using the model free approach and an anisotropic diffusion model. In water, angular variances of motional vectors range from 10 to 20 degrees and backbone phi,psi bond rotations for helix residues A5, L7, A8, and A10 are correlated indicating the presence of Calpha-H, Calpha-Cbeta, and N-H rocking-type motions along the helix dipole axis. L7 side-chain CbetaH2 and CgammaH motions are also correlated and as motionally restricted as backbone CalphaH, suggesting considerable steric hindrance with neighboring groups. In TFE which stabilizes the fold, internal motional amplitudes are attenuated and rotational correlations are increased. For the side chain of hydrophobic staple residue F2, wobbling-in-a-cone type motions dominate in water, whereas in TFE, the Cbeta-Cgamma bond and phenyl ring fluctuate more simply about the Calpha-Cbeta bond. These data support the Daragan-Mayo model of correlated bond rotations (Daragan VA, Mayo KH, 1996, J Phys Chem 100:8378-8388) and contribute to a general understanding of internal motions in peptides and proteins.  相似文献   

15.
HYDRONMR is an implementation of state of the art hydrodynamic modeling to calculate the spectral density functions for NH or C-H vectors in a rigid protein structure starting from an atomic level representation. Thus HYDRONMR can be used to predict NMR relaxation times from a rigid model and to compare them with the experimental results. HYDRONMR contains a single adjustable parameter, the atomic element radius. A protocol to determine the value that gives the best agreement between calculated and experimental T1/T2values is described. For most proteins, the value of the atomic element radius ranges between 2.8 Å and 3.8 Å with a distribution centered at 3.3 Å. Deviations from the usual range towards larger values are associated to aggregation in several proteins. Deviations to lower values may be related to large-scale motions or inappropriate model structures.If the average structure is correct, deviations between experimental T1/T2values and those calculated with HYDRONMR can be used to distinguish residues affected by anisotropic motion from those that are involved in chemical exchange.  相似文献   

16.
17.
18.
Fetrow JS  Baxter SM 《Biochemistry》1999,38(14):4480-4492
A protocol for complete isotopic labeling of iso-1-cytochrome c from the eukaryote Saccharomyces cerevisiae is reported. Assignments are reported for the vast majority of the 15N amide resonances in both oxidized and reduced states. 15N heteronuclear relaxation experiments were collected to study the picosecond-nanosecond backbone dynamics of this protein. Relaxation rates were computed and fit to spectral density functions by a model-free analysis. Backbone amides in the overlapping loop B/C region are the most flexible on the picosecond-nanosecond time scale in both forms of the protein. The results show that, on average, the protein backbone is slightly more dynamic in the oxidized than the reduced state, though not significantly so. Exchange terms, which suggest significant motion on a time scale at least an order of magnitude slower than the overall correlation time of 5.2 ns, were required for only two residues in the reduced state and 27 residues in the oxidized state. When analyzed on a per-residue basis, the lower order parameters found in the oxidized state were scattered throughout the protein, with a few continuous segments found in loop C and the C-terminal helix, suggesting greater flexibility of these regions in the oxidized state. The results provide dynamic interpretations for previously presented structural and functional data, including redox-dependent changes that occur in the protein. The way is now paved for extensive dynamic analysis of variant cytochromes c.  相似文献   

19.
A new NMR spin relaxation experiment is described for measuring chemical exchange time constants from approximately 0.5 ms to 5 ms in 15N-labeled macromolecules. The pulse sequence is based on the Carr–Purcell–Meiboom–Gill technique [Carr and Purcell (1954) Phys. Rev., 94, 630–638; Meiboom and Gill (1958) Rev. Sci. Instrum., 29, 688–691; Loria et al. (1999) J. Am. Chem. Soc., 121, 2331–2332], but implements TROSY selection [Pervushin et al. (1997) Proc. Natl. Acad. Sci. USA, 94, 12366–12371] to permit measurement of exchange linebroadening contributions to the narrower component of the 1H-15N scalar-coupled doublet. This modification extends the size limitation imposed on relaxation measurements due to the fast decay of transverse magnetization in larger macromolecules. The new TROSY-CPMG experiment is demonstrated on a [U-98% 15 N] labeled sample of basic pancreatic trypsin inhibitor and a [U-83% 2H, U-98% 15 N] labeled sample of triosephosphate isomerase, a 54 kDa homodimeric protein.  相似文献   

20.
Nuclear spin relaxation experiments performed at 298K, 308K and 318K are used to characterize the intramolecular dynamics and thermodynamics of outer surface protein A (OspA), a key protein in the life-cycle of Borrelia burgdorferi, the causative agent of Lyme disease. It has recently been demonstrated that OspA specifically binds to the gut of the intermediate tick host (Ixodes scapularis), and that this interaction is mediated, at least in part, by residues in the C-terminal domain of OspA that are largely inaccessible to solvent in all X-ray structures of this protein. Our analysis of 15N relaxation parameters in OspA shows that the putative-binding region contains and is surrounded by flexible residues, which could facilitate accessibility to solvent and ligands. In addition, residues with similar activation energies are clustered in a manner that suggests locally collective motions. We have used molecular modeling to show that these collective motions are consistent with a hinge-bending mechanism that exposes residues implicated in binding. Characteristic temperatures describing the energy landscape of the OspA backbone are derived from the temperature dependence of the N-H bond vector order parameters, and a comparison is made between the N and C-terminal globular domains and the unusual single-layer beta-sheet connecting them. The average characteristic temperatures in the three regions indicate that, with an increase in temperature, a larger increase in accessible conformational states occurs for N-H bond vectors in the single-layer central beta-sheet than for bond vectors in the globular N and C-terminal domains. These conformational states are accessible without disruption of hydrogen bonds, providing a conformational entropic gain, upon increase in temperature, without a significant enthalpic penalty. This increase in heat capacity may help to explain the unexpected thermal stability of the unusual single-layer beta-sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号