首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ErbB-2 and met reciprocally regulate cellular signaling via plexin-B1   总被引:3,自引:0,他引:3  
Sema4D-induced activation of plexin-B1 has been reported to evoke different and sometimes opposing cellular responses. The mechanisms underlying the versatility of plexin-B1-mediated effects are not clear. Plexin-B1 can associate with the receptor tyrosine kinases ErbB-2 and Met. Here we show that Sema4D-induced activation and inactivation of RhoA require ErbB-2 and Met, respectively. In breast carcinoma cells, Sema4D can have pro- and anti-migratory effects depending on the presence of ErbB-2 and Met, and the exchange of the two receptor tyrosine kinases is sufficient to convert the cellular response to Sema4D from pro- to anti-migratory and vice versa. This work identifies a novel mechanism by which plexin-mediated signaling can be regulated and explains how Sema4D can exert different biological activities through the differential association of its receptor with ErbB-2 and Met.  相似文献   

2.
Semaphorin 3A (Sema3A) is a member of semaphorins and functions as an axonal repulsive guidance molecule. Neuropilin-1 and plexin-As form receptor complexes for Sema3A and plexin-As are thought to initiate the intracellular signaling cascade. However, the molecule by which plexin-As transduce their signal is not well understood. We searched molecules that interact with intracellular domains of plexin-A1 by yeast two-hybrid screening and identified a 349 amino acid fragment of plexin-B1 as a plexin-A1 interacting protein. We, then, cloned mouse plexin-B1 and confirmed their interaction in a mammalian expression system. Plexin-B1 physically associated with plexin-A1, but not with plexin-A2 or A3. Northern blot analysis showed the expression of both plexin-A1 and B1 in adult brain. We propose that plexin-A1 and B1 interact in the adult brain and transduce Sema3A signaling in cooperation.  相似文献   

3.
Plexins are receptors for the axonal guidance molecules known as semaphorins, and the semaphorin 4D (Sema4D) receptor plexin-B1 induces repulsive responses by functioning as an R-Ras GTPase-activating protein (GAP). Here we characterized the downstream signalling of plexin-B1-mediated R-Ras GAP activity, inducing growth cone collapse. Sema4D suppressed R-Ras activity in hippocampal neurons, in parallel with dephosphorylation of Akt and activation of glycogen synthase kinase (GSK)-3beta. Ectopic expression of the constitutively active mutant of Akt or treatment with GSK-3 inhibitors suppressed the Sema4D-induced growth cone collapse. Constitutive activation of phosphatidylinositol-3-OH kinase (PI(3)K), an upstream kinase of Akt and GSK-3beta, also blocked the growth cone collapse. The R-Ras GAP activity was necessary for plexin-B1-induced dephosphorylation of Akt and activation of GSK-3beta and was also required for phosphorylation of a downstream kinase of GSK-3beta, collapsin response mediator protein-2. Plexin-A1 also induced dephosphorylation of Akt and GSK-3beta through its R-Ras GAP activity. We conclude that plexin-B1 inactivates PI(3)K and dephosphorylates Akt and GSK-3beta through R-Ras GAP activity, inducing growth cone collapse.  相似文献   

4.
Plexin-B1, the receptor for Sema4D, has been reported to trigger multiple and sometimes opposing cellular responses in various types of tumor cells. It has been implicated in the regulation of tumor-cell survival, proliferation, angiogenesis, invasion and metastasis. However, the plexin-B1 gene expression and its regulatory mechanism in cervical cancer remain unclear. The present study shows that plexin-B1 is over-expressed in cervical tumor tissues compared to normal cervical tissues by immunohistochemistry, Western blotting and quantitative RT-PCR. The expression of plexin-B1 is significantly associated with cervical tumor metastasis and invasion according to the analysis of the clinicopathologic data. Plexin-B1 also promotes proliferation, migration and invasion in human cervical cancer HeLa cells. We also found that the plexin-B1 levels are inversely correlated with miR-214 amounts in both cervical cancer tissues and HeLa cells. And miR-214 expression level is also associated with metastasis and invasion of cervical tumor. Furthermore, we demonstrate that plexin-B1 is inhibited by miR-214 through a miR-214 binding site within the 3'UTR of plexin-B1 in HeLa cells. Ectopic expression of miR-214 could inhibit the proliferation capacity, migration and invasion ability of HeLa cells. Our findings suggest that plexin-B1, a target of miR-214, may function as an oncogene in human cervical cancer HeLa cells.  相似文献   

5.
Plexins are widely expressed transmembrane proteins that mediate the effects of semaphorins. The molecular mechanisms of plexin-mediated signal transduction are still rather unclear. Plexin-B1 has recently been shown to mediate activation of RhoA through a stable interaction with the Rho guanine nucleotide exchange factors PDZ-RhoGEF and LARG. However, it is unclear how the activity of plexin-B1 and its downstream effectors is regulated by its ligand Sema4D. Here, we show that plexin-B family members stably associate with the receptor tyrosine kinase ErbB-2. Binding of Sema4D to plexin-B1 stimulates the intrinsic tyrosine kinase activity of ErbB-2, resulting in the phosphorylation of both plexin-B1 and ErbB-2. A dominant-negative form of ErbB-2 blocks Sema4D-induced RhoA activation as well as axonal growth cone collapse in primary hippocampal neurons. Our data indicate that ErbB-2 is an important component of the plexin-B receptor system and that ErbB-2-mediated phosphorylation of plexin-B1 is critically involved in Sema4D-induced RhoA activation, which underlies cellular phenomena downstream of plexin-B1, including axonal growth cone collapse.  相似文献   

6.
Semaphorins and plexins are implicated in the progression of various types of cancer, although the molecular basis has not been fully elucidated. Here, we report the expression of plexin-B3 in glioma cells, which upon stimulation by its ligand Sema5A results in significant inhibition of cell migration and invasion. A search for the underlying mechanism revealed direct interaction of plexin-B3 with RhoGDP dissociation inhibitor α (RhoGDIα), a negative regulator of RhoGTPases that blocks guanine nucleotide exchange and sequesters them away from the plasma membrane. Glioma cells challenged with Sema5A indeed showed a marked reduction in Rac1-GTP levels by 60%, with a concomitant disruption of lamellipodia. The inactivation of Rac1 was corroborated to contribute to the impediment of glioma cell invasion by Sema5A, as supported by the abolishment of effect upon forced expression of a constitutively active Rac1 mutant. Furthermore, silencing the endogenous expression of RhoGDIα in glioma cells was found to be sufficient in abrogating the down-regulation of Rac1-GTP and the ensuing suppression of glioma cell motility induced by Sema5A. Mechanistically, we provide evidence that Sema5A promotes Rac1 recruitment to RhoGDIα and reduces its membrane localization in a plexin-B3-dependent manner, thereby preventing Rac1 activation. This represents a novel signaling of semaphorin and plexin in the control of cell motility by indirect inactivation of Rac1 through RhoGDIα.  相似文献   

7.
The Rho family GTPase has been implicated in plexin-B1, a receptor for Semaphorin 4D (Sema4D), mediating signal transduction. Rho may also play a function in this signaling pathway as well as Rac, but the mechanisms for Rho regulation are poorly understood. In this study, we have identified two kinds of PDZ domain-containing Rho-specific guanine nucleotide exchange factors (RhoGEFs) as proteins interacting with plexin-B1 cytoplasmic domain. These PDZ domain-containing RhoGEFs showed significant homology to human KIAA0380 (PDZ-RhoGEF) and LARG (KIAA0382), respectively. Both KIAA0380 and LARG could bind plexin-B1 and a deletion mutant analysis of plexin-B1, KIAA0380 and LARG revealed that KIAA0380 and LARG bound plexin-B1 cytoplasmic tail through their PDZ domains. The tissue distribution analysis indicated that plexin-B1 was co-localized with KIAA0380 and LARG in various tissues. Immunocytochemical analysis showed that LARG was recruited to plasma membrane by plexin-B1. These results suggest that PDZ domain-containing RhoGEFs play a role in Sema4D-plexin-B1 mediating signal transduction.  相似文献   

8.
The semaphorin 4D (Sema4D) receptor plexin-B1 constitutively interacts with particular Rho guanine nucleotide exchange factors (RhoGEFs) and thereby mediates Sema4D-induced RhoA activation, a process which involves the tyrosine phosphorylation of plexin-B1 by ErbB-2. It is, however, unknown how plexin-B1 phosphorylation regulates RhoGEF activity. We show here that activation of plexin-B1 by Sema4D and its subsequent tyrosine phosphorylation creates docking sites for the SH2 domains of phospholipase Cγ (PLCγ). PLCγ is thereby recruited into the plexin-B1 receptor complex and via its SH3 domain activates the Rho guanine nucleotide exchange factor PDZ-RhoGEF. PLCγ-dependent RhoGEF activation is independent of its lipase activity. The recruitment of PLCγ has no effect on the R-Ras GTPase-activating protein activity of plexin-B1 but is required for Sema4D-induced axonal growth cone collapse as well as for the promigratory effects of Sema4D on cancer cells. These data demonstrate a novel nonenzymatic function of PLCγ as an important mechanism of plexin-mediated signaling which links tyrosine phosphorylation of plexin-B1 to the regulation of a RhoGEF protein and downstream cellular processes.Mammalian semaphorins were originally identified as axon guidance factors but are now recognized also as important regulators of morphogenesis and homeostasis in various organ systems, including the immune, cardiovascular, and renal systems (3-5, 7, 19, 23, 30, 35, 40, 56, 64, 76). Most effects of semaphorins are mediated by a group of large transmembrane proteins called plexins, of which four families exist in the mammalian system: plexin-A1 to -4, plexin-B1 to -3, plexin-C1, and plexin-D1 (60, 61). The four members of the plexin-A family in most cases require neuropilins as ligand binding partners to respond to semaphorins, whereas the three members of the plexin-B family are directly activated by semaphorins. While plexin-B1 binds Sema4D, plexin-B2 can be activated by Sema4C and Sema4D, and plexin-B3 has been shown to respond to Sema5A (31, 35).The activation of plexins by semaphorins initiates a variety of signaling processes, which involve several small GTPases of the Ras and Rho families (31, 34, 43). All plexin family members possess an R-Ras GTPase-activating protein (GAP) domain (36). Activated plexin-B1 and -A1 have been shown to also interact with other small GTPases, including GTP-bound Rac1 and RhoD as well as Rnd1, Rnd2, and Rnd3 (14, 37, 48, 63, 67, 68, 74). Different from other plexin families, the C terminus of B-family plexins contains a PDZ domain-binding motif which mediates a stable interaction with the guanine nucleotide exchange factors PDZ-RhoGEF and LARG (1, 15, 26, 39, 57). Activation of the plexin-B1/PDZ-RhoGEF complex by semaphorin 4D (Sema4D) results in RhoA activation downstream of plexin-B1 (15, 39, 57). Members of the plexin-B family also interact with and are phosphorylated by the receptor tyrosine kinases ErbB-2 and c-Met (12, 22, 58). ErbB-2-mediated phosphorylation of plexin-B1 is required for plexin-mediated RhoA activation and downstream cellular effects, including the promigratory effects of Sema4D on cancer cells and the induction of axonal growth cone collapse by Sema4D (58, 59). However, the molecular mechanisms linking ErbB-2-mediated phosphorylation of plexin-B1 to the regulation of RhoA activity and subsequent cellular effects are unknown.Here we report that upon activation by Sema4D, plexin-B1 becomes phosphorylated by ErbB-2 at particular tyrosine residues on its intracellular portion. These phosphorylated tyrosine residues serve as docking sites for the SH2 domains of PLCγ. PLCγ is thereby recruited into the plexin-B1 receptor complex and through its SH3 domain mediates RhoA activation and downstream cellular effects.  相似文献   

9.
We previously reported that novel targeted “hybrid peptide” in which epidermal growth factor receptor (EGFR) binding peptide was conjugated with lytic-type peptide had selective cytotoxic activity to EGFR expressing cancer cells. In this study, we have generated a novel type hybrid peptide, semaphorin 3A lytic (Sema3A-lytic), which is composed of two functional amino acid domains: a sequence derived from Sema3A that binds to neuropilin-1 (NRP1) and a cytotoxic lytic peptide. We found that this hybrid peptide had cytotoxic activity against NRP1-positive pancreatic cancer cell lines such as BxPC-3 and Panc-1, whereas the peptide did not affect the viability of normal cells in vitro. It was also found by affinity analysis that Sema3A peptide binds to NRP1, and two arginines (372R and 377R) in Sema3A peptide are involved in the interaction with NRP1 protein. In addition, confocal microscopy analysis revealed that Sema3A-lytic peptide could not penetrate normal cells regardless of the presence of NRP1 mRNA, suggesting that the ability of Sema3A-lytic peptide to concentrate adjacent to the cell membrane by binding to NRP1 with the target-binding moiety contributes to its selective cytotoxic activity. These results indicate that Sema3A-lytic hybrid peptide would be a possible anti-cancer agent for treatment of human pancreatic cancer.  相似文献   

10.
Originally identified as axon guidance molecules, semaphorins are now known to be widely expressed mediators that play significant roles in immune responses and organ morphogenesis. However, not much is known about the signaling pathways via which they exert their organ-specific effects. Here we demonstrate that Sema4A, previously identified as an activator of T-cell-mediated immunity, is expressed in endothelial cells, where it suppresses vascular endothelial growth factor (VEGF)-mediated endothelial cell migration and proliferation in vitro and angiogenesis in vivo. Mice lacking Sema4A exhibit enhanced angiogenesis in response to VEGF or inflammatory stimuli. In addition, binding and functional experiments revealed Plexin-D1 to be a receptor for Sema4A on endothelial cells, indicating that Sema4A exerts organ-specific activities via different receptor-mediated signaling pathways: via Plexin-D1 in the endothelial cells and via T-cell immunoglobulin and mucin domain-2 in T cells. The effects of Sema4A on endothelial cells are dependent on its ability to suppress VEGF-mediated Rac activation and integrin-dependent cell adhesion. It thus appears that Sema4A-Plexin-D1 signaling negatively regulates angiogenesis.  相似文献   

11.
12.
Attractive and repulsive molecules such as Semaphorins (Sema) trigger rapid responses that control the navigation of axonal growth cones. The role of vesicular traffic in axonal guidance is still largely unknown. The exocytic vesicular soluble N-ethylmaleimide sensitive fusion protein attachment protein receptor (SNARE) Synaptobrevin 2 (Syb2) is known for mediating neurotransmitter release in mature neurons, but its potential role in axonal guidance remains elusive. Here we show that Syb2 is required for Sema3A-dependent repulsion but not Sema3C-dependent attraction in cultured neurons and in the mouse brain. Syb2 associated with Neuropilin 1 and Plexin A1, two essential components of the Sema3A receptor, via its juxtatransmembrane domain. Sema3A receptor and Syb2 colocalize in endosomal membranes. Moreover, upon Sema3A treatment, Syb2-deficient neurons failed to collapse and transport Plexin A1 to cell bodies. Reconstitution of Sema3A receptor in nonneuronal cells revealed that Sema3A further inhibited the exocytosis of Syb2. Therefore, Sema3A-mediated signaling and axonal repulsion require Syb2-dependent vesicular traffic.  相似文献   

13.
SM-216289 (xanthofulvin) isolated from the fermentation broth of a fungal strain, Penicillium sp. SPF-3059, was identified as a strong semaphorin 3A (Sema3A) inhibitor. Sema3A-induced growth cone collapse of dorsal root ganglion neurons in vitro was completely abolished in the presence of SM-216289 at levels less than 2 mum (IC50 = 0.16 mum). When dorsal root ganglion explants were co-cultured with Sema3A-producing COS7 cells in a collagen gel matrix, SM-216289 enabled neurites to grow toward the COS7 cells. SM-216289 diminished the binding of Sema3A to its receptor neuropilin-1 in vitro, suggesting a direct interference of receptor-ligand association. Moreover, our data suggest that SM-216289 interacted with Sema3A directly and blocked the binding of Sema3A to its receptor. We examined the efficacy of SM-216289 in vivo using a rat olfactory nerve axotomy model, in which strong Sema3A induction has been reported around regenerating axons. The regeneration of olfactory nerves was significantly accelerated by a local administration of SM-216289 in the lesion site, suggesting the involvement of Sema3A in neural regeneration as an inhibitory factor. SM-216289 is an excellent molecular probe to investigate the function of Sema3A, in vitro and in vivo, and may be useful for the treatment of traumatic neural injuries.  相似文献   

14.
15.
Translation of the small G protein RhoA in neurons is regulated by the eukaryotic translation initiation factor eIF4E. Here we show that this translation factor also regulates RhoA expression and activity in breast cancer cells. The introduction of eIF4E into breast tumor cells increased RhoA protein levels, while expression of an eIF4E siRNA reduced RhoA expression. Previous studies indicate that the axon repulsion factor Semaphorin3A (Sema3A) stimulates the eIF4E-dependent translation of RhoA in neurons, and breast tumor cells support autocrine Sema3A signaling. Accordingly, we next examined if autocrine Sema3A signaling drives eIF4E-dependent RhoA translation in breast cancer cells. The incubation of breast tumor cells with recombinant Sema3A rapidly increased eIF4E activity, RhoA protein levels, and RhoA activity. This Sema3A activity was blocked in tumor cells expressing an shRNA-specific for the Sema3A receptor, Neuropilin-1 (NP-1), as well as in cells incubated with an eIF4E inhibitor. Importantly, RhoA protein levels were reduced in Sema3A shRNA-expressing compared to control shRNA-expressing breast tumor cells, demonstrating that autocrine Sema3A increases RhoA expression in breast cancer. Considering that Sema3A suppresses axon extension by stimulating RhoA translation, we next examined if the Sema3A/RhoA axis impacts breast tumor cell migration. The incubation of control breast tumor cells, but not RhoA shRNA-expressing cells, with rSema3A significantly reduced their migration. Collectively, these studies indicate that Sema3A impedes breast tumor cell migration in part by stimulating RhoA. These findings identify common signaling pathways that regulate the navigation of neurons and breast cancer cells, thus suggesting novel targets for suppressing breast tumor cell migration.  相似文献   

16.
Nerve growth factor (NGF) and semaphorin3A (Sema3A) are guidance cues found in pathways and targets of developing dorsal root ganglia (DRG) neurons. DRG growth cone motility is regulated by cytoplasmic signaling triggered by these molecules. We investigated interactions of NGF and Sema3A in modulating growth cone behaviors of axons extended from E7 chick embryo DRGs. Axons extending in collagen matrices were repelled by Sema3A released from transfected HEK293 cells. However, if an NGF-coated bead was placed adjacent to Sema3A-producing cells, axons converged at the NGF bead. Growth cones of DRGs raised in 10(-9) M NGF were more resistant to Sema3A-induced collapse than when DRGs were raised in 10(-11) M NGF. After overnight culture in 10(-11) M NGF, 1-hr treatment with 10(-9) M NGF also increased growth cone resistance to Sema3A. Pharmacological studies indicated that the activities of ROCK and PKG participate in the cytoskeletal alterations that lead to Sema3A-induced growth cone collapse, whereas PKA activity is required for NGF-mediated reduction of Sema3A-induced growth cone collapse. These results support the idea that growth cone responses to a guidance cue can be modulated by interactions involving coincident signaling by other guidance cues.  相似文献   

17.
Neuropilin-1 (Npn-1) is a receptor for both semaphorin 3A (Sema3A) and vascular endothelial growth factor 165 (VEGF(165)). To understand the role Npn-1 plays as a receptor for these structurally and functionally unrelated ligands, we set out to identify structural features of Npn-1 that confer binding to Sema3A or VEGF(165). We constructed Npn-1 variants containing deletions within the "a" and "b" domains of Npn-1. More than 16 variants were expressed in COS-1 cells and tested for alkaline phosphatase-Sema3A as well as alkaline phosphatase-VEGF(165) binding. Our results indicate that each of the two Npn-1 CUB domains and the amino-terminal coagulation factor V/VIII domain (CF V/VIII) are essential for Sema3A binding, but only the amino-terminal Npn-1 CF V/VIII domain is required for binding to VEGF(165). Guided by the structure of the bovine spermadhesin CUB domain, point mutants targeting defined surfaces of the Npn-1 a1 CUB domain were generated and tested for Sema3A and VEGF(165) binding. One Npn-1 variant, Npn-1(2ABC), exhibits complete loss of Sema3A binding while retaining normal VEGF(165) binding. Moreover, co-immunoprecipitation experiments show that Npn-1(2ABC) can form a signaling complex with the VEGF(165) signaling receptor KDR/VEGFR-2. These results establish the identity of contact sites between Npn-1 and its semaphorin ligands, and they provide a foundation for understanding how Npn-1 functions as a receptor for distinct classes of ligands in vivo.  相似文献   

18.
Semaphorin-3A (Sema3A), a member of class 3 semaphorins, regulates axon and dendrite guidance in the nervous system. How Sema3A and its receptors plexin-As and neuropilins regulate neuronal guidance is unknown. We observed that in fyn- and cdk5-deficient mice, Sema3A-induced growth cone collapse responses were attenuated compared to their heterologous controls. Cdk5 is associated with plexin-A2 through the active state of Fyn. Sema3A promotes Cdk5 activity through phosphorylation of Tyr15, a phosphorylation site with Fyn. A Cdk5 mutant (Tyr15 to Ala) shows a dominant-negative effect on the Sema3A-induced collapse response. The sema3A gene shows strong interaction with fyn for apical dendrite guidance in the cerebral cortex. We propose a signal transduction pathway in which Fyn and Cdk5 mediate neuronal guidance regulated by Sema3A.  相似文献   

19.
In Drosophila, plexin A is a functional receptor for semaphorin-1a. Here we show that the human plexin gene family comprises at least nine members in four subfamilies. Plexin-B1 is a receptor for the transmembrane semaphorin Sema4D (CD100), and plexin-C1 is a receptor for the GPI-anchored semaphorin Sema7A (Sema-K1). Secreted (class 3) semaphorins do not bind directly to plexins, but rather plexins associate with neuropilins, coreceptors for these semaphorins. Plexins are widely expressed: in neurons, the expression of a truncated plexin-A1 protein blocks axon repulsion by Sema3A. The cytoplasmic domain of plexins associates with a tyrosine kinase activity. Plexins may also act as ligands mediating repulsion in epithelial cells in vitro. We conclude that plexins are receptors for multiple (and perhaps all) classes of semaphorins, either alone or in combination with neuropilins, and trigger a novel signal transduction pathway controlling cell repulsion.  相似文献   

20.
Semaphorin 3A (Sema3A) is a secreted guidance molecule initially described in the nervous system. This protein is able to control axon growth but also effects on endothelial cells migration. Here, we report that Sema3A acts as a chemorepellent factor for the rat C6 glioma cells and 3 different human glioma cell lines. Interestingly, Sema3A triggered a chemoattractive response in a fourth human glioma cell line. The nature of the receptor complex ensuring the appropriate signaling was dissected in C6 cells by using function blocking antibodies and gain- or loss-of function experiments using recombinant receptors. Our results demonstrate that neuropilin-1, neuropilin-2 and PlexinA1 are necessary to trigger cell repulsion. The selective blockade of neuropilin-1 or Plexin-A1 switched the chemorepulsive effect of Sema3A into a chemoattractive one. Strikingly, blocking Neuropilin-2 suppressed Sema3A-induced cell migration while over-expression of neuropilin-2 was able to convert the chemorepulsive effect of Sema3A into a chemoattractive one. Our results not only provide additional evidence for a biological function of Sema3A in glioma migration but also reveal part of the receptor complex involved. Hence, our study describes a receptor-based plasticity in cancer cells leading to opposite migration behavior in response to the same extracellular signal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号