首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report 31 point mutations in the factor IX gene and explore the relationship between the level of evolutionary conservation of an amino acid and the probability of a mutation causing hemophilia B. From our total sample of 125 hemophiliacs and from those reported by others, we identify 95 independent missense mutations, 94 of which occur at amino acids that are evolutionarily conserved in the available mammalian factor IX sequences. The likelihood of a missense mutation causing hemophilia B depends on whether the residue is also conserved in the factor IX-related proteases: factor VII, factor X, and protein C. Most of the possible missense mutations in generically conserved residues (i.e., those conserved in factor IX and in all the related proteases) should cause disease. In contrast, missense mutations in factor IX-specific residues (i.e., those conserved in human, cow, dog, and mouse factor IX but not in the related proteases) are sixfold less likely to cause disease. Missense mutations at nonconserved residues are 33-fold less likely to cause disease. At least three models are compatible with these observations. A comparison of sequence alignments from four and nine species of factor IX and an examination of the missense mutations occurring at CpG residues suggest a model in which most residues fall on opposite ends of a spectrum. In about 40% of residues, virtually any missense mutation in a minority of the residues will cause disease, while virtually no missense mutations will cause disease in most of the remaining residues. Thus, many of the residues in factor IX are spacers; that is, the main chains are presumably necessary to keep other amino acid interactions in register, but the nature of the side chain is unimportant.  相似文献   

2.
The spectrum of somatic cancer-associated missense mutations in the human TP53 gene was studied in order to assess the potential structural and functional importance of various intra-molecular properties associated with these substitutions. Relating the observed frequency of particular amino acid substitutions in the p53 DNA-binding domain to their expected frequency, as calculated from DNA sequence-dependent mutation rates, yielded estimates of their relative clinical observation likelihood (RCOL). Several biophysical properties were found to display significant covariation with RCOL values. Thus RCOL values were observed to decrease with increasing solvent accessibility of the substituted residue and with increasing distance from the p53 DNA-binding and Zn2+-binding sites. The number of adverse steric interactions introduced by an amino acid replacement was found to be positively correlated with its RCOL value, irrespective of the magnitude of the interactions. A gain in hydrogen bond number was found to be only half as likely to come to clinical attention as mutations involving either a reduction or no change in hydrogen bond number. When the difference in potential energy between the wild-type and mutant DNA-binding domains was considered, RCOL values exhibited a minimum around changes of zero. Finally, classification of mutated residues in terms of their protein/solvent environment yielded, for somatic p53 mutations, RCOL values that resembled those previously determined for inherited mutations of human factor IX causing haemophilia B, suggesting that similar mechanisms may be responsible for the mutation-related perturbation of biological function in different protein folds. Received: 31 August 1998 / Accepted: 26 October 1998  相似文献   

3.
4.
We have used chimeras and point mutations of recombinant coagulation factor IX to examine factor IX's specific interaction with bovine endothelial cells. Previously (Toomey, J. R., Smith, K. J., Roberts, H. R., and Stafford, D. W. (1992) Biochemistry 31, 1806-1808), we restricted the region of factor IX responsible for binding to endothelial cells to its Gla domain. Molecular modeling of the Gla domain of factor IX using the coordinates of the Gla domain of bovine prothrombin-(1-145) (Soriano-Garcia, M., Padmanabhan, K., deVos, A. M., and Tulinsky, A. (1992) Biochemistry 31, 2554-2566) reveals two major surface determinants whose sequences differ among factors IX, X, and VII. A chimeric protein comprised of the Gla domain of factor VII with the remainder of the molecule of factor IX did not bind to the endothelial cell binding site. We changed residues 33, 34, 35, 39, and 40 to those of factor IX without restoring endothelial cell binding. Replacement of amino acid residues 3-10 with those of factor IX restored normal binding. With the knowledge that specific binding was localized to the first 11 amino acids, point mutations were made at residues predicted to be on the surface in this region of the factor IX molecule. Changing lysine 5 to alanine (K5A) or valine 10 to lysine (V10K) resulted in loss of binding with total retention of in vitro clotting activity. The lysine 5 to arginine (K5R) mutation also was fully active in vitro but displayed 3-fold tighter binding. In addition to defining the sequence of factor IX necessary for binding to endothelial cells, these results suggest that the binding site is not phospholipid but instead is specific, and in all likelihood, protein.  相似文献   

5.
Vitamin-K-dependent plasma proteins contain a highly conserved propeptide sequence located between the classical hydrophobic leader sequence and the N-terminus of the mature protein. This acts as a recognition sequence for the vitamin-K-dependent carboxylase which catalyses the conversion of specific glutamate residues to gamma-carboxyglutamate (Gla) residues in the adjacent Gla domain. Protein engineering of the 18 residue propeptide from human factor IX has highlighted the importance of residues -16Phe and -10Ala with respect to carboxylase recognition. In addition, studies of haemophilia B patients have shown that C-terminal propeptide residues -4Arg and -1Arg are required for proteolysis of the propeptide from the mature protein. To extend these previous studies we have introduced two novel mutations into the propeptide of human factor IX at positions -17(Val----Asp) and -6(Leu----AsP), and studied the effect of these changes on gamma-carboxylation and proteolytic processing. Both mutations reduce the expression of a calcium-dependent epitope in the Gla domain; however, only -6Leu----Asp shows reduced binding to barium sulphate. In addition, this latter mutation prevents proteolytic processing of the propeptide. These data support the current hypothesis that the propeptide contains two recognition elements: one for carboxylase recognition located towards the N-terminus, and one for propeptidase recognition located near the C-terminus.  相似文献   

6.
S S Sommer 《FASEB journal》1992,6(10):2767-2774
Germline mutations cause or predispose to most disease. Hemophilia B is a useful model for studying the underlying pattern of recent germline mutations in humans because the observed pattern of mutation in factor IX more closely reflects the underlying pattern of mutation than the observed pattern for many other genes. In addition, it is possible to identify and correct for biases inherent in ascertaining only those mutations that cause hemophilia. Aspects of the pattern of germline mutation in the factor IX gene are becoming clear: 1) in the United States, two-thirds of mutations causing mild disease arose from three founders whereas almost all the mutations resulting in either moderate or severe disease arose independently, generally within the past 150 years; 2) direct estimates of the rates of mutation in humans indicate that transitions are more frequent than transversions, which in turn are more frequent than deletions and insertions; 3) transitions at CpG are elevated approximately 24-fold relative to transitions at non-CpG dinucleotides; 4) transversions at CpG are elevated approximately eightfold relative to transversions at non-CpG dinucleotides; 5) the sum total of the dinucleotide mutation rates produces a bias against G and C bases that would be sufficient to maintain the G+C content of the factor IX gene at its evolutionarily conserved level of 40%; and 6) the pattern of mutation is similar for Caucasians residing in the United States and for Asians residing in Asia. Two ideas emerge from this and from an analysis of the pattern of recent deleterious mutations compared with ancient neutral mutations that have been fixed during evolution into the factor IX gene. First, the bulk of germline mutations are likely to arise from endogenous processes rather than environmental mutagens. Second, the factor IX protein is composed mostly of two classes of amino acids: critical residues in which all single-base missense changes will disrupt protein function, and "spacer" residues in which the precise nature of the residue is unimportant but the peptide bond is necessary to keep the critical residues in register. More work is necessary to assess the veracity and generality of these ideas.  相似文献   

7.
The molecular epidemiology of factor IX germline mutations in patients with hemophilia B has been studied in detail because it is an advantageous model for analyzing recent germline mutations in humans. It is estimated that mutations have been defined in the majority of nucleotides that are the target for mutation. The likelihood that a factor IX missense mutation will cause disease correlates with the degree of evolutionary conservation of the amino acid. Mutation rates per base-pair have been estimated after careful consideration and correction for biases, predicting about 76 de novo mutations per generation per individual resulting in 0.3 deleterious changes. The male-to-female sex ratio of mutation varies with the type of mutation. There is evidence for a maternal age effect and an excess of non-CpG G:C to A:T transitions. The factor IX mutation pattern is similar among geographically, racially and ethnically diverse human populations. The data support primarily endogenous mechanisms of germline mutation in the factor IX gene. Mutations at splice junctions are compatible with simple rules for predicting disease causing mutations.  相似文献   

8.
An anticoagulant protein, factor IX/factor X-binding protein (IX/X-bp), isolated from the venom of Trimeresurus flavoviridis, binds with factor IX and factor X in the presence of Ca2+ with a 1 to 1 stoichiometry (Atoda, H., and Morita, T. (1989) J. Biochem. (Tokyo) 106, 808-813). Analysis of S-pyridylethylated IX/X-bp by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a 16.0-kDa band (designated the A chain) and a 15.5-kDa band (designated the B chain). These two chains were separated by reversed-phase high performance liquid chromatography, and their complete amino acid sequences were determined by sequencing of the peptides obtained after digestion with lysyl endopeptidase, chymotrypsin, and V8 protease from Staphylococcus aureus and after chemical cleavage with cyanogen bromide. The A chain had an amino-terminal sequence of Asp-Cys-Leu-Ser-Gly- and consisted of 129 residues with Mr 14,830. The B chain has an amino-terminal sequence of Asp-Cys-Pro-Ser-Asp- and consists of 123 residues of Mr 14,440. There was 47% identity between the A and the B chain. The sequence of IX/X-bp showed 25-37% identity with that of the C-type carbohydrate recognition domain-like structure of acorn barnacle lectin, human and rat asialoglycoprotein receptors, the human lymphocyte Fc epsilon receptor for immunoglobulin E, proteoglycan core protein, pancreatic stone protein, and tetranectin. The sequences of the first 18 amino acid residues of both the A and B chains were also, to a certain extent, homologous to the partial amino acid sequence of the b subunit of factor XIII, a member of the beta 2-glycoprotein I-like family. In this region, some similarity with the amino-terminal amino acid sequence of botrocetin was also observed.  相似文献   

9.
Summary Some missense changes are compatible with normal protein function while others compromise essential aspects of protein maturation, specific activity, or stability. For those missense changes that alter function in the intact organism, how likely is it for the mutated protein to retain appreciable residual activity? By genetic analysis of patients with hemophilia B of known severity, this question can be addressed for missense mutations that reduce factor IX activity by fourfold or more below the average. We estimate that missense changes cause only 59% of moderate and severe disease, but these mutations are almost always (95%) of independent origin. In contrast, missense mutations are found in virtually all (97%) families with mild disease, but only a minority of these (41%) are of independent origin. From the aggregate data, we estimate that most (71%) of the independent deleterious missense mutations cause at least a 20-fold decrease in factor IX activity.  相似文献   

10.
Molecular pathology of haemophilia B.   总被引:37,自引:2,他引:35       下载免费PDF全文
Direct sequencing of amplified genomic DNA has been used to investigate the molecular basis of haemophilia B and thus identify specific amino acids that are essential for maintenance of structure or function of factor IX. Substitution of Cys 336, Asn 120 results in loss of circulating factor IX antigen and deletion of Arg 37 in gross reduction of circulating protein and loss of activity, while substitution of Arg -4, Arg 333, Asp 64 and Pro 55 cause loss of function without marked reduction in protein serum levels. Frameshift or point mutations resulting in marked loss of coding information are found in patients who develop antibodies to administered factor IX. An enhanced rate of mutation is evident at two CpG dinucleotides in the factor IX gene, which accounts for approximately 25% of all point mutations causing haemophilia B known to date. Direct sequencing of mutations also permits, for the first time, rapid and unequivocal prenatal and carrier diagnoses, in all cases, by eliminating the need for informative segregation of markers.  相似文献   

11.

Background  

A central focus of cancer genetics is the study of mutations that are causally implicated in tumorigenesis. The identification of such causal mutations not only provides insight into cancer biology but also presents anticancer therapeutic targets and diagnostic markers. Missense mutations are nucleotide substitutions that change an amino acid in a protein, the deleterious effects of these mutations are commonly attributed to their impact on primary amino acid sequence and protein structure.  相似文献   

12.
Lesch-Nyhan syndrome caused by a complete deficiency of hypoxanthine guanine phosphoribosyltransferase (HPRT) is the result of a heterogeneous group of germ line mutations. Identification of each mutant gene provides valuable information as to the type of mutation that occurs spontaneously. We report here a newly identified HPRT mutation in a Japanese patient with Lesch-Nyhan syndrome. This gene, designated HPRT Tokyo, had a single nucleotide change from G to A, as identified by sequencing cDNA amplified by the polymerase chain reaction. Allele specific oligonucleotide hybridization analysis using amplified genomic DNA showed that the mutant gene was transmitted from the maternal germ line. This mutation would lead to an amino acid substitution of Asp for Gly at the amino acid position 140 located within the putative 5-phosphoribosyl-1-pyrophosphate (PRPP) binding region. Missense mutations in human HPRT deficient patients thus far reported tend to accumulate in this functionally active region. However, a comparison of the data suggested that both missense and synonymous mutations can occur at any coding sequence of the human germ line HPRT gene, but that a limited percentage of all the missense mutations cause disease. The probability that a mutation will cause disease tends to be higher when the missense mutation is within a functionally important sequence.  相似文献   

13.
The lac repressor has been studied extensively but a precise three-dimensional structure remains unknown. Studies using mutational data can complement other information and provide insight into protein structure. We have been using the lacI gene-repressor protein system to study the mutational specificity of spontaneous and induced mutation. The sequencing of over 6000 lacI- mutations has revealed 193 missense mutations generating 189 amino acid replacements at 102 different sites within the lac repressor. Replacement sites are not distributed evenly throughout the protein, but are clustered in defined regions. Almost 40% of all sites and over one-half of all substitutions found occur within the amino-terminal 59 amino acid residues, which constitute the DNA-binding domain. The core domain (residues 60 to 360) is less sensitive to amino acid replacement. Here, substitution is found in regions involved in subunit aggregation and at sites surrounding residues that are implicated in sugar-binding. The distribution and nature of missense mutational sites directs attention to particular amino acid residues and residue stretches.  相似文献   

14.
The oculocerebrorenal syndrome of Lowe (OCRL) is a multisystem disorder characterized by congenital cataracts, mental retardation, and renal Fanconi syndrome. The OCRL1 gene, which, when mutated, is responsible for OCRL, encodes a 105-kD Golgi protein with phosphatidylinositol (4,5)bisphosphate (PtdIn[4,5]P2) 5-phosphatase activity. We have examined the OCRL1 gene in 12 independent patients with OCRL and have found 11 different mutations. Six were nonsense mutations, and one a deletion of one or two nucleotides that leads to frameshift and premature termination. In one, a 1.2-kb genomic deletion of exon 14 was identified. In four others, missense mutations or the deletion of a single codon were found to involve amino acid residues known to be highly conserved among proteins with PtdIns(4,5)P2 5-phosphatase activity. All patients had markedly reduced PtdIns(4,5)P2 5-phosphatase activity in their fibroblasts, whereas the ocrl1 protein was detectable by immunoblotting in some patients with either missense mutations or a codon deletion but was not detectable in those with premature termination mutations. These results confirm and extend our previous observation that the OCRL phenotype results from loss of function of the ocrl1 protein and that mutations are generally heterogeneous. Missense mutations that abolish enzyme activity but not expression of the protein will be useful for studying structure-function relationships in PtdIns(4,5)P2 5-phosphatases.  相似文献   

15.
Missense mutations have various effects on protein structures, also leading to distorted protein dynamics that plausibly affects the function. We hypothesized that missense mutations in cancer-related genes selectively target hinge-neighboring residues that orchestrate collective structural dynamics. To test our hypothesis, we selected 69 cancer-related genes from the Cancer Gene Census database and their representative protein structures from the Protein Data Bank. We first identified the hinge residues in two global modes of motion by applying the Gaussian Network Model. We then showed that missense mutations are significantly enriched on hinge-neighboring residues in oncogenes and tumor suppressor genes. We observed that several oncogenes (eg, MAP2K1, PTPN11, and KRAS) and tumor suppressor genes (eg, EZH2, CDKN2C, and RHOA) strongly exhibit this phenomenon. This study highlights and rationalizes the functional importance of missense mutations on hinge-neighboring residues in cancer.  相似文献   

16.
Post-translational processing of Factor IX includes glycosylation, cleavage of the signal peptide and propeptide, vitamin K-dependent carboxylation of specific glutamic acid residues to form gamma-carboxyglutamic acid, and beta-hydroxylation of aspartic acid at residue 64 to form beta-hydroxyaspartic acid. The human Factor IX cDNA coding sequence was modified in the propeptide region (residue -18 to -1) using oligonucleotide-directed site-specific mutagenesis, and the altered Factor IX cDNA was expressed in Chinese hamster ovary cells. The effects of the mutations on proteolytic processing, gamma-carboxylation, and beta-hydroxylation were assessed by direct structural analysis. After purification, the molecular weight of each of the recombinant Factor IX species and its NH2-terminal amino acid sequence were shown to be identical to those of plasma Factor IX. gamma-Carboxyglutamic acid and beta-hydroxyaspartic acid analyses revealed that recombinant wild-type Factor IX contained 9.2 gamma-carboxyglutamic acid and 0.3 beta-hydroxyaspartic acid residues/molecule compared with 11.4 gamma-carboxyglutamic acid and 0.39 beta-hydroxyaspartic acid residues in plasma Factor IX. When the 18-residue propeptide was deleted or when the cells were grown in the presence of sodium warfarin, secreted Factor IX contained no detectable gamma-carboxyglutamic acid but 0.36 and 0.40 residues of beta-hydroxyaspartic acid, respectively. Point mutations leading to substitution of alanine for phenylalanine at residue -16 or glutamic acid for alanine at residue -10 contained 0.2 and 1.7 gamma-carboxyglutamic acid residues, respectively, and 0.2 residues of beta-hydroxyaspartic acid. These data confirm that the propeptide mutations made do not interfere with proteolytic processing and that the Factor IX propeptide contains a recognition site that designates the adjacent glutamic acid-rich domain for gamma-carboxylation. In contrast, beta-hydroxylation of aspartic acid 64 is an independent process which does not require vitamin K and is mediated through a hydroxylation recognition site in the mature Factor IX, not in the propeptide.  相似文献   

17.
Missense mutations and intronic mutations in the gene for microtubule-associated protein tau cause frontotemporal dementia and Parkinsonism linked to chromosome 17 (FTDP-17). Most missense mutations have as likely primary effect a reduced ability of tau to interact with microtubules. We report here an additional effect of several missense mutations, namely the stimulation of heparin-induced filament assembly of recombinant tau, despite the absence of any change in structure indicated by circular dichroism. These findings indicate that missense mutations in tau lead to frontotemporal dementia through potentially multiple mechanisms.  相似文献   

18.
Agkisacutacin is a new fibrinogenlytic protein from Agkistrodon acutus venom. It consists of two heterologous subunits linked by an intersubunit disulfide bond. The cDNAs encoding the two chains of Agkisacutacin were cloned from a lambdagt11 cDNA library of the snake venom gland and sequenced, including the leader peptides (23/23 amino acid residues) and mature subunits (129/123 amino acid residues). It is structurally related to the family of IX/X-binding protein (IX/X-bp)-like proteins and shows high similarity (alpha-70%/beta-64%) to habu IX/X-bp from Trimeresurus flavoridis, but displays distinct biological activity with direct action on fibrinogen.  相似文献   

19.
We have analyzed eight new phage-resistant missense mutations in lamB. These mutations identify five new amino acid residues essential for phage lambda adsorption. Two mutations at positions 245 and 382 affect residues which were previously identified, but lead to different amino acid changes. Three mutations at residues 163, 164, and 250 enlarge and confirm previously proposed phage receptor sites. Two different mutations at residue 259 and one at 18 alter residues previously suggested as facing the periplasmic face. The mutation at residue 18 implicates for the first time the amino-terminal region of the LamB protein in phage adsorption. The results are discussed in terms of the topology of the LamB protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号