首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 70-kDa peroxisomal membrane protein (PMP70) is one of major components of peroxisomal membranes. In rodents, PMP70 is markedly induced by administration of hypolipidemic agents in parallel with peroxisome proliferation and the induction of peroxisomal fatty acid β-oxidation enzymes. PMP70 is an ATP-binding cassette transporter, identified for the first time in intracellular membranes of eukaryotic cells. The authors' recent studies suggest that PMP70 is synthesized on free polysomes and posttranslationally inserted into peroxisomal membranes, and assembles as dimeric or oligomeric forms on peroxisomal membranes. PMP70 is suggested to be involved in metabolic transport of long-chain acyl-CoA across peroxisomal membranes.  相似文献   

2.
The cDNA sequence of human liver 70 kDa peroxisomal membrane protein (hPMP70) was determined. The nucleotide sequence contains an open reading frame of 1977 base pairs and encodes an amino acid sequence of 659 residues which exhibits 95.0% identity with that of rat liver PMP70. hPMP70 shares close similarity to the members of a superfamily of ATP-binding transport proteins.  相似文献   

3.
The 70 kDa peroxisomal membrane protein (PMP70) is a major component of peroxisomal membranes. cDNAs for human and rat PMP70 have been cloned and sequenced and the gene mapped to the human chromosome 1p21-22. The predicted amino acid sequence showed homology to members of the ATP-binding cassette transporter family. In humans, mutations in the PMP70 gene have been found in a subset of patients with Zellweger syndrome, a lethal inborn error of peroxisome biogenesis. These results suggest that PMP70 functions in transporting molecules or possibility peptides across the peroxisomal membrane and has an important role in peroxisome assembly.  相似文献   

4.
The 70-kDa peroxisomal membrane protein (PMP70) is one of the major components of rat liver peroxisomal membranes and belongs to a superfamily of proteins known as ATP binding cassette transporters. PMP70 is markedly induced by administration of hypolipidemic agents in parallel with peroxisome proliferation and induction of peroxisomal fatty acid beta-oxidation enzymes. To characterize the role of PMP70 in biogenesis and function of peroxisomes, we transfected the cDNA of rat PMP70 into Chinese hamster ovary cells and established cell lines stably expressing PMP70. The content of PMP70 in the transfectants increased about 5-fold when compared with the control cells. A subcellular fractionation study showed that overexpressed PMP70 was enriched in peroxisomes. This peroxisomal localization was confirmed by immunofluorescence and immunoelectron microscopy. The number of immuno-gold particles corresponding to PMP70 on peroxisomes increased markedly in the transfectants, but the size and the number of peroxisomes were essentially the same in both the transfectants and the control cells. beta-Oxidation of palmitic acid increased about 2-3-fold in the transfectants, whereas the oxidation of lignoceric acid decreased about 30-40%. When intact peroxisomes prepared from both the cell lines were incubated with palmitoyl-CoA, oxidation was stimulated with ATP, but the degree of the stimulation was higher in the transfectants than in the control cells. Furthermore, we established three Chinese hamster ovary cell lines stably expressing mutant PMP70. In these cells, beta-oxidation of palmitic acid decreased markedly. These results suggest that PMP70 is involved in metabolic transport of long chain acyl-CoA across peroxisomal membranes and that increase of PMP70 is not associated with proliferation of peroxisomes.  相似文献   

5.
Peroxisomes are multipurpose organelles present in nearly all eukaryotic cells. All peroxisomale matrix and membrane proteins are synthesized in the cytoplasm. While a clear picture of the basic targeting mechanisms for peroxisomal matrix proteins has emerged over the past years, the targeting processes for peroxisomal membrane proteins are poorly understood. The 70-kDa peroxisomal integral membrane protein (PMP70) is one of the proteins located in the human peroxisome membrane. PMP70 belongs to the family of ATP-binding cassette (ABC) transporter proteins. It consists of six transmembrane domains and an ATP-binding fold in the cytosol. Here we describe that efficient peroxisomal targeting of human PMP70 depends on three targeting elements in the amino-terminal protein region, namely amino acids 61 to 80 located in the cytosol as well as the first and second transmembrane domains. Furthermore, peroxin 19 (PEX19) interactions are not required for targeting human PMP70 to peroxisomes. PEX19 does not specifically bind to the targeting elements of human PMP70.  相似文献   

6.
7.
Li T  Iwaki H  Fu R  Hasegawa Y  Zhang H  Liu A 《Biochemistry》2006,45(21):6628-6634
The enzymatic activity of Pseudomonas fluorescens alpha-amino-beta-carboxymuconic-epsilon-semialdehyde decarboxylase (ACMSD) is critically dependent on a transition metal ion [Li, T., Walker, A. L., Iwaki, H., Hasegawa, Y., and Liu, A. (2005) J. Am. Chem. Soc. 127, 12282-12290]. Sequence analysis in this study further suggests that ACMSD belongs to the amidohydrolase superfamily, whose structurally characterized members comprise a catalytically essential metal cofactor. To identify ACMSD's metal ligands and assess their functions in catalysis, a site-directed mutagenesis analysis was conducted. Alteration of His-9, His-177, and Asp-294 resulted in a dramatic loss of enzyme activity, substantial reduction of the metal-binding ability, and an altered metallocenter electronic structure. Thus, these residues are confirmed to be the endogenous metal ligands. His-11 is implicated in metal binding because of the strictly conserved HxH motif with His-9. Mutations at the 228 site yielded nearly inactive enzyme variants H228A and H228E. The two His-228 mutant proteins, however, exhibited full metal-binding ability and a metal center similar to that of the wild-type enzyme as shown by EPR spectroscopy. Kinetic analysis on the mutants indicates that His-228 is a critical catalytic residue along with the metal cofactor. Since the identified metal ligands and His-228 are present in all known ACMSD sequences, it is likely that ACMSD proteins from other organisms contain the same cofactor and share similar catalytic mechanisms. ACMSD is therefore the first characterized member in the amidohydrolase superfamily that represents a C-C breaking activity.  相似文献   

8.
The 70-kDa peroxisomal membrane protein (PMP70) is a major component of peroxisomal membranes. Human PMP70 consists of 659 amino acid residues and has six putative transmembrane domains (TMDs). PMP70 is synthesized on cytoplasmic ribosomes and targeted posttranslationally to peroxisomes by an unidentified peroxisomal membrane protein targeting signal (mPTS). In this study, to examine the mPTS within PMP70 precisely, we expressed various COOH-terminally or NH(2)-terminally deleted constructs of PMP70 fused with green fluorescent protein (GFP) in Chinese hamster ovary cells and determined their intracellular localization by immunofluorescence. In the COOH-terminally truncated PMP70, PMP70(AA.1-144)-GFP, including TMD1 and TMD2 of PMP70, was still localized to peroxisomes. However, by further removal of TMD2, PMP70(AA.1-124)-GFP lost the targeting ability, and PMP70(TMD2)-GFP did not target to peroxisomes by itself. The substitution of TMD2 in PMP70(AA.1-144)-GFP for TMD4 or TMD6 did not affect the peroxisomal localization, suggesting that PMP70(AA.1-124) contains the mPTS and an additional TMD is required for the insertion into the peroxisomal membrane. In the NH(2)-terminal 124-amino acid region, PMP70 possesses hydrophobic segments in the region adjacent to TMD1. By the disruption of these hydrophobic motifs by the mutation of L21Q/L22Q/L23Q or I70N/L71Q, PMP70(AA.1-144)-GFP lost targeting efficiency. The NH(2)-terminally truncated PMP70, GFP-PMP70(AA.263-375), including TMD5 and TMD6, exhibited the peroxisomal localization. PMP70(AA.263-375) also possesses hydrophobic residues (Ile(307)/Leu(308)) in the region adjacent to TMD5, which were important for targeting. These results suggest that PMP70 possesses two distinct targeting signals, and hydrophobic regions adjacent to the first TMD of each region are important for targeting.  相似文献   

9.
The human ATP-binding cassette (ABC) transporter superfamily.   总被引:2,自引:0,他引:2  
The transport of specific molecules across lipid membranes is an essential function of all living organisms and a large number of specific transporters have evolved to carry out this function. The largest transporter gene family is the ATP-binding cassette (ABC) transporter superfamily. These proteins translocate a wide variety of substrates including sugars, amino acids, metal ions, peptides, and proteins, and a large number of hydrophobic compounds and metabolites across extra- and intracellular membranes. ABC genes are essential for many processes in the cell, and mutations in these genes cause or contribute to several human genetic disorders including cystic fibrosis, neurological disease, retinal degeneration, cholesterol and bile transport defects, anemia, and drug response. Characterization of eukaryotic genomes has allowed the complete identification of all the ABC genes in the yeast Saccharomyces cerevisiae, Drosophila, and C. elegans genomes. To date, there are 48 characterized human ABC genes. The genes can be divided into seven distinct subfamilies, based on organization of domains and amino acid homology. Many ABC genes play a role in the maintenance of the lipid bilayer and in the transport of fatty acids and sterols within the body. Here, we review the current knowledge of the human ABC genes, their role in inherited disease, and understanding of the topology of these genes within the membrane.  相似文献   

10.
Peroxins are proteins involved in peroxisome biogenesis and are encoded by PEX genes. The human PEX2 gene encodes a 35-kDa peroxisomal integral membrane protein which is a member of the zinc finger protein family. Mutations in the PEX2 gene are the primary defect in a subset of patients with Zellweger syndrome and related peroxisome biogenesis disorders. The role of zinc finger proteins in peroxisome assembly and function is poorly understood. Here we report the cloning and characterisation of the human PEX2 structural gene. PEX2 was assigned to human chromosome 8q13-q21 and its murine homologue to mouse chromosome 3. The gene is approximately 17.5 kb in length, and contains four exons. The entire coding sequence is included in one exon, exon 4. The 5'-flanking region has features of housekeeping genes (GC enrichment, two Sp1 sites) and tissue-specific, inducible genes (two CCAAT boxes). In more than 1.5 kb of 5'-flanking sequences we did not identify consensus peroxisomal proliferator responsive elements (PPRE).  相似文献   

11.
The 70-kDa peroxisomal membrane protein (PMP70) and adrenoleukodystrophy protein (ALDP), half-size ATP-binding cassette transporters, are involved in metabolic transport of long and very long chain fatty acids into peroxisomes. We examined the interaction of peroxisomal ATP-binding cassette transporters with ATP using rat liver peroxisomes. PMP70 was photoaffinity-labeled at similar efficiencies with 8-azido-[alpha-32P]ATP and 8-azido-[gamma-32P]ATP when peroxisomes were incubated with these nucleotides at 37 degrees C in the absence Mg2+ and exposed to UV light without removing unbound nucleotides. The photoaffinity-labeled PMP70 and ALDP were co-immunoprecipitated together with other peroxisomal proteins, which also showed tight ATP binding properties. Addition of Mg2+ reduced the photoaffinity labeling of PMP70 with 8-azido-[gamma-32P]ATP by 70%, whereas it reduced photoaffinity labeling with 8-azido-[alpha-32P]ATP by only 20%. However, two-thirds of nucleotide (probably ADP) was dissociated during removal of unbound nucleotides. These results suggest that ATP binds to PMP70 tightly in the absence of Mg2+, the bound ATP is hydrolyzed to ADP in the presence of Mg2+, and the produced ADP is dissociated from PMP70, which allows ATP hydrolysis turnover. Properties of photoaffinity labeling of ALDP were essentially similar to those of PMP70. Vanadate-induced nucleotide trapping in PMP70 and ALDP was not observed. PMP70 and ALDP were also phosphorylated at a tyrosine residue(s). ATP binding/hydrolysis by and phosphorylation of PMP70 and ALDP are involved in the regulation of fatty acid transport into peroxisomes.  相似文献   

12.
Sato N  Nakayama M  Hase T 《FEBS letters》2001,487(3):347-350
The chloroplast nucleoid is a complex of chloroplast DNA and various, mostly uncharacterized proteins. An abundant 70-kDa protein of the isolated nucleoids of pea chloroplasts was identified as sulfite reductase by N-terminal sequence analysis as well as immunoblot analysis, spectrophotometry and enzyme activity analysis. Recombinant maize sulfite reductase was indeed able to compact chloroplast DNA and to form nucleoid-like particles in vitro. The role of sulfite reductase in the structural organization of the nucleoid is discussed.  相似文献   

13.
14.
While a significant fraction of heat shock protein 70 (Hsp70) is membrane associated in lysosomes, mitochondria, and the outer surface of cancer cells, the mechanisms of interaction have remained elusive, with no conclusive demonstration of a protein receptor. Hsp70 contains two Trps, W90 and W580, in its N-terminal nucleotide binding domain (NBD), and the C-terminal substrate binding domain (SBD), respectively. Our fluorescence spectroscopy study using Hsp70 and its W90F and W580F mutants, and Hsp70-?SBD and Hsp70-?NBD constructs, revealed that binding to liposomes depends on their lipid composition and involves both NBD and SBD.  相似文献   

15.
Thiamine pyrophosphate (TPP) is an essential cofactor for all forms of life. In Salmonella enterica, the thiH gene product is required for the synthesis of the 4-methyl-5-beta hydroxyethyl-thiazole monophosphate moiety of TPP. ThiH is a member of the radical S-adenosylmethionine (AdoMet) superfamily of proteins that is characterized by the presence of oxygen labile [Fe-S] clusters. Lack of an in vitro activity assay for ThiH has hampered the analysis of this interesting enzyme. We circumvented this problem by using an in vivo activity assay for ThiH. Random and directed mutagenesis of the thiH gene was performed. Analysis of auxotrophic thiH mutants defined two classes, those that required thiazole to make TPP (null mutants) and those with thiamine auxotrophy that was corrected by either L-tyrosine or thiazole (ThiH* mutants). Increased levels of AdoMet also corrected the thiamine requirement of members of the latter class. Residues required for in vivo function were identified and are discussed in the context of structures available for AdoMet enzymes.  相似文献   

16.
The Escherichia coli rnt gene, which encodes the RNA-processing enzyme RNase T, is cotranscribed with a downstream gene. Complete sequencing of this gene indicates that its coding region encompasses 1,538 amino acids, making it the longest known protein in E. coli. The gene (tentatively termed lhr for long helicase related) contains the seven conserved motifs of the DNA and RNA helicase superfamily II. An approximately 170-kDa protein is observed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 35S-labeled extracts prepared from cells in which lhr is under the control of an induced T7 promoter. This protein is absent when lhr is interrupted or when no plasmid is present. Downstream of lhr is the C-terminal region of a convergent gene with homology to glutaredoxin. Interruptions of chromosomal lhr at two different positions within the gene do not affect the growth of E. coli at various temperatures in rich or minimal medium, indicating that lhr is not essential for usual laboratory growth. lhr interruption also has no effect on anaerobic growth. In addition, cells lacking Lhr recover normally from starvation, plate phage normally, and display normal sensitivities to UV irradiation and H2O2. Southern analysis showed that no other gene closely related to lhr is present on the E. coli chromosome. These data expand the known size range of E. coli proteins and suggest that very large helicases are present in this organism.  相似文献   

17.
MOTIVATION: DNase II is an endodeoxyribonuclease involved in apoptosis and essential for the mammalian development. Despite the understanding of biochemical properties of this enzyme, its structure and relationships to other protein families remain unknown. RESULTS: Using protein fold-recognition we found that DNase II exhibits a catalytic domain common to the phospholipase D superfamily. Our model explains the available experimental data and provides the first structural platform for sequence-function analyses of this important nuclease.  相似文献   

18.
The role of nucleotides in providing energy for polypeptide transfer across the endoplasmic reticulum (ER) membrane is still unknown. To address this question, we treated ER-derived mammalian microsomal vesicles with a photoactivatable analogue of ATP, 8-N3ATP. This treatment resulted in a progressive inhibition of translocation activity. Approximately 20 microsomal membrane proteins were labeled by [alpha 32P]8-N3ATP. Two of these were identified as proteins with putative roles in translocation, alpha signal sequence receptor (SSR), the 35-kDa subunit of the signal sequence receptor complex, and ER-p180, a putative ribosome receptor. We found that there was a positive correlation between inactivation of translocation activity and photolabeling of alpha SSR. In contrast, our data demonstrate that the ATP-binding domain of ER-p180 is dispensable for translocation activity and does not contribute to the observed 8-N3ATP sensitivity of the microsomal vesicles.  相似文献   

19.
Beet yellows virus (BYV) genome encodes a 65 kDa protein homologous to the HSP70 family of cellular heat-shock proteins (Agranovsky, A.A., Boyko, V.P., Karasev, A.V., Koonin, E.V. and Dolja, V.V. (1991) J. Mol. Biol. 217, 603-610). The respective gene was cloned and expressed in vitro yielding a product of the expected size (p65). This product was found to bind to the purified microtubules with a binding constant of 4 x 10(-7) M. The binding of p65 was stimulated if ATP presented in the translation mixture was hydrolyzed by apyrase. Removal of the short C-terminal domains of alpha- and beta-tubulin by subtilisin digestion abolished the binding, demonstrating its specificity. The possible role of p65 association with microtubules in the movement of virus within and/or between plant cells is proposed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号