首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 774 毫秒
1.
The concept of pilot pseudopodia is reconsidered 30 years after its inauguration (Gerisch, G., Hülser, D., Malchow, D., Wick, U., 1975. Cell communication by periodic cyclic-AMP pulses. Phil. Trans. R. Soc. Lond. B 272, 181-192). The original hypothesis stated that protruding pseudopodia serve as dynamic sensory organelles that aid a cell in perceiving variations of chemoattractant concentration and, consequently, in navigation during chemotaxis. This influential idea is reevaluated in the light of recent findings about the mechanisms governing chemotactic cell motility, morphology and dynamics of pseudopodia, and about molecular constituents and regulators of pseudopod extension and retraction. It is proposed that stimulation by a chemoattractant modulates speed of pseudopod protrusion and thereby increases cell elongation. Elongation further enhances chemotactic sensitivity of the cell to shallow chemoattractant gradients, reinforces cell polarization, and finally leads to suppression of lateral pseudopodia and continuation of cell migration in the gradient direction.  相似文献   

2.
Directed cell migration occurs in response to extracellular cues. Following stimulation of a cell with chemoattractant, a significant rearrangement of the actin cytoskeleton is mediated by intracellular signaling pathways and results in polarization of the cell and movement via pseudopod extension. Amoeboid myosin Is play a critical role in regulating pseudopod formation in Dictyostelium, and their activity is activated by heavy chain phosphorylation. The effect of chemotactic stimulation on the in vivo phosphorylation level of a Dictyostelium myosin I, myoB, was tested. The myoB heavy chain is phosphorylated in vivo on serine 322 (the myosin TEDS rule phosphorylation site) in chemotactically competent cells. The level of myoB phosphorylation increases following stimulation of starving cells with the chemoattractant cAMP. A 3-fold peak increase in the level of phosphorylation is observed at 60 s following stimulation, a time at which the Dictyostelium cell actively extends pseudopodia. These findings suggest that chemotactic stimulation results in increased myoB activity via heavy chain phosphorylation and contributes to the global extension of pseudopodia that occurs prior to polarization and directed motility.  相似文献   

3.
alpha11beta1 constitutes the most recent addition to the integrin family and has been shown to display a binding preference for interstitial collagens found in mesenchymal tissues. We have previously observed that when alpha11beta1 integrin is expressed in cells lacking endogenous collagen receptors, it can mediate PDGF-BB-dependent chemotaxis on collagen I in vitro. To determine in which cells PDGF and alpha11beta1 might cooperate in regulating cell migration in vivo, we studied in detail the expression and distribution of alpha11 integrin chain in mouse embryos and tested the ability of PDGF isoforms to stimulate the alpha11beta1-mediated cell migration of embryonic fibroblasts. Full-length mouse alpha11 cDNA was sequenced and antibodies were raised to deduced alpha11 integrin amino acid sequence. In the embryonic mouse head, alpha11 protein and RNA were localized to ectomesenchymally derived cells. In the periodontal ligament, alpha11beta1 was expressed as the only detectable collagen-binding integrin, and alpha11beta1 is thus a major receptor for cell migration and matrix organization in this cell population. In the remainder of the embryo, the alpha11 chain was expressed in a subset of mesenchymal cells including tendon/ligament fibroblasts, perichondrial cells, and intestinal villi fibroblasts. Most of the alpha11-expressing cells also expressed the alpha2 integrin chain, but no detectable overlap was found with the alpha1 integrin chain. In cells expressing multiple collagen receptors, these might function to promote a more stable cell adhesion and render the cells more resistant to chemotactic stimuli. Wild-type embryonic fibroblasts activated mainly the PDGF beta receptor in response to PDGF-BB and migrated on collagens I, II, III, IV, V, and XI in response to PDGF-BB in vitro, whereas mutant fibroblasts that lacked alpha11beta1 in their collagen receptor repertoire showed a stronger chemotactic response on collagens when stimulated with PDGF-BB. In the cellular context of embryonic fibroblasts, alpha11beta1 is thus anti-migratory. We speculate that the PDGF BB-dependent cell migration of mesenchymal cells is tightly regulated by the collagen receptor repertoire, and disturbances of this repertoire might lead to unregulated cell migration that could affect normal embryonic development and tissue structure.  相似文献   

4.
Cell migration in the absence of external cues is well described by a correlated random walk. Most single cells move by extending protrusions called pseudopodia. To deduce how cells walk, we have analyzed the formation of pseudopodia by Dictyostelium cells. We have observed that the formation of pseudopodia is highly ordered with two types of pseudopodia: First, de novo formation of pseudopodia at random positions on the cell body, and therefore in random directions. Second, pseudopod splitting near the tip of the current pseudopod in alternating right/left directions, leading to a persistent zig-zag trajectory. Here we analyzed the probability frequency distributions of the angles between pseudopodia and used this information to design a stochastic model for cell movement. Monte Carlo simulations show that the critical elements are the ratio of persistent splitting pseudopodia relative to random de novo pseudopodia, the Left/Right alternation, the angle between pseudopodia and the variance of this angle. Experiments confirm predictions of the model, showing reduced persistence in mutants that are defective in pseudopod splitting and in mutants with an irregular cell surface.  相似文献   

5.
α11β1 constitutes the most recent addition to the integrin family and has been shown to display a binding preference for interstitial collagens found in mesenchymal tissues. We have previously observed that when α11β1 integrin is expressed in cells lacking endogenous collagen receptors, it can mediate PDGF-BB-dependent chemotaxis on collagen I in vitro. To determine in which cells PDGF and α11β1 might cooperate in regulating cell migration in vivo, we studied in detail the expression and distribution of α11 integrin chain in mouse embryos and tested the ability of PDGF isoforms to stimulate the α11β1-mediated cell migration of embryonic fibroblasts.Full-length mouse α11 cDNA was sequenced and antibodies were raised to deduced α11 integrin amino acid sequence. In the embryonic mouse head, α11 protein and RNA were localized to ectomesenchymally derived cells. In the periodontal ligament, α11β1 was expressed as the only detectable collagen-binding integrin, and α11β1 is thus a major receptor for cell migration and matrix organization in this cell population. In the remainder of the embryo, the α11 chain was expressed in a subset of mesenchymal cells including tendon/ligament fibroblasts, perichondrial cells, and intestinal villi fibroblasts. Most of the α11-expressing cells also expressed the α2 integrin chain, but no detectable overlap was found with the α1 integrin chain. In cells expressing multiple collagen receptors, these might function to promote a more stable cell adhesion and render the cells more resistant to chemotactic stimuli.Wild-type embryonic fibroblasts activated mainly the PDGF β receptor in response to PDGF-BB and migrated on collagens I, II, III, IV, V, and XI in response to PDGF-BB in vitro, whereas mutant fibroblasts that lacked α11β1 in their collagen receptor repertoire showed a stronger chemotactic response on collagens when stimulated with PDGF-BB. In the cellular context of embryonic fibroblasts, α11β1 is thus anti-migratory.We speculate that the PDGF BB-dependent cell migration of mesenchymal cells is tightly regulated by the collagen receptor repertoire, and disturbances of this repertoire might lead to unregulated cell migration that could affect normal embryonic development and tissue structure.  相似文献   

6.
The sodium- and potassium-transporting ionophore monensin induces the maturation of Caenorhabditis elegans spermatids to spermatozoa in vitro. Rearrangement of cytoplasm, fusion of membranous organelles with the plasma membrane and growth of pseudopodia, all characteristic of in vivo spermiogenesis, occur within five minutes after exposure to monensin at concentrations of 0.1–1.0 μM. This activation is dependent upon external Na+ and K+ ions but not Ca2+ ions. Monensin-activated spermatozoa have normal morphology and normal amoeboid motility. During activation spermatids twitch and rotate prior to pseudopod extension. Analysis of intermediates by transmission and scanning electron microscopy reveals that the sequence of morphogenetic events leading from the spherical spermatid to the polarized spermatozoan involves microvilli rearrangement and membranous organelle fusion, cytoplasmic polarization, then pseudopod extension.  相似文献   

7.
The epithelial-mesenchymal transition is a highly conserved cellular program that allows polarized, immotile epithelial cells to convert to motile mesenchymal cells. This important process was initially recognized during several critical stages of embryonic development and has more recently been implicated in promoting carcinoma invasion and metastasis. In this review, we summarize and compare major signaling pathways that regulate the epithelial-mesenchymal transitions during both development and tumor metastasis. Studies in both fields are critical for our molecular understanding of cell migration and morphogenesis.  相似文献   

8.
Asymmetric localization of calpain 2 during neutrophil chemotaxis   总被引:4,自引:0,他引:4       下载免费PDF全文
Chemoattractants induce neutrophil polarization through localized polymerization of F-actin at the leading edge. The suppression of rear and lateral protrusions is required for efficient chemotaxis and involves the temporal and spatial segregation of signaling molecules. We have previously shown that the intracellular calcium-dependent protease calpain is required for cell migration and is involved in regulating neutrophil chemotaxis. Here, we show that primary neutrophils and neutrophil-like HL-60 cells express both calpain 1 and calpain 2 and that chemoattractants induce the asymmetric recruitment of calpain 2, but not calpain 1, to the leading edge of polarized neutrophils and differentiated HL-60 cells. Using time-lapse microscopy, we show that enrichment of calpain 2 at the leading edge occurs during early pseudopod formation and that its localization is sensitive to changes in the chemotactic gradient. We demonstrate that calpain 2 is recruited to lipid rafts and that cholesterol depletion perturbs calpain 2 localization, suggesting that its enrichment at the front requires proper membrane organization. Finally, we show that catalytic activity of calpain is required to limit pseudopod formation in the direction of chemoattractant and for efficient chemotaxis. Together, our findings identify calpain 2 as a novel component of the frontness signal that promotes polarization during chemotaxis.  相似文献   

9.
MC Phipps  Y Xu  SL Bellis 《PloS one》2012,7(7):e40831
The recruitment of mesenchymal stem cells (MSCs) is a vital step in the bone healing process, and hence the functionalization of osteogenic biomaterials with chemotactic factors constitutes an important effort in the tissue engineering field. Previously we determined that bone-mimetic electrospun scaffolds composed of polycaprolactone, collagen I and nanohydroxyapatite (PCL/col/HA) supported greater MSC adhesion, proliferation and activation of integrin-related signaling cascades than scaffolds composed of PCL or collagen I alone. In the current study we investigated the capacity of bone-mimetic scaffolds to serve as carriers for delivery of an MSC chemotactic factor. In initial studies, we compared MSC chemotaxis toward a variety of molecules including PDGF-AB, PDGF-BB, BMP2, and a mixture of the chemokines SDF-1α, CXCL16, MIP-1α, MIP-1β, and RANTES. Transwell migration assays indicated that, of these factors, PDGF-BB was the most effective in stimulating MSC migration. We next evaluated the capacity of PCL/col/HA scaffolds, compared with PCL scaffolds, to adsorb and release PDGF-BB. We found that significantly more PDGF- BB was adsorbed to, and subsequently released from, PCL/col/HA scaffolds, with sustained release extending over an 8-week interval. The PDGF-BB released was chemotactically active in transwell migration assays, indicating that bioactivity was not diminished by adsorption to the biomaterial. Complementing these studies, we developed a new type of migration assay in which the PDGF-BB-coated bone-mimetic substrates were placed 1.5 cm away from the cell migration front. These experiments confirmed the ability of PDGF-BB-coated PCL/col/HA scaffolds to induce significant MSC chemotaxis under more stringent conditions than standard types of migration assays. Our collective results substantiate the efficacy of PDGF-BB in stimulating MSC recruitment, and further show that the incorporation of native bone molecules, collagen I and nanoHA, into electrospun scaffolds not only enhances MSC adhesion and proliferation, but also increases the amount of PDGF-BB that can be delivered from scaffolds.  相似文献   

10.
We have carried out a detailed comparison of the motile properties of differentiated HL-60 cells and human peripheral blood neutrophils. We compared the effects of chemotactic stimuli and of inhibitors of signalling proteins on morphology, chemokinesis and chemotaxis of neutrophils and differentiated HL-60 cells using videomicroscopy and a filter assay for chemotaxis. We also assessed expression of signalling and cytoskeletal proteins using Western blotting.Chemotactic peptide induced a front-tail polarity in HL-60 cells comparable to that of neutrophils. Chemokinetic and chemotactic responses to chemotactic peptide were also very similar for both cell types, concerning mean speed of migration, the fraction of migrated cells and the concentration of stimulus optimal for activation. The cytokine interleukin-8 was in contrast clearly less effective in activating motile responses of differentiated HL-60 cells as compared to neutrophils.An important functional role of Rho-activated kinases and phosphatidylinositol 3-kinase in motile responses of HL-60 cells, consistent with their upregulation during differentiation, could be confirmed using inhibitors with specificity for the corresponding enzymes. The only difference observed here between HL-60 cells and neutrophils concerned the differential effects of a protein kinase C inhibitor.In summary, the results presented here show that differentiated HL-60 cells, stimulated with chemotactic peptide, are a valid model system to study molecular mechanisms of neutrophil emigration.  相似文献   

11.
Cell motility during wound healing and inflammation is often dependent on the ability of the cell to sense a gradient of agonist. The first step in this process is the extension of a pseudopod in the direction of the agonist, and a diverse set of signals mediate pseudopod extension by different receptors. We have reported previously that protease-activated receptor-2 (PAR-2), a proinflammatory receptor that is highly expressed in motile cells such as neutrophils, macrophages, and tumor cells, is one of a growing family of receptors that utilizes a beta-arrestin-dependent mechanism for activation of the 42-44-kDa members of the MAPK family (extracellular signal-regulated kinases 1 and 2; ERK1/2). beta-Arrestin-bound PAR-2 serves as a scaffold to sequester a pool of activated ERK1/2 in the cytosol; however, a specific role for the sequestered kinase activity has not been established. We now show that PAR-2 activation promotes ERK1/2- and beta-arrestin-dependent reorganization of the actin cytoskeleton, polarized pseudopodia extension, and chemotaxis. Using subcellular fractionation, confocal microscopy, and physical isolation of pseudopodial proteins, we demonstrate that the previously identified PAR-2/beta-arrestin/ERK1/2 scaffolding complex is enriched in the pseudopodia, where it appears to prolong ERK1/2 activation. These studies suggest that the formation of a beta-arrestin/ERK1/2 signaling complex at the leading edge may be involved in localized actin assembly and chemotaxis and provide the first example of a distinct cellular consequence of beta-arrestin-sequestered ERK1/2 activity.  相似文献   

12.
Aggregation-competent amoeboid cells of Dictyostelium discoideum are chemotactic toward cAMP. Video microscopy and scanning electron microscopy were used to quantitate changes in cell morphology and locomotion during uniform upshifts in the concentration of cAMP. These studies demonstrate that morphological and motile responses to cAMP are sufficiently synchronous within a cell population to allow relevant biochemical analyses to be performed on large numbers of cells. Changes in cell behavior were correlated with F-actin content by using an NBD-phallacidin binding assay. These studies demonstrate that actin polymerization occurs in two stages in response to stimulation of cells with extracellular cAMP and involves the addition of monomers to the cytochalasin D-sensitive (barbed) ends of actin filaments. The second stage of actin assembly, which peaks at 60 sec following an upshift in cAMP concentration, is temporally correlated with the growth of new pseudopods. The F-actin assembled by 60 sec is localized in these new pseudopods. These results indicate that actin polymerization may constitute one of the driving forces for pseudopod extension in amoeboid cells and that nucleation sites regulating polymerization are under the control of chemotaxis receptors.  相似文献   

13.
Drosophila melanogaster hemocytes are highly motile macrophage-like cells that undergo a stereotypic pattern of migration to populate the whole embryo by late embryogenesis. We demonstrate that the migratory patterns of hemocytes at the embryonic ventral midline are orchestrated by chemotactic signals from the PDGF/VEGF ligands Pvf2 and -3 and that these directed migrations occur independently of phosphoinositide 3-kinase (PI3K) signaling. In contrast, using both laser ablation and a novel wounding assay that allows localized treatment with inhibitory drugs, we show that PI3K is essential for hemocyte chemotaxis toward wounds and that Pvf signals and PDGF/VEGF receptor expression are not required for this rapid chemotactic response. Our results demonstrate that at least two separate mechanisms operate in D. melanogaster embryos to direct hemocyte migration and show that although PI3K is crucial for hemocytes to sense a chemotactic gradient from a wound, it is not required to sense the growth factor signals that coordinate their developmental migrations along the ventral midline during embryogenesis.  相似文献   

14.
This study of epithelial-mesenchymal transformation and epithelial cell polarity in vitro reveals that environmental conditions can have a profound effect on the epithelial phenotype, cell shape, and polarity as expressed by the presence of apical and basal surfaces. A number of different adult and embryonic epithelia were suspended within native collagen gels. Under these conditions, cells elongate, detach from the explants, and migrate as individual cells within the three-dimensional lattice, a previously unknown property of well-differentiated epithelia. Epithelial cells from adult and embryonic anterior lens were studied in detail. Elongated cells derived from the apical surface develop pseudopodia and filopodia characteristic of migratory cells and acquire a morphology and ultrastructure virtually indistinguishable from that of mesenchymal cells in vivo. It is concluded from these experiments that the three-dimensional collagen gel can promote dissociation, migration, and acquisition of secretory organelles by differentiated epithelial cells, and can abolish the apical-basal cell polarity characteristic of the original epithelium.  相似文献   

15.
In this work we evaluate the cortical expansion model for amoeboid chemotaxis with regard to new information about molecular events in the cytoskeleton following chemotactic stimulation of Dictyostelium amoebae. A rapid upshift in the concentration of chemoattractant can be used to synchronize the motile behavior of a large population of cells. This synchrony presents an opportunity to study the biochemical basis of morphological changes such as pseudopod extension that are required for amoeboid chemotaxis. Changes in the composition and activity of the cytoskeleton following stimulation can be measured with precision and correlated with important morphological changes. Such studies demonstrate that activation of actin nucleation is one of the first and most crucial events in the actin cytoskeleton following stimulation. This activation is followed by incorporation of specific actin cross-linking proteins into the cytoskeleton, which are implicated in the extension of pseudopods and filopods. These results, as well as those from studies with mutants deficient in myosin, indicate that cortical expansion, driven by focal actin polymerization, cross-linking and gel osmotic swelling, is an important force for pseudopod extension. It is concluded that whereas three forces, frontal sliding, tail contraction, and cortical expansion may cooperate to produce amoeboid movement, the cortical expansion model offers the simplest explanation of how focal stimulation with a chemoattractant causes polarized pseudopod extension.  相似文献   

16.
The importance of CD44 in murine neutrophil chemotaxis was studied in a Zigmond chamber. WT neutrophils polarized more rapidly and more extensively than CD44-/- neutrophils, which showed slow random migration and reduced activation of RhoA. CD44+/- neutrophils polarized more slowly, formed fewer directionally polarized cells, and migrated more slowly than WT cells. Antibodies to CD44 decreased polarization of WT neutrophils and reduced directed migration but not migration speed, indicating that CD44 mediates chemotactic signaling and migration through different pathways, while a hyaluronate substratum markedly reduced both the speed and directed migration of WT cells. In contrast to macrophages, the level of cell surface CD44 in neutrophils was not affected by osteopontin expression and CD44 did not co-localize with osteopontin. In polarized neutrophils, CD44 was enriched in uropods while cortical actin was predominant at the leading edge. Thus, both polarization and directed migration of neutrophils are dependent on the expression of CD44 and its interaction with hyaluronan, which could modulate neutrophil migration into inflamed tissues.  相似文献   

17.
基于细胞实验研究壳聚糖(chitosan,CS)薄膜成球培养技术对间充质干细胞(mesenchymal stem cells, MSCs)迁徙趋化特性的影响。从脐带组织中分离原代MSCs采取CS成球法培养,以常规贴壁培养MSCs作为对照,72 h后收集两组细胞分别进行划痕实验、Tranthwell迁徙实验观察并拍照记录,RT-PCR方法检测两种培养方式中MSCs迁徙相关基因表达水平的差异。研究结果显示,相较常规贴壁培养方式,CS培养组MSCs体外迁徙趋化能力增强,差异具有显著统计学意义(P<0.01);CS成球培养组MSCs 中CXCR4、CXCR7、MCP-1、MMP-1、MMP-2、MMP-9、TIMP-2等迁徙相关基因表达均明显上调(P<0.01)。实验表明CS成球培养可显著促进MSCs的迁移趋化特性。  相似文献   

18.
Orientation of nucleus, centriole, microtubules, and microfilaments within human neutrophils in a gradient of chemoattractant (5 percent Escherichia coli endotoxin-activated serum) was evaluated by electron microscopy. Purified neutropils (hypaque-Ficoll) were placed in the upper compartment of chemotactic chambers. Use of small pore (0.45 μm) micropore filters permitted pseudopod penetration, but impeded migration. Under conditions of chemotaxis with activated serum beneath the filter, the neutrophil population oriented at the filter surface with nuclei located away from the stimulus, centrioles and associated radial array of microtubules beneath the nuclei, and microfilament-rich pseudopods penetrating the filter pores. Reversal of the direction of the gradient of the stimulus (activated serum above cells) resulted in a reorientation of internal structure which preceded pseudopod formation toward the activated serum and migration off the filter. Coordinated orientation of the entire neutrophil population did not occur in buffer (random migration) or in a uniform concentration of activated serum (activated random migration). Conditions of activated random migration resulted in increased numbers of cells with locomotory morphology, i.e. cellular asymmetry with linear alignment of nucleus, centriole, microtubule array, and pseudopods. Thus, activated serum increased the number of neutrophils exhibiting locomotory morphology, and a gradient of activated serum induced the alignment of neutrophils such that this locomotory morphology was uniform in the observed neutrophil populayion. In related studies, cytochalasin B and colchicines were used to explore the role of microfilaments and microtubules in the neutrophil orientation and migration response to activated serum. Cytochalasin B (3.0 μg/ml) prevented migration and decreased the microfilaments seen, but allowed normal orientation of neutrophil structures. In an activated serum gradient, colchicines, but not lumicolchicine, decreased the orientation of nuclei and centrioles, and caused a decrease in centriole-associated microtubules in concentrations as low as 10(-8) to 10(-7) M. These colchicines effects were associated with the rounding of cells and impairment of pseudopod formation. The impaired pseudopod formation was characterized by an inability to form pseudopods in the absence of a solid substrate, a formation of narrow pseudopods within a substrate, and a defect in pseudopod orientation in an activated serum gradient. Functional studies of migration showed that colchicines, but not lumicolchicine, minimally decreased activated random migration and markedly inhibited directed migration, but had not effect on random migration. These studies show that, although functioning microfilaments are probably necessary for neutrophil migration, intact microtubules are essential for normal pseudopod formation and orientation, and maximal unidirectional migration during chemotaxis.  相似文献   

19.
Caveolin-1 and caveolae are differentially polarized in migrating cells in various models, and caveolin-1 expression has been shown to quantitatively modulate cell migration. PTRF/cavin-1 is a cytoplasmic protein now established to be also necessary for caveola formation. Here we tested the effect of PTRF expression on cell migration. Using fluorescence imaging, quantitative proteomics, and cell migration assays we show that PTRF/cavin-1 modulates cellular polarization, and the subcellular localization of Rac1 and caveolin-1 in migrating cells as well as PKCα caveola recruitment. PTRF/cavin-1 quantitatively reduced cell migration, and induced mesenchymal epithelial reversion. Similar to caveolin-1, the polarization of PTRF/cavin-1 was dependent on the migration mode. By selectively manipulating PTRF/cavin-1 and caveolin-1 expression (and therefore caveola formation) in multiple cell systems, we unveil caveola-independent functions for both proteins in cell migration.  相似文献   

20.
The mechanism of chemotaxis is one of the most interesting issues in modern cell biology. Recent work shows that shallow chemoattractant gradients do not induce the generation of pseudopods, as has been predicted in many models. This poses the question of how else cells can steer towards chemoattractants. Here we use a new computational algorithm to analyze the extension of pseudopods by Dictyostelium cells. We show that a shallow gradient of cAMP induces a small bias in the direction of pseudopod extension, without significantly affecting parameters such as pseudopod frequency or size. Persistent movement, caused by alternating left/right splitting of existing pseudopodia, amplifies the effects of this bias by up to 5-fold. Known players in chemotactic pathways play contrasting parts in this mechanism; PLA2 and cGMP signal to the cytoskeleton to regulate the splitting process, while PI 3-kinase and soluble guanylyl cyclase mediate the directional bias. The coordinated regulation of pseudopod generation, orientation and persistence by multiple signaling pathways allows eukaryotic cells to detect extremely shallow gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号