首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sperm-specific glyceraldehyde-3-phosphate dehydrogenase (GAPDS) is bound to the fibrous sheath of the sperm flagellum through the hydrophobic N-terminal domain of the enzyme molecule. Expression of human GAPDS in E.coli cells yields inactive and insoluble protein. Presumably, the N-terminal domain prevents correct folding of the full-length recombinant enzyme. To obtain GAPDS in a soluble and active form, a recombinant enzyme lacking in 68 amino acids of the N-terminal domain (dN-GAPDS) was expressed in E.coli cells. Purified dN-GAPDS was shown to be a protein of 9.3 nm in diameter (by dynamic light scattering), which is close to the size of the muscle tetrameric glyceraldehyde-3-phosphate dehydrogenase (8.6 nm). The catalytic properties of the protein differed a little from those of the muscle glyceraldehyde-3-phoshate dehydrogenase. However, compared to muscle glyceraldehyde-3-phoshate dehydrogenase, dN-GAPDS exhibited enhanced thermostability (the transition midpoints values are 60.8 and 67.4 °C, respectively) and was much more resistant towards action of guanidine hydrochloride (inactivation constants are 2.45 ± 0.018 and 0.118 ± 0.008 min? 1, respectively). The enhanced stability of dN-GAPDS is likely to be related to some specific features of the GAPDS structure compared to that of the muscle enzyme: 1) reduced number of solvent-exposed salt bridges; 2) 2 additional buried salt bridges; and 3) 6 additional proline residues in GAPDS meeting the “proline rule”. It is assumed that high stability of the sperm-specific GAPDS is of importance for the efficiency of fertilization.  相似文献   

2.
The archaeal non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase (GAPN, EC 1.2.1.9) is a highly allosteric enzyme activated by glucose 1-phosphate (Glc1P). Recent kinetic analyses of two GAPN homologs from Sulfolobales show different allosteric behaviors toward the substrate glyceraldehyde-3-phosphate (GAP) and the allosteric effector Glc1P. In GAPN from Sulfolobus tokodaii (Sto-GAPN), Glc1P-induced activation follows an increase in affinity for GAP rather than an increase in maximum velocity, whereas in GAPN from Sulfolobus solfataricus (Sso-GAPN), Glc1P-induced activation follows an increase in maximum velocity rather than in affinity for GAP. To explore the molecular basis of this difference between Sto-GAPN and Sso-GAPN, we generated 14 mutants and 2 chimeras. The analyses of chimeric GAPNs generated from regions of Sto-GAPN and Sso-GAPN indicated that a 57-residue module located in the subunit interface was clearly involved in their allosteric behavior. Among the point mutations in this modular region, the Y139R variant of Sto-GAPN no longer displayed a sigmoidal K-type-like allostery, but instead had apparent V-type allostery similar to that of Sso-GAPN, suggesting that the residue located in the center of the homotetramer critically contributes to the allosteric behavior.  相似文献   

3.
1. NAD(P)+-induced changes in the aggregational state of prepurified NADP-linked glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.13) were used to isolate the enzyme from Spinacia oleracea, Pisum sativaum and Hordeum vulgare. Each of the three plant species contains two separate isoenzymes. Isoenzyme 1 (fast moving during conventional electrophoresis) precipitates with the ammonium sulfate fraction 55--70% saturation. It shows two separate subunits in dodecylsulfate gels, which are probably arranged as A2B2 in the native enzyme molecule. Isoenzyme 2 (slow moving during conventional electrophoresis) precipitates with the ammonium sulfate fraction 70--95%. It contains a sigle subunit of the same Mr as subunit A in isoenzyme 1 and is apparently a tetramer (A4). The molecular weights of subunits A/B for spinach, peas and barley were determined as 38,000/40,000, 38,000/42,000 and 36,000/39,000 respectively. 2. The NAD-specific glyceraldehyde-3-phosphate dehydrogenase (EC 1.2.1.12) was purified from Spinacia oleracea and Pisum sativum by affinity chromatography on blue Sepharose CL-6B. The enzyme from both plant species is shown to be a tetramer of subunits with Mr 39,000. 3. The present findings contrast with heterogeneous results obtained previously by other authors. These results suggested that there are considerable interspecific differences in the quaternary structure of glyceraldehyde-3-phosphate dehydrogenases from higher plants.  相似文献   

4.
By combining our knowledge of the crystal structure of the glycolytic NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and the sequence of the photosynthetic NADP-dependent GAPDH of the chloroplast, two particular amino acid residues were predicted as the principal determinants of differing coenzyme specificity. By use of site-directed mutagenesis, the amino acids Leu 187 and Pro 188 of GAPDH from Bacillus stearothermophilus have been replaced with Ala 187 and Ser 188, which occur in the sequence from the chloroplast enzyme. The resulting mutant was shown to be catalytically active not only with its natural coenzyme NAD but also with NADP, thus confirming the initial hypothesis. This approach has not only enabled us to alter the coenzyme specificity by minimal amino acid changes but also revealed factors that control the relative affinity of the enzyme for NAD and NADP.  相似文献   

5.
6.
7.
The amino acid sequences near the amino termini of glyceraldehyde-3-phosphate dehydrogenase from bovine and porcine liver have been determined. Using classical peptide isolation techniques as well as automated Edman degradation, the NH2-terminal 30 residues of the bovine liver enzyme were determined to be Val-Lys-Val-Gly-Val-Asn-Gly-Phe-Gly-Arg-Ile-Gly-Arg-Leu-Val-Thr-Arg-Ala-Ala-Phe-Asn-Ser-Gly-Lys-Val-Asp-Ile-Val-Phe-Ile. Twenty-two residues from the NH2-terminus of the porcine liver enzyme, determined using the automated Edman degradation, were identical to the corresponding sequence from bovine liver enzyme. Both liver enzymes have Asn at position 6. The corresponding residue 6 in the muscle and yeast glyceraldehyde-3-phosphate dehydrogenases is Asp. This evidence suggests that the Asn-6 residue is specific for the liver tissues. The exchange of Asn for Asp may significantly alter the allosteric properties of muscle and liver enzymes especially the activity of the liver enzymes in gluconeogenesis.  相似文献   

8.
Compounds based on the 3-Br-isoxazoline scaffold fully inhibit glyceraldehyde 3-phosphate dehydrogenase from Plasmodium falciparum by selectively alkylating all four catalytic cysteines of the tetramer. Here, we show that, under the same experimental conditions that led to a fast and complete inhibition of the protozoan enzyme, the human ortholog was only 25% inhibited, with the alkylation of a single catalytic cysteine within the tetramer. The partial alkylation seems to produce a slow conformational rearrangement that severely limits the accessibility of the remaining active sites to bulky 3-Br-isoxazoline derivatives, but not to the substrate or smaller alkylating agents.  相似文献   

9.
Multifunctional proteins provide a new mechanism to expand exponentially cell information and capability beyond that indicated by conventional gene analyses. As such, examination of their structure–function relationships provides a means to define the mechanisms through which cells accomplish critical yet disparate activities required for cell viability and survival. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) may be considered the quintessential multidimensional protein which exhibits a variety of functions unrelated to its classical role in energy production. This review discusses new insights into the structure–function mechanisms through which defined GAPDH amino acid domains are utilized for its diverse activities, the importance of its post-translational modification, and, intriguingly, the logic inherent in the presence or the absence of specific signaling domains.  相似文献   

10.
The primary structure of the glyceraldehyde-3-phosphate dehydrogenase from the archaebacteria shows striking deviation from the known sequences of eubacterial and eukaryotic sequences, despite unequivocal homologies in functionally important regions. Thus, the structural similarity between the eubacterial and eukaryotic enzymes is significantly higher than that between the archaebacterial enzymes and the eubacterial and eukaryotic enzymes. This preferred similarity of eubacterial and eukaryotic glyceraldehyde-3-phosphate dehydrogenase structures does not correspond to the phylogenetic distances among the three urkingdoms as deduced from comparisons of ribosomal ribonucleic acid sequences. Indications will be presented that the closer relationship of the eubacterial and eukaryotic glyceraldehyde-3-phosphate dehydrogenase resulted from a gene transfer from eubacteria to eukaryotes after the segregation of the three urkingdoms.  相似文献   

11.
12.
13.
14.
The catalytic interaction of glyceraldehyde-3-phosphate dehydrogenase with glyceraldehyde 3-phosphate has been examined by transient-state kinetic methods. The results confirm previous reports that the apparent Km for oxidative phosphorylation of glyceraldehyde 3-phosphate decreases at least 50-fold when the substrate is generated in a coupled reaction system through the action of aldolase on fructose 1,6-bisphosphate, but lend no support to the proposal that glyceraldehyde 3-phosphate is directly transferred between the two enzymes without prior release to the reaction medium. A theoretical analysis is presented which shows that the kinetic behaviour of the coupled two-enzyme system is compatible in all respects tested with a free-diffusion mechanism for the transfer of glyceraldehyde 3-phosphate from the producing enzyme to the consuming one.  相似文献   

15.
Jayaraman S  Gantz D  Gursky O 《Biochemistry》2005,44(10):3965-3971
The stability of human low-density lipoprotein (LDL), the major cholesterol carrier in plasma, was analyzed by heating samples of different concentrations at a rate from 11 to 90 K/h. Correlation of the calorimetric, circular dichroism, fluorescence, turbidity, and electron microscopic data shows that thermal disruption of LDL involves irreversible changes in the particle morphology and protein conformation but no global protein unfolding. Heating to 85 degrees C induces LDL conversion into smaller and larger particles and apparent partial dissociation, but not unfolding, of its sole protein, apoB. Further heating leads to partial unfolding of the beta-sheets in apoB and to fusion of the protein-depleted LDL into large aggregated lipid droplets, resulting in a previously unidentified high-temperature calorimetric peak. These lipid droplets resemble in size and morphology the extracellular lipid deposits formed in the arterial wall in early atherosclerosis. The strong concentration dependence of LDL fusion revealed by near-UV/visible CD, turbidity, and calorimetry indicates high reaction order, and the heating rate dependence suggests high activation energy that arises from transient disruption of lipid and/or protein packing interactions in the course of particle fusion and apparent apoB dissociation. Consequently, thermal stability of LDL is modulated by kinetic barriers. Similar barriers may confer structural integrity to LDL subclasses in vivo.  相似文献   

16.
Thermal denaturation and aggregation of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase (GAPDH) have been studied using differential scanning calorimetry (DSC), dynamic light scattering (DLS), and analytical ultracentrifugation. The maximum of the protein thermal transition (T(m)) increased with increasing the protein concentration, suggesting that the denaturation process involves the stage of reversible dissociation of the enzyme tetramer into the oligomeric forms of lesser size. The dissociation of the enzyme tetramer was shown by sedimentation velocity at 45 degrees C. The DLS data support the mechanism of protein aggregation that involves a stage of the formation of the start aggregates followed by their sticking together. The hydrodynamic radius of the start aggregates remained constant in the temperature interval from 37 to 55 degrees C and was independent of the protein concentration (R(h,0) approximately 21 nm; 10 mM sodium phosphate, pH 7.5). A strict correlation between thermal aggregation of GAPDH registered by the increase in the light scattering intensity and protein denaturation characterized by DSC has been proved.  相似文献   

17.
Mild oxidation of glyceraldehyde-3-phosphate dehydrogenase in the presence of hydrogen peroxide leads to oxidation of some of the active site cysteine residues to sulfenic acid derivatives, resulting in the induction of acylphosphatase activity. The reduced active sites of the enzyme retain the ability to oxidize glyceraldehyde-3-phosphate yielding 1,3-diphosphoglycerate, while the oxidized active sites catalyze irreversible cleavage of 1,3-diphosphoglycerate. It was assumed that the oxidation of glyceraldehyde-3-phosphate dehydrogenase by different physiological oxidants must accelerate glycolysis due to uncoupling of the reactions of oxidation and phosphorylation. It was shown that the addition of hydrogen peroxide to the mixture of glycolytic enzymes or to the muscle extract increased production of lactate, decreasing the yield of ATP. A similar effect was observed in the presence of non-phosphorylating glyceraldehyde-3-phosphate dehydrogenase catalyzing irreversible oxidation of glyceraldehyde-3-phosphate into 3-phosphoglycerate. A role of glyceraldehyde-3-phosphate dehydrogenase in regulation of glycolysis is discussed.  相似文献   

18.
The interactions of rabbit muscle glyceraldehyde-3-phosphate dehydrogenase with NAD+ and with its fluorescent derivative 1, N6-etheno-adenine dinucleotide were investigated using a variety of spectroscopic methods. These techniques included: difference spectroscopy, circular dichroism, fluorescence and circular polarized luminescence. It was found that the greatest structural change in the protein tetramer occurs upon binding of the first mole of coenzyme. We have also demonstrated that progressive structural changes occur at the adenine subsite in the NAD+ binding site as a function of coenzyme saturation. These conformational changes are probably responsible for the progressive decrease in the affinity towards the coenzyme. It was also found that every NAD+ molecule induces the same conformational change of the nicotinamide subsite. These results offer a molecular explanation for the negative co-operativity in the binding of the coenzyme, without a change in the catalytic power of the NAD+ site as a function of coenzyme saturation. These results also offer a new explanation for the fact that enzyme exhibits half-of-the-sites reactivity towards certain ligands and full-site reactivity towards others. It is suggested that those ligands interacting at the adenine subsite of the NAD+ binding site induce the half-of-the-sites reactivity.Our results support the view that both the negative co-operativity in coenzyme binding and half-of-the-sites reactivity are due to ligand-induced conformational changes on an a priori symmetric glyceraldehyde-3-phosphate dehydrogenase molecule.  相似文献   

19.
Sulfolobus tokodaii, a thermoacidophilic archaeon, possesses two structurally and functionally different enzymes that catalyze the oxidation of glyceraldehyde-3-phosphate (GAP): non-phosphorylating GAP dehydrogenase (St-GAPN) and phosphorylating GAP dehydrogenase (St-GAPDH). In contrast to previously characterized GAPN from Sulfolobus solfataricus, which exhibits V-type allosterism, St-GAPN showed K-type allosterism in which the positive cooperativity was abolished with concomitant activation by glucose 1-phosphate (G1P). St-GAPDH catalyzed the reversible oxidation of GAP to 1,3-bisphosphoglycerate (1,3-BPG) with high gluconeogenic activity, which was specific for NADPH, while both NAD+ and NADP+ were utilized in the glycolytic direction.Structured summary of protein interactionsGAPDH and GAPDH bind by molecular sieving (View interaction) GAPN and GAPN bind by 2.2molecular sieving (View interaction).  相似文献   

20.
The three-dimensional structure of four malate dehydrogenases (MDH) from thermophilic and mesophilic phototropic bacteria have been determined by X-ray crystallography and the corresponding structures compared. In contrast to the dimeric quaternary structure of most MDHs, these MDHs are tetramers and are structurally related to tetrameric malate dehydrogenases from Archaea and to lactate dehydrogenases. The tetramers are dimers of dimers, where the structures of each subunit and the dimers are similar to the dimeric malate dehydrogenases. The difference in optimal growth temperature of the corresponding organisms is relatively small, ranging from 32 to 55 degrees C. Nevertheless, on the basis of the four crystal structures, a number of factors that are likely to contribute to the relative thermostability in the present series have been identified. It appears from the results obtained, that the difference in thermostability between MDH from the mesophilic Chlorobium vibrioforme on one hand and from the moderate thermophile Chlorobium tepidum on the other hand is mainly due to the presence of polar residues that form additional hydrogen bonds within each subunit. Furthermore, for the even more thermostable Chloroflexus aurantiacus MDH, the use of charged residues to form additional ionic interactions across the dimer-dimer interface is favored. This enzyme has a favorable intercalation of His-Trp as well as additional aromatic contacts at the monomer-monomer interface in each dimer. A structural alignment of tetrameric and dimeric prokaryotic MDHs reveal that structural elements that differ among dimeric and tetrameric MDHs are located in a few loop regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号