首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ras genes from yeast and mammalian cells were fused to plant expression promoters, and introduced into plant cells via Agrobacterium, to study their effect on cell growth and development. All introduced ras genes had a strong inhibitory effect on callus and shoot regeneration from plant tissues. This is consistent with earlier findings that heterologous ras genes were highly lethal to protoplasts following direct DNA uptake. These effects could not be reversed by increasing exogenous or endogenous cytokinin levels. These effects were also independent of the v-Ha-ras mutations in functionally important regions of Ras proteins such as effector-binding and membrane-binding sites. Similarly, co-transformation with the genes encoding the Ras-negative regulators, GTPase-activating protein and neurofibromin did not affect the ras inhibitory effect, indicating that the mechanism of ras inhibition of plant cells is not related to normal ras cellular functions. This conclusion was supported by further studies in which ras gene expression was modified using various promoters and antisense constructs. The introduced ras sequences remained fully inhibitory regardless of which promoters (inducible or tissue-specific) or which orientations (sense or antisense) were tested. This strongly suggests that the ras DNA sequence itself, rather than the Ras protein or ras mRNA, is directly involved in the inhibitory effect. The mechanism underlying this novel phenomenon remains unknown. Introduced ras genes may inhibit plant cell growth by inducing co-suppression of unknown endogenous ras or ras-related genes, thereby leading to the arrest of cell growth.  相似文献   

2.
Recombinant histidine-tagged v-Ha-ras (his-ras) was purified to homogeneity from extracts ofE. coli M15 using a one-step procedure which involved immobilised metal ion chromatography on Ni2+-nitriloacetic acid agarose (Ni-NTA). The optimal pH for elution by imidazole was 6.6 and the yield of his-ras protein (greater than 95% pure) was about 4 mg/litreE. coli culture. Chromatography of a mixture of purified his-ras and rat brain cytosol on Ni-NTA together with SDS-PAGE and silver staining of proteins were employed to search forras-binding proteins present in rat brain cytosol. Chromatography of rat brain cytosol alone on Ni-NTA revealed several protein species which were not readily eluted with imidazole. These are likely to be low-abundance brain metal ion binding proteins. Pre-treatment of rat brain cytosol with Ni-NTA before a second round of chromatography on Ni-NTA removed most of these proteins. Chromatography of a mixture of pre-treated rat brain cytosol and purified his-ras protein revealed four new protein bands with molecular weights of 250, 90, 80 and 70 kDa. These were considered to be candidateras-binding proteins. It is concluded that the use of his-ras and immobilised metal ion chromatography does provide an approach which can be used to identifyras binding proteins present in cellular extracts.Abbreviations his-ras histidine-tagged vHa-ras - Ni-NTA Ni2+ nitriloacetic acid agarose - IPTG isopropyl thio--D-galactoside  相似文献   

3.
A clone isolated from a purple podded pea (Pisum sativum L.) cDNA library was shown to contain the complete coding sequence of a polypeptide with considerable homology to various members of the ras superfamily. The ras superfamily are a group of monomeric GTP-binding proteins of 21–25 kDa found in eukaryotic cells. Conserved sequences in the isolated clone include the GTP-binding site, GDP/GTP hydrolysis domain and C-terminal Cys residues involved in membrane attachment. Comparisons of the predicted amino acid sequence with those of other ras proteins show significantly higher homologies (ca. 70%) to two mammalian gene products, those of the BRL-ras oncogene, and the canine rab7 gene, than to any of the plant ras gene products so far identified (<40% homology). The high percentage of amino acid identity suggests that this cDNA may be the product of a gene, designated Psa-rab, which is the plant counterpart of rab7. Rab/ypt proteins are a subfamily of the ras superfamily thought to be involved in intracellular transport from the endoplasmic reticulum to the Golgi apparatus and in vesicular transport.Northern blot hybridisation analysis of total RNA from green and purple podded pea revealed a mRNA species of approximately the same size as the isolated cDNAs.  相似文献   

4.
Summary The c-H-ras p21 protein is the product of the humanras proto-oncogene, a member of a ubiquitous eukaryotic gene family which is highly conserved in evolution. These proteins play an important role in the control of cellular growth. We report here the sequential assignment of the backbone nuclei in a truncated form of the 21-kD gene product, using our recently proposed 4D NMR strategy (Boucher et al., 1992). These assignments are the first step towards a full investigation of the structure, dynamics and interactions of wild-type and oncogenicrasp21 using NMR spectroscopy. Some of the data were presented at the 33rd ENC held at Asilomar, California, U.S.A., in April 1992.Supplementary material is available from the corresponding authors: One table containing the complete resonance assignment of c-H-ras p21 (1–166).GDP.  相似文献   

5.
The ras superfamily of GTP binding proteins encompasses a wide range of family members, related by conserved amino-acid motifs, and act as molecular binary switches that play key roles in cellular processes. Gene duplication and divergence has been postulated as the mechanism by which such family members have evolved their specific functions. We have cloned and sequenced a ras-like gene, tbrlp, from the primitive eukaryote Trypanosoma brucei. The gene encodes a protein of 227 amino acids and contains the six conserved subdomains that designate it as a ras/rap subfamily member. However, the presence of key diagnostic residues characteristic of both the ras and rap families of GTP confuse the familial classification of this gene. Phylogenetic analysis of the GTP binding domain places its origins at the divergence point of the ras/rap families and suggests that tbrlp is an ancestral gene to the ras/rap genes of higher eukaryotes.  相似文献   

6.
The three-dimensional structures of theras-p21 protein and its protein inhibitor, rap-1A, have been computed bound to theras-binding domain, RBD (residues 55–131), of theraf-p74 protein, a critical target protein ofras-p21 in theras-induced mitogenic signal transduction pathway. The coordinates of RBD have been reconstructed from the stereoview of an X-ray crystal structure of this domain bound to rap-1A and have been subjected to energy minimization. The energy-minimized structures of bothras- p21 and rap-1A, obtained in previous studies, have been docked against RBD, using the stereo figure of the RBD-rap-1A complex, based on a six-step procedure. The final energy-minimized structure of rap-1A-RBD is identical to the X-ray crystal structure. Comparison of theras-p21- and rap-1A-RBD complexes reveals differences in the structures of effector domains ofras-p21 and rap-1a, including residues 32–47, a domain that directly interacts with RBD, 60–66, 96–110, involved in the interaction ofras-p21 withjun kinase (JNK) andjun protein, and 115–126, involved in the interaction of p21 with JNK. The structure of the RBD remained the same in both complexes with the exception of small deviations in its-2 binding loop (residues 63–71) and residues 89–91, also involved in binding to rap-1A. The results suggest that the binding of these two proteins to RBD may allow them to interact with other cellular target proteins such as JNK andjun.  相似文献   

7.
Summary Exposure of normal, tall rice (Oryza sativa) seedlings to 5-azacytidine, a powerful inhibitor of DNA methylation in vivo, induced both demethylation of genomic DNA and dwarf plants. Genes that had been affected by treatment were identified by differential screening of a cDNA library, and a ras-related gene, rgp1, was subsequently isolated. The cDNA of rgp1 was found to encode a deduced protein sequence of 226 amino acids with a relative molecular mass of 24850, which was most closely related to the ras-related ypt3 protein of fission yeast, Shizosaccharomyces pombe. The rgp1 protein, expressed in transformed Escherichia coli, clearly showed GTP-binding activity. During seedling growth, rgp1 expression was first observed 14 days after germination, reaching a maximum level between 28 and 42 days, and gradually decreased thereafter until 63 days when it attained the same level of expression as in 14-day-old seedlings. Expression of rgp1 was found to be markedly reduced throughout the growth period of both 5-azacytidine-induced dwarf plants and their progenies, relative to levels in untreated tall control plants. These results suggest that expression of rgp1 may be influenced, either directly or indirectly, by DNA methylation, and that the rgp1 protein may play an important role in plant growth and development.  相似文献   

8.
GTPase activating protein (GAP) is a known regulator of ras-p21 activity and is a likely target of ras-induced mitogenic signaling. The domains of GAP that may be involved in this signaling are unknown. In order to infer which domains of GAP may be involved, we have performed molecular dynamics calculations of GAP complexed to wild-type and oncogenic (Val 12–containing) ras-p21, both bound to GTP. We have computed and superimposed the average structures for both complexes and find that there are four domains of GAP that undergo major changes in conformation: residues 821–851, 917–924, 943–953, and 1003–1020. With the exception of the 943–953 domain, none of these domains is involved in making contacts with ras-p21, and all of them occur on the surface of the protein, making them good candidates for effector domains. In addition, three ras-p21 domains undergo major structural changes in the oncogenic p21-GAP complex: 71–76 from the switch 2 domain; 100–108, which interacts with SOS, jun and jun kinase (JNK); and residues 122–138. The change in conformation of the 71–76 domain appears to be induced by changes in conformation in the switch 1 domain (residues 32–40) and in the adjacent domain involving residues 21–31. In an accompanying paper, we present results from microinjection of peptides corresponding to each of these domains into oocytes induced to undergo maturation by oncogenic ras-p21 and by insulin-activated wild-type cellular p21 to determine whether these domain peptides may be involved in ras signaling through GAP.  相似文献   

9.
Three heterologous ras DNA-coding sequences and their deletion derivatives were introduced into plant cells to investigate the role of the ras-coding sequences, especially conserved regions, in eliciting growth inhibition. All three ras-coding sequences caused a similar inhibition of plant cell growth, and it was the conserved coding regions which were responsible for this inhibitory effect. The 493 bp conserved region within the v-Ha-ras-coding sequence was studied further, and was shown to be responsible for the inhibitory effect. This region is conserved (over 44%) among the three ras genes studied and encodes a catalytic region of the Ras protein. Small deletions at either the 5 or 3 end of this 493 bp sequence could abolish or dramatically reduce the inhibitory effect. A 36 bp region at the 5 end of the 493 bp region was found to be highly conserved between v-Ha-ras and eight different plant ras or ras-related genes based upon analysis of published sequences. Small deletions affecting this highly conserved 36 bp region completely abolished the inhibitory effect, while deletion of a similar number of base pairs in adjacent regions did not. These results indicate that plant growth inhibition by ras DNA requires small regions at both ends of the 493 bp conserved region.  相似文献   

10.
11.
Conserved amino-acids of H-ras from residues 25 to 34 were mutated in human H-ras cDNA with a pre-existing valine-12 activating mutation ([V12]p21), and built into SV40-driven expression vectors. The influence of the introduced mutations was initially screened by transfection of Rat-1 cells to score foci of transformed cells. Nonconservative mutations of amino-acids 25 (tryptophan for glutamine), 27 (asparagine for histidine) and 34 (alanine for proline) did not abrogate the transforming potential of [V12]p21. The conservative mutation of phenylalanine-28 to tryptophan ([V12W28]p21) was also still transforming. Significantly, in the absence of the valine-12 activating mutation, tryptophan-28-ras ([W28]p21) was weakly transforming while, in contrast, [V12D28]p21 was unable to transform Rat-1 cells and retarded cell growth. Analysis of the binding and dissociation of GTP and GDP to normal and mutated p21 expressed in Escherichia coli showed that [V12D28]p21 and [D28]p21 do not bind GTP. The dissociation rate of both GTP and GDP bound to [W28]p21 is increased, suggesting a mechanism for its transforming potential in Rat-1 cells. These studies illustrate the importance of phenylalanine-28 in guanine nucleotide binding by p21 h-ras . The mutations described could be valuable tools in investigations of cellular signal transduction involving small GTP-binding proteins.  相似文献   

12.
The ability of aras protein to associate with proteins present in rat brain cytosolin vitro was investigated using chemical cross-linking agents and the125I-labelled v-H-ras protein. Two iodinated protein complexes with apparent molecular weights of 40 and 85 kDa were observed when a mixture of rat brain cytosol and [125I]ras was treated with the cross-linking agent disuccinimidyl suberate and subjected to SDS-PAGE. Formation of the [125I] 85 kDa complex was enhanced by a high concentration of EDTA while generation of the 40 kDa species was abolished by this treatment. Formation of the [125I] 85 kDa complex was inhibited by unlabelledras protein, GTP, GTPS, and GDP but not by ATPS and GMP.Chromatography of the cross-linked brain cytosol-[125I]ras mixture on DEAE cellulose partially resolved the [125I] 85 kDa complex from the [125I]ras protein. The [125I] 85 kDa complex (formed using ethyleneglycolbis (succinimidylsuccinate) as the cross-linking agent) could be immunoprecipitated using a rabbit anti-ras polyclonal antibody. Treatment of the immunoprecipitate with hydroxylamine to cleave the cross-link yielded [125I]-labelledras. A substantial enrichment of the proportion of the [125I] 85 kDa complex in the cross-linked extract was achieved by preparative SDS-PAGE. It is concluded that thein vitro chemical cross-linking approach employed here has detected tworas binding proteins in rat brain cytosol: a 65 kDa heat-sensitive and a 20 kDa heat-stable protein. The possibility that the 65 kDaras binding protein is aras regulatory orras effector protein which has not so far been characterised is briefly discussed.Abbreviations DSS disuccinimidyl suberate - EGS ethyleneglycolbis (succinimidylsuccinate) - GTPS guanosine 5-[-thio] triphosphate - ATPS adenosine 5-[-thio] triphosphate  相似文献   

13.
rap-1A, an anti-oncogene-encoded protein, is aras-p21-like protein whose sequence is over 80% homologous to p21 and which interacts with the same intracellular target proteins and is activated by the same mechanisms as p21, e.g., by binding GTP in place of GDP. Both interact with effector proteins in the same region, involving residues 32–47. However, activated rap-1A blocks the mitogenic signal transducing effects of p21. Optimal sequence alignment of p21 and rap-1A shows two insertions of rap-1A atras positions 120 and 138. We have constructed the three-dimensional structure of rap-1A bound to GTP by using the energy-minimized three-dimensional structure ofras-p21 as the basis for the modeling using a stepwise procedure in which identical and homologous amino acid residues in rap-1A are assumed to adopt the same conformation as the corresponding residues in p21. Side-chain conformations for homologous and nonhomologous residues are generated in conformations that are as close as possible to those of the corresponding side chains in p21. The entire structure has been subjected to a nested series of energy minimizations. The final predicted structure has an overall backbone deviation of 0.7 å from that ofras-p21. The effector binding domains from residues 32–47 are identical in both proteins (except for different side chains of different residues at position 45). A major difference occurs in the insertion region at residue 120. This region is in the middle of another effector loop of the p21 protein involving residues 115–126. Differences in sequence and structure in this region may contribute to the differences in cellular functions of these two proteins.  相似文献   

14.
We have previously found that a peptide corresponding to residues 35–47 of the ras-p21 protein, from its switch 1 effector domain region, strongly inhibits oocyte maturation induced by oncogenic p21, but not by insulin-activated cellular wild-type p21. Another ras–p21 peptide corresponding to residues 96–110 that blocks ras–jun and jun kinase (JNK) interactions exhibits a similar pattern of inhibition. We have also found that c-raf strongly induces oocyte maturation and that dominant negative c-raf strongly blocks oncogenic p21-induced oocyte maturation. We now find that the p21 35–47, but not the 96–110, peptide completely blocks c-raf-induced maturation. This finding suggests that the 35–47 peptide blocks oncogenic ras at the level of raf; that activated normal and oncogenic ras–p21 have differing requirements for raf-dependent signaling; and that the two oncogenic-ras-selective inhibitory peptides, 35–47 and 96–110, act at two different critical downstream sites, the former at raf, the latter at JNK/jun, both of which are required for oncogenic ras-p21 signaling.  相似文献   

15.
Although the role of several protooncogenes, including sis, myc, and myb in the regulation of growth and differentiation of vascular cells has been examined in some detail, limited information is available on the contribution of ras genes to these processes. In the present studies the influence of oncogenic ras transfection on the phenotypic expression of rat aortic smooth muscle cells (SMCs) was examined. Cultured rat aortic SMCs during early passage (P4) were transfected by lipofection with c-Ha-rasEJ in a pSV2 neo vector or with pSV2 neo vector alone. Stable transfectants were selected in G418 over a 6-week period. Oncogene-transfected cells (ras-LF-1) exhibited differences in morphology and growth pattern relative to vector controls (neo-LF-1), or naive SMCs, including the development of prominent processes and the appearance of focal cellular arrangements giving rise to latticelike structures. Southern analysis revealed multiple integration of oncogenic ras in ras LF-1 cells. Transfection of c-Ha-rasEJ was associated with a twofold increase in p21 levels relative to pSV2 vector controls demonstrating that exogenous ras was expressed in these cells. Overexpression of ras p21 afforded SMCs a lower serum requirement for growth compared to vector controls, anchor-age independent growth on soft agar, and acquisition of epidermal growth factor (EGF) responsiveness. Stimulation of serum-deprived SMCs with 5% fetal bovine serum (FBS) increased steady-state levels of c-Ha-ras mRNA in both ras-LF-1 and neo-LF-1 but ras induction was more pronounced in ras-transfected cells. α-smooth muscle (SM) actin gene expression was markedly reduced in ras-transfected cells relative to vector controls. These results show that transfection of c-Ha-rasEJ into aortic SMCs induces an altered phenotypic state characterized by alterations in growth factor-related signal transduction and tumorigenic potential. © 1994 Wiley-Liss, Inc.  相似文献   

16.
Although the activation of phospholipase A2 (PLA2) in ras-transformed cells has been well documented, the mechanisms underlying this activation are poorly understood. In this study we tried to elucidate whether the membrane phospholipid composition and physical state influence the activity of membrane-associated PLA2 in ras-transformed fibroblasts. For this purpose membranes from non-transfected and ras-transfected NIH 3T3 fibroblasts were enriched with different phospholipids by the aid of partially purified lipid transfer protein. The results showed that of all tested phospholipids only phosphatidylcholine (PC) increased PLA2 activity in the control cells, whereas in their transformed counterparts both PC and phosphatidic acid (PA) induced such effect. Further we investigated whether the activatory effect was due only to the polar head of these phospholipids, or if it was also related to their acyl chain composition. The results demonstrated that the arachidonic acid-containing PC and PA molecules induced a more pronounced increase of membrane-associated PLA2 activity in ras-transformed cells compared to the corresponding palmitatestearate- or oleate- containing molecular species. However, we did not observe any specific effect of the phospholipid fatty acid composition in non-transformed NIH 3T3 fibroblasts. In ras-transformed cells incubated with increasing concentrations of arachidonic acid, PLA2 activity was altered in parallel with the changes of the cellular content of this fatty acid. The role of phosphatidic and arachidonic acids as specific activators of PLA2 in ras-transformed cells is discussed with respect to their possible role in the signal transduction pathways as well as in the processes of malignant transformation of cells.  相似文献   

17.
Summary 1. The noncatalytic domain of Ras-GAP can affect signaling through G protein-coupled receptors by a poorly understood mechanism. 2. In this study, fusion proteins containing elements of the noncatalytic domain ofras-GAP were examined for their ability to bindβγ subunits of heterotrimeric G proteins and phosphotyrosine-containing polypeptides. 3. Our results demonstrate that purifiedβγ dimers associated with bacterially expressed GAP proteins and that this association does not require SH2 or SH3 domains but is dependent on the presence of the GAP pleckstrin-homology (PH) domain. In contrast, only the SH2 domains are necessary for binding to tyrosine phosphorylated proteins. 4. These findings raise the possibility that heterotrimeric G proteins might affect functioning ofras-like proteins throughβγ subunits acting on their regulatory molecules.  相似文献   

18.
We compared serum and protein-free cultures ofa ras-amplified recombinant BHK-21 cell line(ras-rBHK-IgG), which hyperproduces a lungcancer specific recombinant human monoclonal antibody. Ras-rBHK-IgG cells were shown to grow well, evenin protein-free medium and to be morphologicallysimilar to cells cultured in serum containing medium. However, the growth rate of ras-rBHK-IgG cellswas considerably slower in protein-free medium, whichresults in a longer maintenance period compared with cells cultured in serum containing medium. In addition, it was found that antibody production in protein-free culture had a ten times higher maximum than cells cultured in serum containing medium. On theother hand, in high density culture, using the hollowfiber bioreactor system, ras-rBHK-IgG cellscould be maintained for a month in protein-freeculture in contrast with serum culture, which onlylasted for half a month. However, the markedincrease of antibody production was not observed. A total amount of about 15 mg of the recombinantantibody, obtained in protein-free culture, was abouttwo times of that obtained in serum culture, and wasshown to be reactive to lung cancer cells in tissue. From these properties in protein-free medium, it isconcluded that protein-free culture of ras-rBHK-IgG cells is suitable for middle scaleproduction of recombinant human monoclonal antibody.  相似文献   

19.
K-ras基因突变检测可用于大肠癌的早期筛查与诊断,并有利于筛选出抗表皮生长因子受体靶向药物治疗有效的大肠癌患者,以实现肿瘤的个体化治疗.采用以倾斜式热辐射原理建立的微流控温度梯度毛细管电泳(temperature gradient capillary electrophoresis,TGCE)基因突变检测系统,实现了对98例石蜡包埋大肠癌组织中K-ras基因突变的高灵敏度筛查,突变阳性检出率为47.96%,显著高于PCR产物直接测序的23.47%.克隆测序显示该方法至少能检测到2.08%的K-ras基因突变体.K-ras基因突变与临床病理学参数的关系分析显示,直肠癌中K-ras基因突变率明显高于结肠癌(P < 0.05),而与年龄、性别、组织学类型和肿瘤分期等无显著相关性.该检测方法为肿瘤早期诊断和指导临床用药提供了一种灵敏度高、检测速度快、便于大规模筛查的有效手段.  相似文献   

20.
The ras genes encode GTP/GDP-binding proteins that participate in mediating mitogenic signals from membrane tyrosine kinases to downstream targets. The activity of p21ras is determined by the concentration of GTP-p21ras, which is tightly regulated by a complex array of positive and negative control mechanisms. GAP and NF1 can negatively regulate p21ras activity by stimulating hydrolysis of GTP bound to p21ras. Other cellular factors can positively regulate p21ras by stimulating GDP/GTP exchange.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号