首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Double-stranded RNA (dsRNA) is produced during replicative viral infection or genotoxic stress. Thus knowledge of the cellular response to dsRNA is necessary to understand the effects of DNA damage or viral infection in biliary epithelia. We assessed the effect of dsRNA on biliary epithelial cell proliferation and apoptosis and the role of the stress-activated p38 MAPK signaling pathway in these responses. dsRNA did not induce apoptosis or proliferation in Mz-ChA-1 human malignant cholangiocytes, but decreased cytotoxicity induced by camptothecin or tumor necrosis factor-related apoptosis inducing ligand and decreased activity of caspases 3, 8, and 9. Furthermore, dsRNA increased p38 MAPK and JNK kinase active site phosphorylation but had no effect on either MAPK kinase (MEK)1/2 or protein kinase R phosphorylation. Inhibition of p38 MAPK with SB-203580 increased basal caspase activity. Thus dsRNA stimulates a p38 MAPK-dependent cell-survival pathway in biliary epithelial cells that may modulate the response of the biliary epithelia to dsRNA produced during genotoxic injury or virus infection.  相似文献   

2.
Tauroursodeoxychate (TUDCA) is used for the treatment of cholangiopathies including primary sclerosing cholangitis, which is considered the primary risk factor for cholangiocarcinoma. The effect of TUDCA on cholangiocarcinoma growth is unknown. We evaluated the role of TUDCA in the regulation of growth of the cholangiocarcinoma cell line Mz-ChA-1. TUDCA inhibited the growth of Mz-ChA-1 cells in concentration- and time-dependent manners. TUDCA inhibition of cholangiocarcinoma growth was blocked by BAPTA-AM, an intracellular Ca(2+) concentration ([Ca(2+)](i)) chelator, and H7, a PKC-alpha inhibitor. TUDCA increased [Ca(2+)](i) and membrane translocation of the Ca(2+)-dependent PKC-alpha in Mz-ChA-1 cells. TUDCA inhibited the activity of MAPK, and this inhibitory effect of TUDCA was abrogated by BAPTA-AM and H7. TUDCA did not alter the activity of Raf-1 and B-Raf and the phosphorylation of MAPK p38 and JNK/stress-activated protein kinase. TUDCA inhibits Mz-ChA-1 growth through a signal-transduction pathway involving MAPK p42/44 and PKC-alpha but independent from Raf proteins and MAPK p38 and JNK/stress-activated protein kinases. TUDCA may be important for the treatment of cholangiocarcinoma.  相似文献   

3.
4.
Inhibitors of p38 mitogen-activated protein kinase (MAPK) diminish inflammatory arthritis in experimental animals. This may be effected by diminishing the production of inflammatory mediators, but this kinase is also part of the IL-1 signal pathway in articular chondrocytes. We determined the effect of p38 MAPK inhibition on proliferative and synthetic responses of lapine chondrocytes, cartilage, and synovial fibroblasts under basal and IL-1-activated conditions.Basal and growth factor-stimulated proliferation and proteoglycan synthesis were determined in primary cultures of rabbit articular chondrocytes, first-passage synovial fibroblasts, and cartilage organ cultures. Studies were performed with or without p38 MAPK inhibitors, in IL-1-activated and control cultures. Media nitric oxide and prostaglandin E2 were assayed.p38 MAPK inhibitors blunt chondrocyte and cartilage proteoglycan synthesis in response to transforming growth factor beta; responses to insulin-like growth factor 1 (IGF-1) and fetal calf serum (FCS) are unaffected. p38 MAPK inhibitors significantly reverse inhibition of cartilage organ culture proteoglycan synthesis by IL-1. p38 MAPK inhibition potentiated basal, IGF-1-stimulated and FCS-stimulated chondrocyte proliferation, and reversed IL-1 inhibition of IGF-1-stimulated and FCS-stimulated DNA synthesis. Decreases in nitric oxide but not prostaglandin E2 synthesis in IL-1-activated chondrocytes treated with p38 MAPK inhibitors are partly responsible for this restoration of response. Synovial fibroblast proliferation is minimally affected by p38 MAPK inhibition.p38 MAPK activity modulates chondrocyte proliferation under basal and IL-1-activated conditions. Inhibition of p38 MAPK enhances the ability of growth factors to overcome the inhibitory actions of IL-1 on proliferation, and thus could facilitate restoration and repair of diseased and damaged cartilage.  相似文献   

5.
6.
To further characterize the development of mast cells from human hemopoietic pluripotent cells we have investigated the expression of telomerase activity in cultured human peripheral blood CD34+ cells, and CD34+ /CD117+ /CD13+ progenitor mast cells selected therefrom, with the idea that induction of telomerase is associated with clonal expansion of CD34+ /CD117+ /CD13+ cells. A rapid increase in telomerase activity preceded proliferation of both populations of cells in the presence of stem cell factor and either IL-3 or IL-6. The induction was transient, and telomerase activity declined to basal levels well before the appearance of mature mast cells. Studies with pharmacologic inhibitors suggested that this induction was initially dependent on the p38 mitogen-activated protein kinase and phosphatidylinositol 3'-kinase, but once cell replication was underway telomerase activity, but not cell replication, became resistant to the effects of inhibitors. Tumor mast cell lines, in contrast, expressed persistently high telomerase activity throughout the cell cycle, and this expression was unaffected by inhibitors of all known signaling pathways in mast cells even when cell proliferation was blocked for extended periods. These results suggest that the transient induction of telomerase activity in human progenitor mast cells was initially dependent on growth factor-mediated signals, whereas maintenance of high activity in tumor mast cell lines was not dependent on intracellular signals or cell replication.  相似文献   

7.
Braconi C  Swenson E  Kogure T  Huang N  Patel T 《PloS one》2010,5(12):e15195

Background

The need for new therapies for cholangiocarcinoma is highlighted by their poor prognosis and refractoriness to chemotherapy. Increased production of Interleukin-6 promotes cholangiocarcinoma growth and contributes to chemoresistance by activating cell survival mechanisms. We sought to identify biologically active compounds capable of ameliorating the phenotypic effects of IL-6 expression and to explore their potential therapeutic use for cholangiocarcinoma.

Methodology

A genomic signature associated with Interleukin-6 expression in Mz-ChA-1 human malignant cholangiocytes was derived. Computational bioinformatics analysis was performed to identify compounds that induced inverse gene changes to the signature. The effect of these compounds on cholangiocarcinoma growth was then experimentally verified in vitro and in vivo. Interactions with other therapeutic agents were evaluated using median effects analysis.

Principal Findings

A group of structurally related compounds, nitrendipine, nifedipine and felodipine was identified. All three compounds were cytotoxic to Mz-ChA-1 cells with an IC50 for felodipine of 26 µM, nitrendipine, 44 µM and nifedipine, 15 µM. Similar results were observed in KMCH-1, CC-LP-1 and TFK-1 cholangiocarcinoma cell lines. At a fractional effect of 0.5, all three agents were synergistic with either camptothecin or gemcitabine in Mz-ChA-1 cells in vitro. Co-administration of felodipine and gemcitabine decreased the growth of Mz-ChA-1 cell xenografts in nude athymic mice.

Conclusions

Computational bioinformatics analysis of phenotype-based genomic expression can be used to identify therapeutic agents. Using this drug discovery approach based on targeting a defined tumor associated phenotype, we identified compounds with the potential for therapeutic use in cholangiocarcinoma.  相似文献   

8.
Although there have been many reports on the relationship between activation of telomerase and carcinogenesis, the role of telomerase in normal cellular growth is still unclear. In this study, we analyzed the relationship between upregulation of telomerase activity and cell cycle progression during the liver regeneration process by using an in vivo mouse two-thirds partial hepatectomy (PH) model as well as by using in vitro hepatocyte culture systems. Furthermore, we also investigated the effects of growth factors on telomerase activity during liver regeneration and the influence of MAPK pathway inhibitors (MEK inhibitors PD98059 and U0126; p38 MAPK inhibitor SB203580) on the telomerase activity of regenerating hepatocytes in vitro. An upregulation of the telomerase activity was found at 24 h after PH, and thereafter an increase in the S-phase fraction was observed at 36-48 h. There was no remarkable change in the telomere length after PH. Preoperative treatment with EGF and HGF increased the in vivo telomerase activity. In a hepatocyte primary culture, the upregulation of the telomerase activity required the presence of EGF, and this upregulation was accelerated by the addition of HGF. A remarkable activation of p44/42 MAPK was seen but no such activation of p38 MAPK was observed at 48 h after PH. Although SB203580 had no effect on the telomerase activity of regenerating hepatocytes, treatment with MEK inhibitors (PD 98059, U0126) significantly repressed the telomerase activity. In conclusion, the telomerase activity is upregulated before hepatocytes enter the S phase, and both EGF and HGF play important roles in this step. In addition, the activation of the p44/42 MAPK pathway seems to play an essential role in telomerase upregulation during the liver regeneration process.  相似文献   

9.
Interleukin-6 (IL-6) has been identified as an important growth regulator of lung cancer cells. Elevation of serum levels of IL-6 has been found in a subpopulation of lung cancer patients, but rarely in patients with benign lung diseases. Approximately 15% of non-small cell lung cancer (NSCLC) tumors exhibit neuroendocrine (NE) properties (NSCLC-NE) and have been suggested to have the biological characteristics similar to small cell lung cancer (SCLC) with early metastasis and initial responsiveness to chemotherapy. We recently showed that IL-6 promotes cell proliferation and downregulates the expression of neuron-specific enolase (NSE, one of the major NE markers) in NSCLC-NE cells. In this study, we show that IL-6 stimulates a transient increase of tyrosine phosphorylation of STAT3 in a dose-dependent fashion. Inhibition of STAT3 signaling pathway by either AG-490 (JAK2-specific inhibitor) or overexpression of STAT3Y705F (a dominant-negative STAT3) reverses NSE expression in IL-6- treated NSCLC-NE cells. In addition, IL-6 induces phosphorylation and activation of p38 MAPK. SB-203580, a p38 MAPK-specific inhibitor, inhibits IL-6-induced p38 MAPK phosphorylating activity and suppresses IL-6-stimulated cell proliferation. Together, our results indicate that STAT3 signaling pathway is involved in IL-6-induced NE differentiation and that p38 MAPK is associated with IL-6-stimulated growth regulation in NSCLC-NE cells. These data suggest that both kinase pathways play critical roles in the pathogenesis of NSCLC-NE malignancies, providing new molecular targets for future therapeutic approaches.  相似文献   

10.
Shock waves were elicited by transient pressure disturbances, which could be used to treat musculoskeletal disorders. In present studies, we investigated whether the low-density shock waves (LDSWs), which are able to damage plasma membrane without impairing the vimentin or other organelles, might augment T-  相似文献   

11.
Premature senescence of IMR-90 human diploid fibroblasts expressing telomerase (hTERT) establishes after exposure to an acute sublethal concentration of H2O2. We showed herein that p38(MAPK) was phosphorylated after exposure of IMR-90 hTERT cells to H2O2. Selective inhibition of p38(MAPK) activity attenuated the increase in the proportion of cells positive for senescence associated beta-galactosidase activity. We generated a low density DNA array to study gene expression profiles of 240 senescence-related genes. Using this array, p38(MAPK) inhibitor and p38(MAPK) small interferent RNA, we identified several p38(MAPK)-target genes differentially expressed in H2O2-stressed IMR-90 hTERT fibroblasts.  相似文献   

12.
13.
Low magnitude high frequency vibration (LMHFV) exhibits effectively anabolic effects on the bone tissue, and can promote osteogenic differentiation of mesenchymal stem cells (MSCs) in vitro. The role of p38 MAPK signaling in LMHFV-induced osteogenesis remains unclear. In this current study, LMHFV loading was applied to BMSCs in vitro, and cell proliferation, alkaline phosphatase (ALP), matrix mineralization, as well as osteogenic genes expression were assayed. The mechanism of mechanical signal transduction was analysed using PCR array, qRT-PCR and Western blot. LMHFV increased cell proliferation in the growth medium, while inhibited proliferation in the osteogenic medium. ALP activity, matrix mineralization and osteogenic genes expression of Runx2, Col-I, ALP, OPN and OC were increased by LMHFV. p38 and MKK6 genes expression, and p38 phosphorylation were promoted in LMHFV-induced osteogenesis. Inhibition of p38 MAPK with SB203580 and targeted p38 siRNA blunted the increased ALP activity and osteogenic genes expression by LMHFV. These findings suggest that LMHFV promotes osteogenic differentiation of BMSCs, and p38 MAPK signaling shows an important function in LMHFV-induced osteogenesis.  相似文献   

14.
Role of c-Src in muscle differentiation has been controversial. Here, we investigated if c-Src positively or negatively regulates muscle differentiation, using H9c2 and C2C12 cell lines. Inhibition of c-Src by treatment with PP1 and SU6656, pharmacologic inhibitors of Src family kinases, or by expression of a dominant negative c-Src, all induced muscle differentiation in proliferation medium (PM). In differentiating cells in differentiation medium (DM), c-Src activity gradually decreased and reached basal level 3 days after induction of differentiation. Inhibition of c-Src suppressed Raf/MEK/ERK pathway but activated p38 MAPK. Inhibition of p38 MAPK did not affect c-Src activity in PM. However, it reactivated Raf/MEK/ERK pathway in c-Src-inhibited cells regardless of PM or DM. Concomitant inhibition of c-Src and p38 MAPK activities blocked muscle differentiation in both media. In conclusion, suppression of c-Src activity stimulates muscle differentiation by activating p38 MAPK uni-directionally.  相似文献   

15.

Background

Genotoxic stress, such as by exposure to bromodeoxyuridine (BrdU) and cigarette smoke, induces premature cell senescence. Recent evidence indicates that cellular senescence of various types of cells is accelerated in COPD patients. However, whether the senescence of airway epithelial cells contributes to the development of airway diseases is unknown. The present study was designed to test the hypothesis that premature senescence of airway epithelial cells (Clara cells) impairs repair processes and exacerbates inflammation after airway injury.

Methods

C57/BL6J mice were injected with the Clara-cell-specific toxicant naphthalene (NA) on days 0, 7, and 14, and each NA injection was followed by a daily dose of BrdU on each of the following 3 days, during which regenerating cells were allowed to incorporate BrdU into their DNA and to senesce. The p38 MAPK inhibitor SB202190 was injected 30 minutes before each BrdU dose. Mice were sacrificed at different times until day 28 and lungs of mice were obtained to investigate whether Clara cell senescence impairs airway epithelial regeneration and exacerbates airway inflammation. NCI-H441 cells were induced to senesce by exposure to BrdU or the telomerase inhibitor MST-312. Human lung tissue samples were obtained from COPD patients, asymptomatic smokers, and nonsmokers to investigate whether Clara cell senescence is accelerated in the airways of COPD patients, and if so, whether it is accompanied by p38 MAPK activation.

Results

BrdU did not alter the intensity of the airway epithelial injury or inflammation after a single NA exposure. However, after repeated NA exposure, BrdU induced epithelial cell (Clara cell) senescence, as demonstrated by a DNA damage response, p21 overexpression, increased senescence-associated β-galactosidase activity, and growth arrest, which resulted in impaired epithelial regeneration. The epithelial senescence was accompanied by p38 MAPK-dependent airway inflammation. Senescent NCI-H441 cells impaired epithelial wound repair and secreted increased amounts of pro-inflammatory cytokines in a p38 MAPK-dependent manner. Clara cell senescence in COPD patients was accelerated and accompanied by p38 MAPK activation.

Conclusions

Senescence of airway epithelial cells impairs repair processes and exacerbates p38 MAPK-dependent inflammation after airway injury, and it may contribute to the pathogenesis of COPD.  相似文献   

16.
We have previously shown that p38 mitogen-activated protein kinase (MAPK) inhibitors, which block the production and action of inflammatory cytokines such as tumor necrosis factor (TNF) and interleukin-1 (IL-1), are effective in models of bone and cartilage degradation. To further investigate the role of p38 MAPK, we have studied its activation in osteoblasts and chondrocytes, following treatment with a panel of proinflammatory and osteotropic agents. In osteoblasts, significant activation of p38 MAPK was observed following treatment with IL-1 and TNF, but not parathyroid hormone, transforming growth factor-beta (TGF-beta), 1,25(OH)(2)D(3), insulin-like growth factor-1 (IGF-1), or IGF-II. Similar results were obtained using primary bovine chondrocytes and an SV40-immortalized human chondrocyte cell line, T/C28A4. SB 203580, a selective inhibitor of p38 MAPK, inhibited IL-1 and TNF-induced p38 MAPK activity and IL-6 production (IC(50)s 0.3--0.5 microM) in osteoblasts and chondrocytes. In addition, IL-1 and TNF also activated p38 MAPK in fetal rat long bones and p38 MAPK inhibitors inhibited IL-1- and TNF-stimulated bone resorption in vitro in a dose-dependent manner (IC(50)s 0.3--1 microM). These data support the contention that p38 MAPK plays a central role in regulating the production of, and responsiveness to, proinflammatory cytokines in bone and cartilage. Furthermore, the strong correlation between inhibition of kinase activity and IL-1 and TNF-stimulated biological responses indicates that selective inhibition of the p38 MAPK pathway may have therapeutic utility in joint diseases such as rheumatoid arthritis (RA).  相似文献   

17.
We reported previously that the early secreted antigenic target of 6 kDa (ESAT-6) from Mycobacterium tuberculosis directly inhibits human T cell IFN-γ production and proliferation in response to stimulation with anti-CD3 and anti-CD28. To determine the mechanism of this effect, we treated T cells with kinase inhibitors before stimulation with ESAT-6. Only the p38 MAPK inhibitor, SB203580, abrogated ESAT-6-mediated inhibition of IFN-γ production in a dose-dependent manner. SB203580 did not reverse ESAT-6-mediated inhibition of IL-17 and IL-10 production, suggesting a specific effect of SB203580 on IFN-γ production. SB203580 did not act through inhibition of AKT (PKB) as an AKT inhibitor did not affect ESAT-6 inhibition of T cell IFN-γ production and proliferation. ESAT-6 did not reduce IFN-γ production by expanding FoxP3(+) T regulatory cells. Incubation of T cells with ESAT-6 induced phosphorylation and increased functional p38 MAPK activity, but not activation of ERK or JNK. Incubation of peripheral blood mononuclear cells with ESAT-6 induced activation of p38 MAPK, and inhibition of p38 MAPK with SB203580 reversed ESAT-6 inhibition of M. tuberculosis-stimulated IFN-γ production by peripheral blood mononuclear cells from subjects with latent tuberculosis infection. Silencing of p38α MAPK with siRNA rendered T cells resistant to ESAT-6 inhibition of IFN-γ production. Taken together, our results demonstrate that ESAT-6 inhibits T cell IFN-γ production in a p38 MAPK-dependent manner.  相似文献   

18.
19.
BackgroundBronchial fibroblasts are the main structural cells responsible for extracellular matrix production and turnover in lung tissue. They play a key role in airway remodelling in asthma through different cytokines including interleukin (IL-6).ObjectiveTo decipher IL-6 signalling in bronchial fibroblasts obtained from severe eosinophilic asthmatics compared to mild asthmatics and healthy controls.MethodsHuman bronchial fibroblasts were isolated from bronchial biopsies of mild and severe eosinophilic asthmatics and non-atopic healthy controls. IL-6 was assessed by qRT-PCR and ELISA. Phosphorylated STAT3, SHP2 and p38/MAPK were evaluated by Western blot. Chemical inhibitors for SHP2 and p38 were used. Fibroblast proliferation was evaluated by BrdU incorporation test.ResultsIL-6 release was significantly increased in fibroblasts from mild and severe asthmatics compared to healthy controls. Fibroblasts from severe asthmatics showed a reduced STAT3 activation compared to mild asthmatics and healthy controls. Constitutive activation of phosphatase SHP2 was found to negatively regulate IL-6 induced STAT3 phosphorylation in fibroblasts from severe asthmatics. This effect was accompanied by a decrease in fibroblast proliferation rate due to the activated p38/mitogen-activated protein kinase. SHP2 and p38/MAPK specific inhibitors (PHPS1 and SB212190) significantly induce a restoration of STAT3 phosphorylation, IL-6 target gene expression and cell proliferation.ConclusionThese data show dysregulated IL-6 signalling in bronchial fibroblasts derived from severe eosinophilic asthmatic subjects involving the protein tyrosine phosphatase SHP2 and p38MAPK. Collectively, our data provides new insights into the mechanisms by which bronchial fibroblasts regulate airway remodelling in severe asthma.  相似文献   

20.
Recent studies have detected significant elevations of interleukin (IL)-5 mRNA in the liver parenchyma of patients with both primary biliary cirrhosis and acute rejection after liver transplantation. In both of these disorders, intrahepatic biliary epithelial cells (BECs) are the targets of injury. We hypothesized that BECs may themselves express IL-5 receptors that may modulate key biliary functions. RNAs coding for IL-5alpha and -beta receptors were amplified by RT/PCR from a biliary cell line derived from a human cholangiocarcinoma (Mz-ChA-1) and verified by DNA sequencing. IL-5 receptor distribution was detected immunocytochemically on Mz-ChA-1 cells, immortalized murine BEC, bile duct-ligated rat liver, and isolated cholangiocytes. Patch-clamp studies on Mz-ChA-1 cells showed that IL-5 inhibits 5'-N-ethylcarboxamidoadenosine-stimulated chloride currents. Additional functional studies showed that IL-5 inhibits secretin-induced bile flow. We conclude that BECs express IL-5 receptors and that IL-5 modulates BEC chloride currents and fluid secretion. Since IL-5 has previously been associated with cholestatic liver disease, we speculate that IL-5 may contribute to liver injury through its effects on biliary secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号