首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The activation of six target enzymes by calmodulin phosphorylated on Tyr99 (PCaM) and the binding affinities of their respective calmodulin binding domains were tested. The six enzymes were: myosin light chain kinase (MLCK), 3'-5'-cyclic nucleotide phosphodiesterase (PDE), plasma membrane (PM) Ca2+-ATPase, Ca2+-CaM dependent protein phosphatase 2B (calcineurin), neuronal nitric oxide synthase (NOS) and type II Ca2+-calmodulin dependent protein kinase (CaM kinase II). In general, tyrosine phosphorylation led to an increase in the activatory properties of calmodulin (CaM). For plasma membrane (PM) Ca2+-ATPase, PDE and CaM kinase II, the primary effect was a decrease in the concentration at which half maximal velocity was attained (Kact). In contrast, for calcineurin and NOS phosphorylation of CaM significantly increased the Vmax. For MLCK, however, neither Vmax nor Kact were affected by tyrosine phosphorylation. Direct determination by fluorescence techniques of the dissociation constants with synthetic peptides corresponding to the CaM-binding domain of the six analysed enzymes revealed that phosphorylation of Tyr99 on CaM generally increased its affinity for the peptides.  相似文献   

3.
Many subcellular fractions contain both protein kinase and phosphatase enzymes which can act on endogenous proteins in the fractions.When studying the phosphorylation of the endogenous protein it is necessary to take into account the presence of both enzymes.In a previous paper (Weller, 1974) an equation was derived which described the time-course of phosphorylation of a protein in the presence of both kinase and phosphatase activities. To derive this equation the assumption was made that the activity of the kinase was very much greater than that of the phosphatase. This assumption may not be valid in all cases and the present paper describes the derivation of a similar equation without making any assumptions about the relative rates of kinase and phosphatase activities.The time-course of protein phosphorylation predicted by the new equation is compared to that predicted by the previous equation with varying rates of protein phosphatase activity. It is found that the new equation should be used to describe the time-course of protein phosphorylation in the presence of protein kinase and phosphatase activities if the activity of the phosphatase is more than about 7% of that of the kinase.  相似文献   

4.
This review seeks to assemble recent discoveries about insulin receptor/kinase, guanine nucleotide-binding proteins, phosphatidyl inositol metabolism, and protein phosphatases to provide a mechanistic pathway by which insulin would alter carbohydrate and fat metabolism. It proposes a hypothetical chain of events that leads from the insulin receptor to protein phosphatase-1. The sequence starts with insulin binding to its receptor, activating the intrinsic receptor/kinase activity. The insulin receptor phosphorylates a guanine nucleotide-binding protein, which activates a particular phospholipase C. This in turn stimulates the production of two lipid-derived messengers: inositol-phospho-glucosamine and diacylglycerol. These messengers trigger the effects of insulin. The diacylglycerol produced by insulin is thought to be analogous to the diacylglycerol produced by alpha-adrenergic stimulation, which activates protein kinase C. Activation of this kinase could account for increases in phosphorylation of certain proteins. The inositol-phospho-glucosamine is the cytosolic messenger for insulin. One of the enzymes activated by insulin is protein phosphatase type-1. It is known that the phosphatase decreases phosphorylation of certain target enzymes. In response to insulin, activation of protein phosphatase type-1 occurs with a stable conformational change that may involve rearrangement of disulfide bonds. Rearrangement is either directly in response to the cytosolic messenger or is catalyzed by an isomerase activated by the insulin messenger. Ultimately, protein phosphatase type-1 and/or the disulfide isomerase may together mediate the pleiotropic effects of insulin on carbohydrate and fat metabolism.  相似文献   

5.
Amino and carboxyl termini of the bifunctional enzyme Fru 6-P, 2-kinase:Fru 2,6-bisphosphatase regulate the relative activities of the kinase/phosphatase. The N-terminus of the rat liver bifunctional enzyme is highly basic, containing a protein kinase A phosphorylation site that regulates these enzyme activities in a reciprocal manner. To determine the role of charged residues in the N-terminal peptide, mutant enzymes were constructed in which these residues were altered to residues carrying opposite charges, and the effect on the catalytic properties, thermal lability, and susceptibility to trypsin digestion and phosphorylation by protein kinase A was determined. Most of these mutations decreased k(cat)/K(ATP) and/or k(cat)/K(Fru) (6-P) of the kinase and increased k(cat)/K(Fru 2,6-P2) of the phosphatase. These mutant enzymes were more susceptible to trypsin digestion, phosphorylation by protein kinase A, and thermal inactivation. In general, the effect was greater with amino acid residues located more distant from the N-terminus. The resulting changes were not as large as observed with the phosphorylated enzyme. Mutation of Ser22 to Pro produced large changes in the kinetic properties comparable to those of phosphorylation, suggesting that the flexible region of the N-terminus containing five serines (Ser20 to S24) is essential for the enzyme activities. These results indicated that the charged residues as well as Ser20-Ser24 in the N-terminus of the liver Fru 6-P,2-kinase:Fru 2,6-Pase are essential in the allosteric regulation and probably involved in interactions with the catalytic domains that induce a conformation that has high Fru 6-P,2-kinase and low Fru 2,6-Pase activities. Any disruption of this N-terminal interaction results in inhibition of the kinase and activation of the phosphatase.  相似文献   

6.
Regulation through phosphorylation/dephosphorylation cascade systems   总被引:5,自引:0,他引:5  
The cyclic interconversion of enzymes between phosphorylated and unphosphorylated forms comprises a major mechanism of cellular regulation. A theoretical analysis of reversible covalent modification systems (Stadtman, E.R., and Chock, P.B. (1977) Proc. Natl. Acad. Sci. U.S.A. 74, 2761-2765) revealed that they are endowed with extraordinary regulatory capacities; they may exhibit smooth, flexible responses to changes in single and multiple metabolite levels, signal amplification, and apparent positive cooperativity. To test qualitatively and quantitatively the theories and equations involved in this analysis, a model in vitro phosphorylation/dephosphorylation cyclic cascade was developed in which the converter enzymes catalyzing the covalent modifications were cAMP-dependent protein kinase (EC 2.7.1.37; type II) and phosphoprotein phosphatase (EC 3.1.3.16; Mr = 38,000), both purified to near homogeneity from bovine heart. The kinetic constants for both enzymes were fully characterized using the nanopeptide Leu-Arg-Arg-Ala-Ser-Val-Ala-Gln-Leu as the interconvertible substrate, cAMP as an activator for the kinase, and Pi as an inhibitor for the phosphatase. In the presence of a nearly constant concentration of ATP, a steady-state level of phosphorylation of the peptide was attained which was determined by the relative concentrations of the kinase, phosphatase, and effectors. As predicted by the cyclic cascade model, this monocyclic cascade exhibited both signal amplification and an increase in sensitivity to variations in multiple effector concentrations. In addition, the data show that the steady-state level of phosphorylation obtained in the presence of an activator of the kinase (e.g. cAMP) and an inhibitor of the phosphatase (e.g. Pi) is a function of the product of the relative effector concentrations. Finally, the results reveal that when the concentration of enzyme-substrate complex is not negligible, cyclic cascades are potentially more sensitive to variations in effector concentrations and can achieve even greater signal amplification than predicted previously.  相似文献   

7.
8.
Isocitrate dehydrogenase kinase/phosphatase   总被引:3,自引:0,他引:3  
D C Laporte  C S Stueland  T P Ikeda 《Biochimie》1989,71(9-10):1051-1057
In Escherichia coli, isocitrate dehydrogenase (IDH) is regulated by phosphorylation. This phosphorylation cycle is catalyzed by an unusual, bifunctional protein:IDH kinase/phosphatase. IDH kinase/phosphatase is expressed from a single gene, aceK, and both activities are catalyzed by the same polypeptide. The amino acid sequence of IDH kinase/phosphatase does not exhibit the characteristics which are typical of other protein kinases, although it does contain a consensus ATP binding site. The available evidence suggests that the IDH kinase and IDH phosphatase reactions occur at the same active site and that the IDH phosphatase reaction results from the back reaction of IDH kinase tightly coupled to ATP hydrolysis. The function of the IDH phosphorylation cycle is to control the flux of isocitrate through the glyoxylate bypass. This pathway is essential for growth on acetate because it prevents the quantitative loss of the acetate carbons as CO2 in the Krebs' cycle. IDH kinase/phosphatase monitors general metabolism by responding to the levels of a wide variety of metabolites, many of which activate IDH phosphatase and inhibit IDH kinase. The ability of IDH kinase/phosphatase to monitor general metabolism allows. the IDH phosphorylation cycle to compensate for substantial perturbations of the system, such as a 15-fold overproduction of IDH. The significance of the cellular level of IDH kinase/phosphatase has also been evaluated. The level of this protein is in great excess of that required for steady-state growth on acetate. In contrast, IDH kinase/phosphatase is, in some cases, rate-limiting for the dephosphorylation of IDH which results when preferred carbon sources are added to cultures growing on acetate.  相似文献   

9.
Mitochondrial protein phosphorylation is a well-recognized metabolic control mechanism, with the classical example of pyruvate dehydrogenase (PDH) regulation by specific kinases and phosphatases of bacterial origin. However, despite the growing number of reported mitochondrial phosphoproteins, the identity of the protein kinases mediating these phosphorylation events remains largely unknown. The detection of mitochondrial protein kinases is complicated by the low concentration of kinase relative to that of the target protein, the lack of specific antibodies, and contamination from associated, but nonmatrix, proteins. In this study, we use blue native gel electrophoresis (BN-PAGE) to isolate rat and porcine heart mitochondrial complexes for screening of protein kinase activity. To detect kinase activity, one-dimensional BN-PAGE gels were exposed to [γ-(32)P]ATP and then followed by sodium dodecyl sulfate gel electrophoresis. Dozens of mitochondrial proteins were labeled with (32)P in this setting, including all five complexes of oxidative phosphorylation and several citric acid cycle enzymes. The nearly ubiquitous (32)P protein labeling demonstrates protein kinase activity within each mitochondrial protein complex. The validity of this two-dimensional BN-PAGE method was demonstrated by detecting the known PDH kinases and phosphatases within the PDH complex band using Western blots and mass spectrometry. Surprisingly, these same approaches detected only a few additional conventional protein kinases, suggesting a major role for autophosphorylation in mitochondrial proteins. Studies on purified Complex V and creatine kinase confirmed that these proteins undergo autophosphorylation and, to a lesser degree, tenacious (32)P-metabolite association. In-gel Complex IV activity was shown to be inhibited by ATP, and partially reversed by phosphatase activity, consistent with an inhibitory role for protein phosphorylation in this complex. Collectively, this study proposes that many of the mitochondrial complexes contain an autophosphorylation mechanism, which may play a functional role in the regulation of these multiprotein units.  相似文献   

10.
Mitogen-activated protein kinase (MAPK) cascades can operate as bistable switches residing in either of two different stable states. MAPK cascades are often embedded in positive feedback loops, which are considered to be a prerequisite for bistable behavior. Here we demonstrate that in the absence of any imposed feedback regulation, bistability and hysteresis can arise solely from a distributive kinetic mechanism of the two-site MAPK phosphorylation and dephosphorylation. Importantly, the reported kinetic properties of the kinase (MEK) and phosphatase (MKP3) of extracellular signal-regulated kinase (ERK) fulfill the essential requirements for generating a bistable switch at a single MAPK cascade level. Likewise, a cycle where multisite phosphorylations are performed by different kinases, but dephosphorylation reactions are catalyzed by the same phosphatase, can also exhibit bistability and hysteresis. Hence, bistability induced by multisite covalent modification may be a widespread mechanism of the control of protein activity.  相似文献   

11.
In Escherichia coli, the branch point between the Krebs cycle and the glyoxylate bypass is regulated by the phosphorylation of isocitrate dehydrogenase (IDH). Phosphorylation inactivates IDH, forcing isocitrate through the bypass. This bypass is essential for growth on acetate but does not serve a useful function when alternative carbon sources, such as glucose or pyruvate, are also present. When pyruvate or glucose is added to a culture growing on acetate, the cells responded by dephosphorylating IDH and thus inhibiting the flow of isocitrate through the glyoxylate bypass. In an effort to identify the primary rate-limiting step in the response of IDH phosphorylation to alternative carbon sources, we have examined the response rates of congenic strains of E. coli which express different levels of IDH kinase/phosphatase, the bifunctional protein which catalyzes this phosphorylation cycle. The rate of the pyruvate-induced dephosphorylation of IDH was proportional to the level of IDH kinase/phosphatase, indicating that IDH kinase/phosphatase was primarily rate-limiting for dephosphorylation. However, the identity of the primary rate-limiting step appears to depend on the stimulus, since the rate of dephosphorylation of IDH in response to glucose was independent of the level of IDH kinase/phosphatase.  相似文献   

12.
Intracellular signaling proteins are very often regulated by site-specific phosphorylation. For example, growth factor receptors in eukaryotic cells contain intrinsic tyrosine kinase activity and use inter- and intra-molecular interactions to recruit and orient potential protein substrates for phosphorylation. Equally important in determining the magnitude and kinetics of such a response is protein dephosphorylation, catalysed by phosphatase enzymes. A growing body of evidence indicates that certain protein tyrosine phosphatases (PTPs), like tyrosine kinases, are affected by intermolecular interactions that alter the specific activity or localization of their catalytic domains. Using a detailed kinetic modeling framework, we theoretically explore the regulation of PTPs through their association with receptor tyrosine kinases, as noted for the Src homology 2-domain-containing PTPs, SHP-1 and -2. Receptor-PTP binding, in turn, is expected to influence the phosphorylation pattern of those receptors and proteins they associate with, and we show how PTPs might serve to co- or counter-regulate parallel pathways in a signaling network.  相似文献   

13.
In Escherichia coli, the homodimeric Krebs cycle enzyme isocitrate dehydrogenase (EcIDH) is regulated by reversible phosphorylation of a sequestered active site serine. The phosphorylation cycle is catalyzed by a bifunctional protein, IDH kinase/phosphatase (IDH-K/P). To better understand the nature of the interaction between EcIDH and IDH-K/P, we have examined the ability of an IDH homologue from Bacillus subtilis (BsIDH) to serve as a substrate for the kinase and phosphatase activities. BsIDH exhibits extensive sequence and structural similarities with EcIDH, particularly around the phosphorylated serine. Our previous crystallographic analysis revealed that the active site architecture of these two proteins is almost completely conserved. We now expand the comparison to include a number of biochemical properties. Both IDHs display nearly equivalent steady-state kinetic parameters for the dehydrogenase reaction. Both proteins are also phosphorylated by IDH-K/P in the same ratio (1 mole of phosphate per mole of monomer), and this stoichiometric phosphorylation correlates with an equivalent inhibition of IDH activity. Furthermore, tandem electrospray mass spectrometry demonstrates that BsIDH, like EcIDH, is phosphorylated on the corresponding active site serine residue (Ser-104). Despite the high degree of sequence, functional, and structural congruence between these two proteins, BsIDH is surprisingly a much poorer substrate of IDH-K/P than is EcIDH, with Michaelis constants for the kinase and phosphatase activities elevated by 60- and 3,450-fold, respectively. These drastically disparate values might result from restricted access to the active site cavity and/or from the lack of a potential docking site for IDH-K/P.  相似文献   

14.
Phosphorylation-triggered degradation is a common strategy for elimination of regulatory proteins in many important cell signaling processes. Interesting examples include cyclin-dependent kinase inhibitors such as p27 in human and Sic1 in yeast, which play crucial roles during the G1/S transition in the cell cycle. In this work, we have modeled and analyzed the dynamics of multisite-phosphorylation-triggered protein degradation systematically. Inspired by experimental observations on the Sic1 protein and a previous intriguing theoretical conjecture, we develop a model to examine in detail the degradation dynamics of a protein featuring multiple phosphorylation sites and a threshold site number for elimination in response to a kinase signal. Our model explains the role of multiple phosphorylation sites, compared to a single site, in the regulation of protein degradation. A single-site protein cannot convert a graded input of kinase increase to much sharper output, whereas multisite phosphorylation is capable of generating a highly switch-like temporal profile of the substrate protein with two characteristics: a temporal threshold and rapid decrease beyond the threshold. We introduce a measure termed temporal response coefficient to quantify the extent to which a response in the time domain is switch-like and further investigate how this property is determined by various factors including the kinase input, the total number of sites, the threshold site number for elimination, the order of phosphorylation, the kinetic parameters, and site preference. Some interesting and experimentally verifiable predictions include that the non-degradable fraction of the substrate protein exhibits a more switch-like temporal profile; a sequential system is more switch-like, while a random system has the advantage of increased robustness; all the parameters, including the total number of sites, the threshold site number for elimination and the kinetic parameters synergistically determine the exact extent to which the degradation profile is switch-like. Our results suggest design principles for protein degradation switches which might be a widespread mechanism for precise regulation of cellular processes such as cell cycle progression.  相似文献   

15.
Preparations of membrane fragments from brain have previously been shown to contain tightly bound protein kinase and phophatase enzymes which, together, are responsible for the turnover of protein-bound phosphate in the membrane.An equation has now been derived which describes the time-course of the phophorylation of the membrane-bound proteins in terms of the activities of the kinase and phosphatase enzymes and the initial state of phosphorylation of the membrane proteins. The use of this equation makes it possible to define the effects of substances or treatments which alter the overall rate of protein phosphorylation and to show whether kinase activity, phosphotase activity, or initial state of protein phosphorylation is being changed.Treatment of membrane fragmetns with NaI is found to decrease both protein kinase and phosphatase activities. Na+ decreases overall protein phosphorylation solely by decreasing phosphotase activity and cyclic AMP stimulates protein phosphorylation by an action on kinase activity alone.It has been deduced that if there is more than one type of site for protein phosphorylation in cerebral membrane fragments these should react with the kinase at equal rates and with the phosphatase at equal rates.It is hoped that the treatment given in this paper may prove generally applicable to situatiions where the rate of enzymic reaction is controlled by the concentration of substrate.  相似文献   

16.
Myosin light chain phosphatase with its regulatory subunit, myosin phosphatase target subunit 1 (MYPT1) modulates Ca2+-dependent phosphorylation of myosin light chain by myosin light chain kinase, which is essential for smooth muscle contraction. The role of MYPT1 in vascular smooth muscle was investigated in adult MYPT1 smooth muscle specific knock-out mice. MYPT1 deletion enhanced phosphorylation of myosin regulatory light chain and contractile force in isolated mesenteric arteries treated with KCl and various vascular agonists. The contractile responses of arteries from knock-out mice to norepinephrine were inhibited by Rho-associated kinase (ROCK) and protein kinase C inhibitors and were associated with inhibition of phosphorylation of the myosin light chain phosphatase inhibitor CPI-17. Additionally, stimulation of the NO/cGMP/protein kinase G (PKG) signaling pathway still resulted in relaxation of MYPT1-deficient mesenteric arteries, indicating phosphorylation of MYPT1 by PKG is not a major contributor to the relaxation response. Thus, MYPT1 enhances myosin light chain phosphatase activity sufficient for blood pressure maintenance. Rho-associated kinase phosphorylation of CPI-17 plays a significant role in enhancing vascular contractile responses, whereas phosphorylation of MYPT1 in the NO/cGMP/PKG signaling module is not necessary for relaxation.  相似文献   

17.
Summary A cystosolic protein kinase that phosphorylates pyruvate kinase (PK) in vitro has been identified in crude homogenates of heart, radular retractor, and foot muscle from the anoxia-tolerant marine whelk Busycon canaliculatum. Protein kinase action was measured by following changes in PK kinetic parameters: phosphorylated PK has a higher K m value for phosphoenolpyruvate and a lower I50 value for l-alanine. The crude protein kinase readily phosphorylated PK in a Mg2+-and ATP-dependent manner in the absence of any added effector. This activity was not affected by the addition of either cAMP (a stimulator of protein kinase A) or Ca2+ plus phorbol 12-myristate 13-acetate (stimulators of protein kinase C) to the incubation medium. Addition of cGMP to the homogenate, however, increased the rate of PK phosphorylation giving a 3–4-fold increase in the rate of change in PK kinetic parameters that was readily apparent after 5h. Complete time-courses of changes in PK kinetic parameters in the presence and absence of cGMP showed that cGMP increased the rate, but not the final extent, of PK phosphorylation. These results indicate that PK inactivation by enzyme phosphorylation in response to anoxia in whelk tissues may be mediated by a cyclic GMP stimulated protein kinase in response to changing levels of cGMP. This conclusion was further supported by data indicating that the total activity of protein kinase was the same in both anoxic and aerobic animals, and that the total PK phosphatase activity was also constant. Changes in PK phosphorylation during anoxia are not, therefore, the result of changes in the total amount of protein kinase or phosphatase.Abbreviations cAMP adenosine 3:5-monophosphate - cGMP guanosine 3:5-monophosphate - PK pyruvate kinase - PMA phorbol 12-myristate, 13-acetate - PEP phosphoenolpyruvate - K m Michaelis constant - I 50 inhibitor concentration that reduces enzyme activity by 50%  相似文献   

18.
Receptor phosphorylation is thought to be tightly regulated because phosphorylated receptors initiate signaling cascades leading to cellular activation. The T cell antigen receptor (TCR) on the surface of T cells is phosphorylated by the kinase Lck and dephosphorylated by the phosphatase CD45 on multiple immunoreceptor tyrosine-based activation motifs (ITAMs). Intriguingly, Lck sequentially phosphorylates ITAMs and ZAP-70, a cytosolic kinase, binds to phosphorylated ITAMs with differential affinities. The purpose of multiple ITAMs, their sequential phosphorylation, and the differential ZAP-70 affinities are unknown. Here, we use a systems model to show that this signaling architecture produces emergent ultrasensitivity resulting in switch-like responses at the scale of individual TCRs. Importantly, this switch-like response is an emergent property, so that removal of multiple ITAMs, sequential phosphorylation, or differential affinities abolishes the switch. We propose that highly regulated TCR phosphorylation is achieved by an emergent switch-like response and use the systems model to design novel chimeric antigen receptors for therapy.  相似文献   

19.
Given the ubiquitous nature of signal-induced Ca2+ oscillations, the question arises as to how cellular responses are affected by repetitive Ca2+ spikes. Among these responses, we focus on those involving protein phosphorylation. We examine, by numerical simulations of a theoretical model, the situation where a protein is phosphorylated by a Ca(2+)-activated kinase and dephosphorylated by a phosphatase. This reversible phosphorylation system is coupled to a mechanism generating cytosolic Ca2+ oscillations; for definiteness, this oscillatory mechanism is based on the process of Ca(2+)-induced Ca2+ release. The analysis shows that the average fraction of phosphorylated protein increases with the frequency of repetitive Ca2+ spikes; the latter frequency generally rises with the extent of external stimulation. Protein phosphorylation therefore provides a mechanism for the encoding of the external stimulation in terms of the frequency of signal-induced Ca2+ oscillations. Such a frequency encoding requires precise kinetic conditions on the Michaelis-Menten constants of the kinase and phosphatase, their maximal rates, and the degree of cooperativity in kinase activation by Ca2+. In particular, the most efficient encoding of Ca2+ oscillations based on protein phosphorylation occurs in conditions of zero-order ultrasensitivity, when the kinase and phosphatase are saturated by their protein substrate. The kinetic analysis uncovers a wide variety of temporal patterns of phosphorylation that could be driven by signal-induced Ca2+ oscillations.  相似文献   

20.
Regulation of protein kinase cascades by protein phosphatase 2A.   总被引:23,自引:0,他引:23  
Many protein kinases themselves are regulated by reversible phosphorylation. Upon cell stimulation, specific kinases are transiently phosphorylated and activated. Several of these protein kinases are substrates for protein phosphatase 2A (PP2A), and PP2A appears to be the major kinase phosphatase in eukaryotic cells that downregulates activated protein kinases. This idea is substantiated by the observation that some viral proteins and naturally occurring toxins target PP2A and modulate its activity. There is increasing evidence that PP2A activity is regulated by extracellular signals and during the cell cycle. Thus, PP2A is likely to play an important role in determining the activation kinetics of protein kinase cascades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号