首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have studied the role of the actin cytoskeleton in bombesin-induced inositol 1,4,5-trisphosphate (IP(3))-production and Ca(2+)release in the pancreatic acinar tumour cell line AR4-2J. Intracellular and extracellular free Ca(2+)concentrations were measured in cell suspensions, using Fura-2. Disruption of the actin cytoskeleton by pretreatment of the cells with latrunculin B (10 microM), cytochalasin D (10 microM) or toxin B from Clostridium difficile (20 ng/ml) for 5-29 h led to inhibition of both, bombesin-stimulated IP(3)-production and Ca(2+)release. The toxins had no effect on binding of bombesin to its receptor, on Ca(2+)uptake into intracellular stores and on resting Ca(2+)levels. Ca(2+)mobilization from intracellular stores, induced by thapsigargin (100 nM) or IP(3)(1 microM) was not impaired by latrunculin B. In latrunculin B-pretreated cells inhibition of both, bombesin-stimulated IP(3)- production and Ca(2+)release was partly suspended in the presence of aluminum fluoride, an activator of G-proteins. Aluminum fluoride had no effect on basal IP(3)and Ca(2+)levels of control and toxin-pretreated cells. We conclude that disruption of the actin cytoskeleton impairs coupling of the bombesin receptor to its G-protein, resulting in inhibition of phospholipase C-activity with subsequent decreases in IP(3)-production and Ca(2+)release.  相似文献   

2.
The objective of this study was to examine the role of the actin cytoskeleton in the development of pressure-induced membrane depolarization and Ca(2+) influx underlying myogenic constriction in cerebral arteries. Elevating intraluminal pressure from 10 to 60 mmHg induced membrane depolarization, increased intracellular cytosolic Ca(2+) concentration ([Ca(2+)](i)) and elicited myogenic constriction in both intact and denuded rat posterior cerebral arteries. Pretreatment with cytochalasin D (5 microM) or latrunculin A (3 microM) abolished constriction but enhanced the [Ca(2+)](i) response; similarly, acute application of cytochalasin D to vessels with tone, or in the presence of 60 mM K(+), elicited relaxation accompanied by an increase in [Ca(2+)](i). The effects of cytochalasin D were inhibited by nifedipine (3 microM), demonstrating that actin cytoskeletal disruption augments Ca(2+) influx through voltage-sensitive L-type Ca(2+) channels. Finally, pressure-induced depolarization was enhanced in the presence of cytochalasin D, further substantiating a role for the actin cytoskeleton in the modulation of ion channel function. Together, these results implicate vascular smooth muscle actin cytoskeletal dynamics in the control of cerebral artery diameter through their influence on membrane potential as well as via a direct effect on L-type Ca(2+) channels.  相似文献   

3.
Previously, we reported that hyposmotic swelling evoked transient vascular smooth muscle cell (SMC) contraction that was completely abolished by L-type Ca(2+) channel blockers. In contrast, sustained contraction revealed in hyper- and isoosmotically-shrunken SMCs was insensitive to L-type channel blockers and was diminished in Ca(2+)-free medium by only 30-50%. Several research groups reported cell volume-dependent cytoskeleton network rearrangements. This study examines the role of cytoskeleton proteins in cell volume-dependent contraction of endothelium-denuded vascular smooth muscle rings (VSMR) from the rat thoracic aorta. Hyperosmotic shrinkage and hyposmotic swelling were triggered by modulation of medium osmolality; isosmotic shrinkage was induced by VSMR transfer from hypo- to isosmotic medium. The relative content of globular (G) and fibrillar (F) actin was estimated by fluorescence microscopy. Hyperosmotic shrinkage and hyposmotic swelling led to elevation of the F-actin/G-actin ratio by 2.5- and 1.8-fold respectively. Contraction of shrunken and swollen VSMR was insensitive to modulators of microtubules such as vinblastine, colchicine and docetaxel. Microfilament disassembly by cytochalasin B resulted in dramatic attenuation of the maximal amplitude of contraction of hyperosmotically-shrunken and hyposmotically-swollen VSMR, and almost completely abolished the contraction triggered by isosmotic shrinkage. These data suggest that both L-type Ca(2+) channel-mediated contraction of swollen vascular SMC and Ca(2+)(o)-insensitive contractions of shrunken cells are triggered by reorganization of the microfilament network caused by elevation of the F-actin/G-actin ratio.  相似文献   

4.
Cytoskeleton damage is a frequent feature in neuronal cell death and one of the early events in oxidant-induced cell injury. This work addresses whether actin cytoskeleton reorganization is an early event of SIN-1-induced extracellular nitrosative/oxidative stress in cultured cerebellar granule neurons (CGN). The actin polymerization state, i.e. the relative levels of G-/F-actin, was quantitatively assessed by the ratio of the fluorescence intensities of microscopy images obtained from CGN double-labelled with Alexa594-DNase-I (for actin monomers) and Bodipy-FL-phallacidin (for actin filaments). Exposure of CGN to a flux of peroxynitrite as low as 0.5-1μM/min during 30min (achieved with 0.1mM SIN-1) was found to promote alterations of the actin cytoskeleton dynamics as it increases the G-actin/F-actin ratio. Because L-type voltage-operated Ca(2+) channels (L-VOCC) are primary targets in CGN exposed to SIN-1, the possible role of Ca(2+) dynamics on the perturbation of the actin cytoskeleton was also assessed from the cytosolic Ca(2+) concentration response to the L-VOCC's agonist FPL-64176 and to the L-VOCC's blocker nifedipine. The results showed that SIN-1 induced changes in the actin polymerization state correlated with its ability to decrease Ca(2+) influx through L-VOCC. Combined analysis of cytosolic Ca(2+) concentration and G-actin/F-actin ratio alterations by SIN-1, cytochalasin D, latrunculin B and jasplakinolide support that disruption of the actin cytoskeleton is linked to cytosolic calcium concentration changes.  相似文献   

5.
It has been proposed that cytoskeleton plays a key positive role in the activation of capacitative calcium entry (CCE), which supported the secretion-like hypothesis for the mechanisms underlying this process. However, its role on CCE in native smooth muscle is unknown. Here we demonstrate that CCE in isolated gallbladder myocytes was enhanced by cytochalasin D or latrunculin A treatments (agents that cause actin disassembly) whereas it was reduced by jasplakinolide treatment (which causes actin polymerization), suggesting that actin cytoskeleton acts as a barrier in CCE. In addition, we show for the first time that depletion of intracellular Ca2+ stores by thapsigargin and cholecystokinin in BAPTA-loaded cells induced a decrease in F-actin content that was consistent with a link between CCE and actin reorganization. In conclusion, these data suggest an active participation of actin reorganization in the implementation of CCE and support a conformational coupling model for this process in naive smooth muscle cells.  相似文献   

6.
7.
The calcium-sensing receptor (CaR) mediates the effects of extracellular calcium ([Ca(2+)](o)) on PTH release, such that increasing levels of [Ca(2+)](o) inhibit PTH secretion through poorly defined mechanisms. In the present studies, immunocytochemical analysis demonstrated that F-actin, PTH, CaR, and caveolin-1 are colocalized at the apical secretory pole of PT cells, and subcellular fractionation of PT cells showed these proteins to be present within the secretory granule fraction. High [Ca(2+)](o) caused F-actin, PTH, and caveolin-1 to move to the apical pole of the cells. Depolymerization of F-actin by cytochalasin reduced the actin network and induced redistribution of actin/caveolin-1 to a dispersed pattern within the cell. The F-actin-severing compounds, latrunculin and cytochalasin, significantly increased PTH secretion, while the actin polymerizing agent, jasplakinolide, substantially inhibited PTH secretion. We have demonstrated that in polarized PT cells, the F-actin cytoskeleton is involved in the regulation of PTH secretion and is critical for inhibition of PTH secretion by high calcium.  相似文献   

8.
The effects of actin cytoskeleton disruption by cytochalasin D and latrunculin A on Ca2+ signals evoked by ADP, UTP or thapsigargin were investigated in glioma C6 cells. Despite the profound alterations of the actin cytoskeleton architecture and cell morphology, ADP and UTP still produced cytosolic calcium elevation in this cell line. However, calcium mobilization from internal stores and Ca2+ influx through store-operated Ca2+ channels induced by ADP and UTP were strongly reduced. Cytochalasin D and latrunculin A also diminished extracellular Ca2+ influx in unstimulated glioma C6 cells previously incubated in Ca2+ free buffer. In contrast, the disruption of the actin cytoskeleton had no effect on thapsigargin-induced Ca2+ influx in this cell line. Both agonist- and thapsigargin-generated Ca2+ entry was significantly decreased by the blocker of store-operated Ca2+ channels, 2-aminoethoxydiphenylborate. The data reveal that two agonists and thapsigargin activate store-operated Ca2+ channels but the mechanism of activation seems to be different. While the agonists evoke a store-mediated Ca2+ entry that is dependent on the actin cytoskeleton, thapsigargin apparently activates an additional mechanism, which is independent of the disruption of the cytoskeleton.  相似文献   

9.
Three cell-permeant compounds, cytochalasin D, latrunculin A and jasplakinolide, which perturb intracellular actin dynamics by distinct mechanisms, were used to probe the role of filamentous actin and actin assembly in clathrin-mediated endocytosis in mammalian cells. These compounds had variable effects on receptor-mediated endocytosis of transferrin that depended on both the cell line and the experimental protocol employed. Endocytosis in A431 cells assayed in suspension was inhibited by latrunculin A and jasplakinolide, but resistant to cytochalasin D, whereas neither compound inhibited endocytosis in adherent A431 cells. In contrast, endocytosis in adherent CHO cells was more sensitive to disruption of the actin cytoskeleton than endocytosis in CHO cells grown or assayed in suspension. Endocytosis in other cell types, including nonadherent K562 human erythroleukemic cells or adherent Cos-7 cells was unaffected by disruption of the actin cytoskeleton. While it remains possible that actin filaments can play an accessory role in receptor-mediated endocytosis, these discordant results indicate that actin assembly does not play an obligatory role in endocytic coated vesicle formation in cultured mammalian cells.  相似文献   

10.
Actin-dependent regulation of neurotransmitter release at central synapses   总被引:17,自引:0,他引:17  
Morales M  Colicos MA  Goda Y 《Neuron》2000,27(3):539-550
Depolymerization of actin by latrunculin A transiently promotes neurotransmitter release. The mean rate of mEPSCs increases by a Ca2+-independent process, without a concomitant change in the mean amplitude. The readily releasable vesicle pool size and the rate of refilling of the readily releasable pool remain unaltered by latrunculin treatment. Evoked neurotransmitter release also increases in a manner consistent with an increase in vesicle release probability. The observed enhancement of neurotransmitter release is specific to actin depolymerization mediated by latrunculin A and is not caused by cytochalasin D. Our findings indicate that actin participates in a regulatory mechanism that restrains fusion of synaptic vesicles at the active zone.  相似文献   

11.
Glutoxim and molixan belong to new generation of disulfide-containing drugs with immunomodulatory, hepatoprotective and hemopoetic effect on cells. Using Fura-2AM microfluorimetry, two structurally distinct actin filament disrupters, latrunculin B and cytochalasin D, and calyculin A, which causes actin filaments condensation under plasmalemma, we have shown the involvement of actin cytoskeleton in the intracellular Ca(2+)-concentration increase induced by glutoxim or molixan in rat peritoneal macrophages. Morphological data obtained with the use of rhodamine-phalloidine have demonstrated that glutoxim and molixan cause the actin cytoskeleton reorganization in rat peritoneal macrophages.  相似文献   

12.
13.
Multiple cell-signaling pathways converge to modulate large-conductance, voltage- and Ca2+-sensitive K+ channel (maxi-K channel) activity and buffer cell excitability in human myometrial smooth muscle cells (hMSMCs). Recent evidence indicates that maxi-K channel proteins can target to membrane microdomains; however, their association with other proteins within these macromolecular complexes has not been elucidated. Biochemical isolation of detergent-resistant membrane fractions from human myometrium demonstrates the presence of maxi-K channels in lipid raft microdomains, which cofractionate with caveolins. In both nonpregnant and late-pregnant myometrium, maxi-K channels associate and colocalize with caveolar scaffolding proteins caveolin-1 and caveolin-2, but not caveolin-3. Disruption of cultured hMSMC caveolar complexes by cholesterol depletion with cyclodextrin increases an iberiotoxin-sensitive K+ current. Coimmunoprecipitations have indicated that the maxi-K channel also is associated with both - and -actin. Immunocytochemical analysis indicates colocalization of maxi-K channels, actin, and caveolin-1 in primary cultures of hMSMCs. Further experiments using immunoelectron microscopy have shown the proximity of both actin and the maxi-K channel within the same cell surface caveolar structures. Functionally, disruption of the actin cytoskeleton in cultured hMSMCs by cytochalasin D and latrunculin A greatly increased the open-state probability of the channel, while stabilization of actin cytoskeleton with jasplakinolide abolished the effect of latrunculin A. These data indicate that the actin cytoskeleton is involved as part of a caveolar complex in the regulation of myometrial maxi-K channel function. potassium channel; membrane microdomain  相似文献   

14.
Harper AG  Sage SO 《Cell calcium》2007,42(6):606-617
We have previously demonstrated a role for the reorganization of the actin cytoskeleton in store-operated calcium entry (SOCE) in human platelets and interpreted this as evidence for a de novo conformational coupling step in SOCE activation involving the type II IP(3) receptor and the platelet hTRPC1-containing store-operated channel (SOC). Here, we present evidence challenging this model. The actin polymerization inhibitors cytochalasin D or latrunculin A significantly reduced Ca2+ but not Mn2+ or Na+ entry into thapsigargin (TG)-treated platelets. Jasplakinolide, which induces actin polymerization, also inhibited Ca2+ but not Mn2+ or Na+ entry. However, an anti-hTRPC1 antibody inhibited TG-evoked entry of all three cations, indicating that they all permeate an hTRPC1-containing store-operated channel (SOC). These results indicate that the reorganization of the actin cytoskeleton is not involved in SOC activation. The inhibitors of the Na+/Ca2+ exchanger (NCX), KB-R7943 or SN-6, caused a dose-dependent inhibition of Ca2+ but not Mn2+ or Na+ entry into TG-treated platelets. The effects of the NCX inhibitors were not additive with those of actin polymerization inhibitors, suggesting a common point of action. These results indicate a role for two Ca2+ permeable pathways activated following Ca2+ store depletion in human platelets: A Ca2+-permeable, hTRPC1-containing SOC and reverse Na+/Ca2+ exchange, which is activated following Na+ entry through the SOC and requires a functional actin cytoskeleton.  相似文献   

15.
Benign prostatic hypertrophy and posterior urethral valves present at both extremes of the age spectrum. Both disease processes can obstruct the urinary stream and ultimately have pathophysiological effects on detrusor structure and function. The mechanisms regulating the structural reorganization of the detrusor to a mechanical outflow obstruction are not known. In an attempt to identify maturational differences in myocyte ultrastructure and consequent effects these might have in modifying the response of the detrusor to mechanical stimulus, we studied differences in dynamic nuclear-cytoskeletal interactions in detrusor tissue in an animal model. Using a drug which specifically severs actin, cytochalasin D (CD), as an intracellular mechanical stimulus, we measured changes in nuclear area and the rate of DNA synthesis in detrusor myocytes from young (2-3 week) and old (8-12 mon) guinea pigs. We found that there were age specific differences to intracellular mechanical stimuli in detrusor muscle. Nuclei of myocytes from young animals showed elastic recoil on severing the cell actin matrix and the tissue from young animals increased replicative DNA synthesis with an intracellular stimulus. In contrast, nuclear shape changes in myocytes from old animals suggested less elasticity, and there was no increase in DNA synthesis with disruption of the cell actin matrix. Anti-alpha-smooth muscle actin antibody and rhodamine phalloidin staining of actin in cytochalasin D treated primary explants of detrusor myocytes showed dose dependent disruption of the actin component of the cytoskeleton. These results suggest that there are fundamental modifications in detrusor myocyte ultrastructure with age. These maturational changes might result in differences in the pathophysiological and structural reorganization of the detrusor in response to outflow obstruction in infancy and adulthood. Furthermore, they suggest that 1) a tensile equilibrium exists between the myocyte nucleus and cytoskeleton; 2) there appears to be a decrease in myocyte nuclear elasticity with ageing; 3) release of nuclear template restrictions increases activity of DNA polymerase alpha in young, but not old, detrusor myocytes; and 4) mechanico-chemical signal transduction in detrusor myocytes may be mediated via the cytoskeleton. In addition, based on previous reports of actin within the nucleus, the results suggest that 1) nuclear actin may have a homeostatic structural role, maintaining the tensile equilibrium between nucleus and cytoskeleton, and 2) integrity of nuclear actin may function to maintain the spatial template restriction on DNA polymerase alpha activity.  相似文献   

16.
We investigated the effect of brefeldin A on membrane trafficking and the actin cytoskeleton of pollen tubes of Lilium longiflorum with fluorescent dyes, inhibitor experiments, and confocal laser scanning microscopy. The formation of a subapical brefeldin A-induced membrane aggregation (BIA) was associated with the formation of an actin basket from which filaments extended towards the tip. The orientation of these actin filaments correlated with the trajectories of membrane material stained by FM dyes, suggesting that the BIA-associated actin filaments are used as tracks for retrograde transport. Analysis of time series indicated that these tracks (actin filaments) were either stationary or glided along the plasma membrane towards the BIA together with the attached membranes or organelles. Disturbance of the actin cytoskeleton by cytochalasin D or latrunculin B caused immediate arrest of membrane trafficking, dissipation of the BIA and the BIA-associated actin basket, and reorganization into randomly oriented actin rods. Our observations suggest that brefeldin A causes ectopic activation of actin-nucleating proteins at the BIA, resulting in retrograde movement of membranes not only along but also together with actin filaments. We show further that subapical membrane aggregations and actin baskets supporting retrograde membrane flow can also be induced by calyculin A, indicating that dephosphorylation by type 2 protein phosphatases is required for proper formation of membrane coats and polar membrane trafficking.  相似文献   

17.
Using the whole-cell and single channel recording techniques, the influence of actin cytoskeletons on L-type Ca2+ current was investigated in human gastric smooth muscle cells. In isotonic condition, an actin depolymerizer cytochalasin D (Cyt-D) markedly decreased the whole-cell current (I(Ba)) without changing steady-state voltage dependency and single channel conductance. Intracellular dialysis of phalloidin, an actin polymerizer, significantly increased the I(Ba). Hypotonic stretch (222 mOsm/L) of the myocytes increased the I(Ba), and Cyt-D significantly inhibited the I(Ba) increase by the stretch. Phalloidin was without effect on the I(Ba) increase by the stretch. Phalloidin antagonized the Cyt-D inhibition of the stretch-induced I(Ba) increase. Neither heterotrimeric G protein modifiers (GTPgammaS and GDPbetaS) nor rho GTPase inhibitor (C3 exoenzyme) influenced the stretch-induced responses. These results reveal that the integrity of the actin cytoskeleton is an important factor which determines the activity of L-type Ca2+ channels and a response to stretch.  相似文献   

18.
The latrunculins are architecturally novel marine compounds isolated from the Red Sea sponge Latrunculia magnifica. In vivo, they alter cell shape, disrupt microfilament organization, and inhibit the microfilament-mediated processes of fertilization and early development. In vitro, latrunculin A was recently found to affect the polymerization of pure actin in a manner consistent with the formation of a 1:1 molar complex with G-actin. These in vitro effects as well as previous indications that the latrunculins are more potent than the cytochalasins suggest differences in the in vivo mode of action of the two classes of drugs. To elucidate these differences we have compared the short- and long-term effects of latrunculins on cell shape and actin organization to those of cytochalasin D. Exposure of hamster fibroblast NIL8 cells for 1-3 hr to latrunculin A, latrunculin B, and cytochalasin D causes concentration-dependent changes in cell shape and actin organization. However, the latrunculin-induced changes were strikingly different from those induced by cytochalasin D. Furthermore, while initial effects were manifest with both latrunculin A and cytochalasin D already at concentrations of about 0.03 microgram/ml, latrunculin A caused complete rounding up of all cells at 0.2 microgram/ml, whereas with cytochalasin D maximum contraction was reached at concentrations 10-20 times higher. The short-term effects of latrunculin B were similar to those of latrunculin A although latrunculin B was slightly less potent. All three drugs inhibited cytokinesis in synchronized cells, but their long-term effects were markedly different. NIL8 cells treated with latrunculin A maintained their altered state for extended periods. In contrast, the effects of cytochalasin D progressed with time in culture, and the latrunculin B-induced changes were transient in the continued presence of the drug. These transient effects were found to be due to a gradual inactivation of latrunculin B by serum and were used to compare recovery patterns of cell shape and actin organization in two different cell lines. This comparison showed that the transient effects of latrunculin B were fully reversible for the NIL8 cells and not for the mouse neuroblastoma N1E-115 cells.  相似文献   

19.
Shiga toxins (Stx), released into the intestinal lumen by enterohemorrhagic Escherichia coli (EHEC), are major virulence factors responsible for gastrointestinal and systemic illnesses. These pathologies are believed to be due to the action of the toxins on endothelial cells, which express the Stx receptor, the glycosphingolipid Gb3. To reach the endothelial cells, Stx must translocate across the intestinal epithelial monolayer. This process is poorly understood. We investigated Stx1 movement across the intestinal epithelial T84 cell model and the role of actin turnover in this transcytosis. We showed that changes in the actin cytoskeleton due to latrunculin B, but not cytochalasin D or jasplakinolide, significantly facilitate toxin transcytosis across T84 monolayers. This trafficking is transcellular and completely inhibited by tannic acid, a cell impermeable plasma membrane fixative. This indicates that actin turnover could play an important role in Stx1 transcellular transcytosis across intestinal epithelium in vitro. Since EHEC attachment to epithelial cells causes an actin rearrangement, this finding may be highly relevant to Stx-induced disease.  相似文献   

20.
Transverse (t) tubules are surface membrane invaginations that are present in all mammalian cardiac ventricular cells. The apposition of L-type Ca(2+) channels on t tubules with the sarcoplasmic reticulum (SR) constitutes a "calcium release unit" and allows close coupling of excitation to the rise in systolic Ca(2+). T tubules are virtually absent in the atria of small mammals, and therefore Ca(2+) release from the SR occurs initially at the periphery of the cell and then propagates into the interior. Recent work has, however, shown the occurrence of t tubules in atrial myocytes from sheep. As in the ventricle, Ca(2+) release in these cells occurs simultaneously in central and peripheral regions. T tubules in both the atria and the ventricle are lost in disease, contributing to cellular dysfunction. The aim of this study was to determine if the occurrence of t tubules in the atrium is restricted to sheep or is a more general property of larger mammals including humans. In atrial tissue sections from human, horse, cow, and sheep, membranes were labeled using wheat germ agglutinin. As previously shown in sheep, extensive t-tubule networks were present in horse, cow, and human atrial myocytes. Analysis shows half the volume of the cell lies within 0.64 ± 0.03, 0.77 ± 0.03, 0.84 ± 0.03, and 1.56 ± 0.19 μm of t-tubule membrane in horse, cow, sheep, and human atrial myocytes, respectively. The presence of t tubules in the human atria may play an important role in determining the spatio-temporal properties of the systolic Ca(2+) transient and how this is perturbed in disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号