首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A molecular clone of the simian immunodeficiency virus SIVSMM isolate PBj14, lacking the ATG initiation codon for Rev protein (PBj-1.5), did not produce virus or large unspliced or singly spliced viral RNA upon transfection of HeLa cells. Low but significant levels of virus and large viral RNA production were observed upon transfection of PBj-1.5 into HeLa Rev cells expressing the rev gene of human immunodeficiency virus type 1. Furthermore, abundant virus and large viral RNA production occurred upon transfection of PBj-1.5 into HeLa Rex cells expressing the rex gene of human T-cell leukemia virus type I. Virus produced from HeLa Rex and HeLa Rev transfections was infectious, produced large amounts of virus, and was cytopathic for Rex-producing MT-4 cells. In contrast, no or only low levels of virus production were observed upon infection of H9 cells. These studies show that a defective SIV rev gene can be transcomplemented with human immunodeficiency virus type 1 Rev and with high efficiency by human T-cell leukemia virus type I Rex, and they suggest that rev-defective viruses could serve as a source for production of a live attenuated SIV vaccine.  相似文献   

2.
Two chimeric mutant genes derived from rev of human immunodeficiency virus type 1 and rex of human T-cell leukemia virus type I were constructed to investigate the functions of the nucleolar-targeting signals (NOS) in Rev and Rex proteins. A chimeric Rex protein whose NOS region was substituted with the NOS of Rev was located predominantly in the cell nucleolus and functioned like the wild-type protein in the Rex assay system. However, a chimeric Rev with the NOS of Rex abolished Rev function despite its nucleolar localization. This nonfunctional nucleolar-targeting chimeric protein inhibited the function of both Rex and Rev. In the same experimental conditions, this mutant interfered with the localization of the functional Rex in the nucleolus.  相似文献   

3.
4.
D McDonald  T J Hope    T G Parslow 《Journal of virology》1992,66(12):7232-7238
The human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex proteins induce cytoplasmic expression of incompletely spliced viral mRNAs by binding to these mRNAs in the nucleus. Each protein binds a specific cis-acting element in its target RNAs. Both proteins also associated with nucleoli, but the significance of this association is uncertain because mutations that inactivate nucleolar localization signals in Rev or Rex also prevent RNA binding. Here we demonstrate that Rev and Rex can function when tethered to a heterologous RNA binding site by a bacteriophage protein. Under these conditions, cytoplasmic accumulation of unspliced RNA occurs without the viral response elements, mutations in the RNA binding domain of Rev do not inhibit function, and nucleolar localization can be shown to be unnecessary for the biological response.  相似文献   

5.
6.
7.
8.
Replication of human immunodeficiency virus type 1 requires the functional expression of the virally encoded Rev protein. The binding of this nuclear trans activator to its viral target sequence, the Rev-response element, induces the cytoplasmic expression of unspliced viral mRNAs. Mutation of the activation domain of Rev generates inactive proteins with normal RNA binding capabilities that inhibit wild-type Rev function in a trans-dominant manner. Here, we report that the activation domain comprises a minimum of nine amino acids, four of which are critically spaced leucines. The preservation of this essential sequence in other primate and nonprimate lentivirus Rev proteins indicates that this leucine-rich motif has been highly conserved during evolution. This conclusion, taken together with the observed permissiveness of a variety of eukaryotic cell types for Rev function, suggests that the target for the activation domain of Rev is likely to be a highly conserved cellular protein(s) intrinsic to nuclear mRNA transport or splicing.  相似文献   

9.
10.
E Bhnlein  J Berger    J Hauber 《Journal of virology》1991,65(12):7051-7055
Expression of human immunodeficiency virus type 1 (HIV-1) structural proteins requires the direct interaction of the viral trans-activator protein Rev with its cis-acting RNA sequence (Rev-response element [RRE]). A stretch of 14 amino acid residues of the 116-amino-acid Rev protein is sufficient to impose nucleolar localization onto a heterologous protein. Our results demonstrated that these same amino acid residues confer Rev-specific RRE binding to the heterologous human T-cell leukemia virus type I Rex protein. In addition, our results indicated that amino acids distinct from the nuclear localization signal are important for Rex-specific RRE RNA binding.  相似文献   

11.
The viral transactivator proteins Rex and Rev are necessary for the expression of structural proteins of human T-cell leukemia virus type I and human immunodeficiency virus type 1, respectively. Although the interaction of Rex/Rev with a cellular cofactor(s) has been thought to be required for Rex/Rev action, there is no suitable system to search for the cofactor(s) in mammalian cells. We found that a Rex mutant, TAgRex, which contains a simian virus 40 nuclear localization signal in place of the N-terminal 19 amino acids of Rex, could dominantly inhibit wild-type Rex/Rev functions. The inhibition did not require either Rev response element/Rex response element binding or the oligomerization ability of the mutant, but it did require a region around amino acid 90 of the Rex protein, suggesting that TAgRex sequestered the cellular cofactor. Complementation with the eukaryotic translation initiation factor 5A (eIF-5A) in this system could restore the impaired Rex function. These results indicate that eIF-5A is the cofactor indispensable for Rex function. Additionally, by using a two-hybrid system, the homo-oligomer formation of Rex was found to be mediated by the region around amino acid 90 in addition to Tyr-64 and Trp-65 of Rex protein. Thus, eIF-5A may play a part in the formation of the Rex homo-oligomer.  相似文献   

12.
13.
The Rev proteins of the human immunodeficiency virus (HIV) are necessary for expression of viral structural gene products. Site-directed mutations were made within the HIV-2 rev gene to identify functional domains. We observed that similar to HIV-1 Rev, the HIV-2 Rev protein was phosphorylated, albeit to a much lesser extent than was HIV-1 Rev. We also found that like HIV-1 Rev, HIV-2 Rev localized to the nucleus, with a marked accumulation in the nucleolus. Mutations within a stretch of basic residues prevented both nuclear and nucleolar localization. Furthermore, mutant Rev proteins able to localize in the nucleus but unable to localize in the nucleolus were nonfunctional.  相似文献   

14.
15.
Rev is an essential regulatory protein of the human immunodeficiency virus type 1 (HIV-1) that affects the transport and half-life of certain viral mRNAs. Rev exerts its function via a unique element, the Rev-responsive element (RRE), located within the env region of HIV-1. It has been previously demonstrated that Rev affects the relative levels of RRE-containing and RRE-lacking mRNAs. We have studied the effects of Rev on the expression of the three different groups of small, multiply spliced mRNAs that lack the RRE sequence and encode the regulatory proteins Tat, Rev, and Nef. To monitor the tat, rev, and nef mRNAs we generated specific S1 nuclease mapping probes that distinguish among them. Analysis of all the mRNA species producing Tat, Rev, and Nef revealed that their levels are coordinately regulated by Rev. They are increased in the absence of Rev protein and are down regulated in the presence of Rev. The corresponding proteins were measured by immunoprecipitations, and their levels are in agreement with the RNA levels. These results verify the model proposing that Rev is a general regulator indirectly affecting all the multiply spliced mRNAs to a similar extent. Therefore, Rev down regulates its own expression and the expression of Tat and Nef.  相似文献   

16.
The 27-kDa Rex trans-acting protein appears to be essential for replication of human T-cell leukemia virus type I. Mutations introduced outside of the Rex RNA-binding domain-nucleolar localization signal display either wild-type activity or, conversely, yield dominant-negative proteins. We generated missense mutations in a particular domain of the Rex protein (amino acid residues 54 to 69) which is characterized by a cluster of dominant-negative mutants. Our results indicate that amino acids 57 to 67 are critically important for Rex function mediated through the RxRE cis-acting RNA sequence. Within this domain, only amino acids 61 to 63 could be mutated without loss of function. All other missense and deletion mutants yielded dominant-negative proteins. In vitro RNA-binding studies performed with glutathione S-transferase-Rex fusion proteins demonstrated that all of the mutant Rex proteins interacted specifically with RxRE RNA. Analysis of chimeric Rex-Rev proteins suggests that this Rex domain is important for oligomerization.  相似文献   

17.
P L Green  M T Yip  Y Xie    I S Chen 《Journal of virology》1992,66(7):4325-4330
The Rex protein of human T-cell leukemia virus types I (HTLV-I) and II (HTLV-II) regulates the expression of the viral structural genes and is critical for viral replication. Rex acts by specifically binding to RNAs containing sequences of the R region of the 5' long terminal repeat. Two forms of Rex detected in HTLV-II-infected cells, p26rex and p24rex, differ in the extent of serine phosphorylation. Two-dimensional phosphopeptide analysis indicates that p26rex is extensively phosphorylated at multiple sites. Using a sensitive immunobinding assay, we show that the phosphorylation state of Rex determines the efficiency of binding of Rex to HTLV-II target RNAs. Thus, the phosphorylation state of Rex in the infected cell may be a switch that determines whether virus exists in a latent or productive state. These studies also suggest that phosphorylation of RNA-binding regulatory proteins is a more general mechanism of gene regulation.  相似文献   

18.
19.
20.
Several epidemiologic and clinical studies suggest that patients coinfected with human immunodeficiency virus (HIV), the primary etiologic agent in AIDS, and other viruses, such as cytomegalovirus or human T-cell leukemia virus (HTLV), have a more severe clinical course than those infected with HIV alone. Cells infected with two viruses can, in some cases, give rise to phenotypically mixed virions with altered or broadened cell tropism and could therefore account for some of these findings. Such pseudotypes could alter the course of disease by infecting more tissues than are normally infected by HIV. We show here that HIV type 1 (HIV-1) efficiently incorporates the HTLV type I (HTLV-I) envelope glycoprotein and that both HIV-1 and HTLV-II accept other widely divergent envelope glycoproteins to form infectious pseudotype viruses whose cellular tropisms and relative abilities to be transmitted by cell-free virions or by cell contact are determined by the heterologous envelope. We also show that the mechanism by which virions incorporate heterologous envelope glycoproteins is independent of the presence of the homologous glycoprotein or heterologous gag proteins. These results may have important implications for the mechanism of HIV pathogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号