首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Expression of the human T-cell leukemia virus type I (HTLV-I) rex gene is a prerequisite for the expression of the retroviral structural proteins. We have generated internal deletion mutants of this 27-kDa nucleolar trans-acting gene product to define functional domains in the Rex protein. The phenotype of the various mutant proteins was tested on the homologous HTLV-I rex response element sequence and the heterologous human immunodeficiency virus type 1 (HIV-1) rev response element sequence. Our results indicate that a region between amino acid residues 55 and 132 in the 189-amino-acid Rex protein is required for Rex-mediated trans activation on both retroviral response element sequences. In addition, substitution of the Rex nuclear localization signal by a sequence of the HIV-1 rev gene product targets the Rex protein to the correct subcellular compartment required for Rex function.  相似文献   

3.
The Rex regulatory proteins of human T-cell leukemia virus type I (HTLV-I) and bovine leukemia virus (BLV), and the Rev protein of human immunodeficiency virus type 1 (HIV-1), promote the cytoplasmic accumulation and translation of viral messenger mRNAs encoding structural proteins. Rev and Rex act through cis-acting elements on the viral RNA; these elements are named Rev- and Rex-responsive elements, or RRE and RXRE, respectively. We show that the Rex proteins of HTLV-I and BLV are interchangeable, but only the Rex protein of HTLV-I can substitute for Rev of HIV-1. Rex of HTLV-I and Rev of HIV-1 appear to act on RRE by similar mechanisms. Rev of HIV-1 does not act on the RXRE of HTLV-I or BLV. The nonreciprocal action of Rev and Rex suggests that these factors interact directly with the cis-acting RNA elements of the two viruses.  相似文献   

4.
The binding of Rev protein of human immunodeficiency virus type 1 (HIV-1) to the cis-acting Rev-responsive element (RRE) was compared to the binding of a trans-dominant Rev mutant. RevBL, which inhibits Rev function. Rev and RevBL expressed in bacteria were purified and shown to bind in vitro to the RRE with similar affinities. The study of the RRE mutants indicated that Rev and RevBL bind to the same target within the RRE in vitro and in vivo. In vivo experiments demonstrated that RevBL did not increase the steady-state levels of HIV-1 mRNA or protein. These experiments suggested that additional cellular factors interacting with Rev but not with RevBL are necessary for function. The Rex protein of human T-cell leukemia virus type I (HTLV-I) is similar to Rev and acts through a sequence named Rex-responsive element (RXRE) located in the long terminal repeat of HTLV-I. We examined the function of RevBL on a hybrid mRNA molecule containing both the RRE and RXRE. While RevBL prevented Rev function, it did not affect Rex function on the mRNA containing either the RXRE or both the RRE and RXRE. Therefore, binding of RevBL to the RRE had neither positive nor negative effects on the mRNA, since this mRNA could be efficiently utilized in the presence of a functional Rex-RXRE interaction. The results obtained in vivo and in vitro strongly suggest that RevBL inhibits Rev function by binding to the same site as Rev and preventing Rev binding and function.  相似文献   

5.
The human T-cell leukemia viruses (HTLVs) encode a trans-regulatory protein, Rex, which differentially regulates viral gene expression by controlling the cytoplasmic accumulation of viral mRNAs. Because of insufficient amounts of purified protein, biochemical characterization of Rex activity has not previously been performed. Here, utilizing the baculovirus expression system, we purified HTLV type II (HTLV-II) Rex from the cytoplasmic fraction of recombinant baculovirus-infected insect cells by heparin-agarose chromatography. We directly demonstrated that Rex specifically bound HTLV-II 5' long terminal repeat RNA in both gel mobility shift and immunobinding assays. Sequences sufficient for Rex binding were localized to the R-U5 region of the HTLV-II 5' long terminal repeat and correlate with the region required for Rex function. The human immunodeficiency virus type 1 (HIV-1), has an analogous regulatory protein, Rev, which directly binds to and mediates its action through the Rev-responsive element located within the HIV-1 env gene. We demonstrated that HTLV-II Rex rescued an HIV-1JR-CSF Rev-deficient mutant, although inefficiently. This result is consistent with a weak binding activity to the HIV-1 Rev-responsive element under conditions in which it efficiently bound the HTLV-II long terminal repeat RNA.  相似文献   

6.
7.
8.
9.
10.
We have analyzed the action of the Rev and Tev proteins of human immunodeficiency virus type 1 (HIV-1) and of the Rex protein of human T-cell leukemia virus type I (HTLV-I) on a series of Rev-responsive element (RRE) mutants. The minimum continuous RRE region necessary and sufficient for Rev function was determined to be 204 nucleotides. Interestingly, this region was not sufficient for Tev or Rex function. These proteins require additional sequences, which may stabilize the structure of the RRE or may contain additional sequence-specific elements. Internal RRE deletions revealed that the targets for Rev and Rex can be separated, since mutants responding to Rev and not Rex and vice versa were identified. Tev was active on both types of mutants, suggesting that it has a more relaxed specificity than do both Rev and Rex proteins. Although Rev and Rex targets within the RRE appear to be distinct, the trans-dominant mutant RevBL prevents the RRE interaction with Rex. RevBL cannot inhibit the function of Rex on RRE deletions that lack the Rev-responsive portion. These results indicate the presence of distinct sites within the RRE for interaction with these proteins. The binding sites for the different proteins do not function independently and may interfere with one another. Mutations affecting the RRE may change the accessibility and binding characteristics of the different binding sites.  相似文献   

11.
A molecular clone of the simian immunodeficiency virus SIVSMM isolate PBj14, lacking the ATG initiation codon for Rev protein (PBj-1.5), did not produce virus or large unspliced or singly spliced viral RNA upon transfection of HeLa cells. Low but significant levels of virus and large viral RNA production were observed upon transfection of PBj-1.5 into HeLa Rev cells expressing the rev gene of human immunodeficiency virus type 1. Furthermore, abundant virus and large viral RNA production occurred upon transfection of PBj-1.5 into HeLa Rex cells expressing the rex gene of human T-cell leukemia virus type I. Virus produced from HeLa Rex and HeLa Rev transfections was infectious, produced large amounts of virus, and was cytopathic for Rex-producing MT-4 cells. In contrast, no or only low levels of virus production were observed upon infection of H9 cells. These studies show that a defective SIV rev gene can be transcomplemented with human immunodeficiency virus type 1 Rev and with high efficiency by human T-cell leukemia virus type I Rex, and they suggest that rev-defective viruses could serve as a source for production of a live attenuated SIV vaccine.  相似文献   

12.
13.
14.
The Rev protein of human immunodeficiency virus type 1 (HIV-1) is essential for the nucleocytoplasmic transport of unspliced and partially spliced HIV mRNAs containing the Rev response element (RRE). In a yeast two-hybrid screen of a HeLa cell-derived cDNA expression library for human factors interacting with the Rev leucine-rich nuclear export sequence (NES), we identified a kinesin-like protein, REBP (Rev/Rex effector binding protein), highly homologous to Kid, the carboxy-terminal 75-residue region of which interacts specifically with the NESs of HIV-1 Rev, human T-cell leukemia virus type 1 Rex, and equine infectious anemia virus Rev but not with functionally inactive mutants thereof. REBP is a nuclear protein that colocalizes with Rev in the nucleoplasm and nuclear periphery of transfected cells. Specific, albeit weak, interaction between REBP and Rev could be demonstrated in coimmunoprecipitation assays in BSC-40 cells. REBP can modestly enhance Rev-dependent RRE-linked reporter gene expression both independently and in cooperation with the nucleoporin cofactor Rab/hRIP. Thus, REBP displays the characteristics expected of an authentic mediator of Rev NES function and may play a role in RRE RNA transport during HIV infection.  相似文献   

15.
The interaction of the human immunodeficiency virus type 1 (HIV-1) Rev protein with a structured region in env mRNA (the Rev-responsive element [RRE]) mediates the export of structural mRNAs from the nucleus to the cytoplasm. We demonstrated that unlike HIV-1 Rev, which functions with both the HIV-1 and HIV-2 RREs, HIV-2 Rev functions only with the HIV-2 RRE. Rev-RRE binding studies suggested that the lack of nonreciprocal complementation stems from the inability of HIV-2 Rev to interact with HIV-1 RRE RNA. Maintenance of RNA secondary structure, rather than the primary nucleotide sequence, appeared to be the major determinant for interaction of both HIV-1 and HIV-2 Rev with the HIV-2 RRE. Moreover, the binding domain of the HIV-2 RRE recognized by HIV-1 Rev was dissimilar to the binding domain of the HIV-1 RRE, in terms of both secondary structure and primary nucleotide sequence. Our results support the hypothesis that function of HIV Rev proteins and possibly the functionally similar Rex proteins encoded by the human T-cell leukemia viruses (HTLVs) HTLV-I and HTLV-II is controlled by the presence of RNA secondary structure generated within the RRE RNA.  相似文献   

16.
The viral transactivator proteins Rex and Rev are necessary for the expression of structural proteins of human T-cell leukemia virus type I and human immunodeficiency virus type 1, respectively. Although the interaction of Rex/Rev with a cellular cofactor(s) has been thought to be required for Rex/Rev action, there is no suitable system to search for the cofactor(s) in mammalian cells. We found that a Rex mutant, TAgRex, which contains a simian virus 40 nuclear localization signal in place of the N-terminal 19 amino acids of Rex, could dominantly inhibit wild-type Rex/Rev functions. The inhibition did not require either Rev response element/Rex response element binding or the oligomerization ability of the mutant, but it did require a region around amino acid 90 of the Rex protein, suggesting that TAgRex sequestered the cellular cofactor. Complementation with the eukaryotic translation initiation factor 5A (eIF-5A) in this system could restore the impaired Rex function. These results indicate that eIF-5A is the cofactor indispensable for Rex function. Additionally, by using a two-hybrid system, the homo-oligomer formation of Rex was found to be mediated by the region around amino acid 90 in addition to Tyr-64 and Trp-65 of Rex protein. Thus, eIF-5A may play a part in the formation of the Rex homo-oligomer.  相似文献   

17.
E Bhnlein  J Berger    J Hauber 《Journal of virology》1991,65(12):7051-7055
Expression of human immunodeficiency virus type 1 (HIV-1) structural proteins requires the direct interaction of the viral trans-activator protein Rev with its cis-acting RNA sequence (Rev-response element [RRE]). A stretch of 14 amino acid residues of the 116-amino-acid Rev protein is sufficient to impose nucleolar localization onto a heterologous protein. Our results demonstrated that these same amino acid residues confer Rev-specific RRE binding to the heterologous human T-cell leukemia virus type I Rex protein. In addition, our results indicated that amino acids distinct from the nuclear localization signal are important for Rex-specific RRE RNA binding.  相似文献   

18.
19.
D McDonald  T J Hope    T G Parslow 《Journal of virology》1992,66(12):7232-7238
The human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex proteins induce cytoplasmic expression of incompletely spliced viral mRNAs by binding to these mRNAs in the nucleus. Each protein binds a specific cis-acting element in its target RNAs. Both proteins also associated with nucleoli, but the significance of this association is uncertain because mutations that inactivate nucleolar localization signals in Rev or Rex also prevent RNA binding. Here we demonstrate that Rev and Rex can function when tethered to a heterologous RNA binding site by a bacteriophage protein. Under these conditions, cytoplasmic accumulation of unspliced RNA occurs without the viral response elements, mutations in the RNA binding domain of Rev do not inhibit function, and nucleolar localization can be shown to be unnecessary for the biological response.  相似文献   

20.
Two chimeric mutant genes derived from rev of human immunodeficiency virus type 1 and rex of human T-cell leukemia virus type I were constructed to investigate the functions of the nucleolar-targeting signals (NOS) in Rev and Rex proteins. A chimeric Rex protein whose NOS region was substituted with the NOS of Rev was located predominantly in the cell nucleolus and functioned like the wild-type protein in the Rex assay system. However, a chimeric Rev with the NOS of Rex abolished Rev function despite its nucleolar localization. This nonfunctional nucleolar-targeting chimeric protein inhibited the function of both Rex and Rev. In the same experimental conditions, this mutant interfered with the localization of the functional Rex in the nucleolus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号