首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Clover (Trifolium subterraneum L. cv. Mt. Barker) was grownin solution culture with adequate (+P) or no phosphate (–P).Cell walls were extracted from roots in such a way that theywere uncontaminated by other cellular materials. Phosphataseactivity was assayed using p-nitro-phenylphosphate (NPP). Phosphatasebound to cell walls had a pH optimum between 5.0 and 6.0, irrespectiveof the P supply to the plants. Activity of phosphatase boundto cell walls increased with electrolyte concentration of theassay medium at pH 6.5 but not at pH 5.5. This increase in activitywas probably due to a higher degree of ionization of the cellwall at pH 6.5 than at pH 5.5, and to effects of high ionicstrength in decreasing the mutual repulsion of negatively chargedNPP from negative charges on the cell walls. Cell wall-boundphosphatase did not exhibit Michaelis-Menten kinetics: the concentrationof NPP at which activity was half the maximum rate (S0.5) was0.7 mM for cell walls extracted from roots of both +P and –Pplants. Up to 30% of the phosphatase activity bound to cellwalls could be removed using buffer solutions of high pH andhigh ionic strength which contained Triton X100. Both soluble and cell wall-bound phosphatase(s) of roots increasedin activity with P deficiency. The phosphatase activity of cellwalls increased 1.5 fold as the P concentration in the rootsfell from 0.4–0.2% dry weight. Experiments with sterileroots of clover showed that increases in cell wall-bound phosphataseactivity associated with P deficiency were not due to microbialcontamination. It is argued that phosphatase(s) in cell wallsof roots could make a substantial contribution to the P nutritionof clover in soils deficient in inorganic phosphate by hydrolysingorganic phosphate compounds in the soil. Key words: Phosphatase, Clover, Roots, Phosphorus deficiency, Cell walls  相似文献   

2.
The methods of quantitative analysis of b-type haem in plantswere investigated. With an improved method developed was determinedthe haem content in the supernatant, mitochondrial, and microsomalfractions of sweet potato tissue. The activities of peroxidase,catalase, and cytochrome oxidase, as well as the contents ofb-type haem and acid-insoluble nitrogen in the cellular fractionswere determined at different incubation times after cuttingof sweet potato tissue. Peroxidase and catalase increased withtime in each celluler fraction, following a short lag phase.In the mitochondrial fraction, b-type haem, cytochrome oxidase,and acid insoluble nitrogen increased linearly with time. Inthe microsomal and supernatant fraction, b-type haem increasedwith time following a short lag phase. The increase in haemcontent of the supernatant fraction appeared to be associatedwith peroxidase formation. Time course analysis showed that 59Fe-incorporation into b-typehaem of the supernatant fraction increased with time and thatincorporation was markedly inhibited by blasticidin S. The incorporationof 59Fe into mitochondrial haem did not increase with time andwas not inhibited by blasticidin S. Blasticidin S inhibited59Fe-incorporation into microsomal haem. Time course analysisof b-type haem content, 59Fe-incorporation into b-type haem,and peroxidase activity suggest that in the injured tissue haemis synthesized from low molecular weight compounds and is incorporatedinto peroxidase as the haem moiety. 1 This paper constitutes Part 57 of the Phytopathological Chemistryof Sweet Potato with Black Rot. 2 Present address: Institute for Plant Virus Research, Chiba.  相似文献   

3.
Plants of Halimione portulacoides were grown in nutrient solutionscontaining NaCl at concentrations ranging from 0–2.0 MNaCl. They survived in this environment at least for 20 days.Malate dehydrogenase (MDH), catalase, peroxidase and superoxidedismutase (SOD) were extracted from the leaves of such plantsand enzyme activity was assayed in the absence of salt. Sodium chloride at low concentration (0–0.5 M) stimulatedthe activities of MDH and catalase but inhibited them at concentrationshigher than 0.5 M. Peroxidase and SOD were hardly affected byexposure to salinity in vivo. Salinity in vivo also affectedthe Km and the Vmax of the enzymes. The possibility that thethree enzymes (catalase, peroxidase and SOD) have a role inprotecting the leaf cells against oxygen toxicity caused byfree radicals, that may be formed in cells when growing undersaline and extreme climatic conditions, is discussed. Halimione portulacoides (L.) Aellen, salinity, catalase, peroxidase, superoxide dismutase  相似文献   

4.
Isolates of Burkholderia cenocepacia express a putative haem-binding protein (molecular mass 97 kDa) that displays intrinsic peroxidase activity. Its role has been re-evaluated, and we now show that it is a bifunctional catalase-peroxidase, with activity against tetramethylbenzidine (TMB), o-dianisidine, pyrogallol, and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic) acid (ABTS). Both peroxidase and catalase activities are optimal at pH 5.5-6.0. The gene encoding this enzyme was cloned and expressed in Escherichia coli. We have named it katG because of its similarity to other katGs, including that from Burkholderia pseudomallei. It is substantially similar to a previously described catalase-peroxidase of B. cenocepacia (katA). MS analysis indicated that the initial katG translation product may be post-translationally modified in B. cenocepacia to give rise to the mature 97-kDa catalase-peroxidase.  相似文献   

5.
TRIBE  H. T. 《Annals of botany》1955,19(3):351-368
1. Enzyme preparations were obtained from culture filtratesof the soft-rot pathogens Botrytis cinerea Pers. and Bacteriumaroideae (Townsend) Stapp grown in simple synthetic nutrientmedia. Crude culture filtrates and preparations purified byacetone-precipitation and dialysis had three characteristicproperties. They (i) decreased viscosity of pectin and pectatesolutions, (ii) macerated parenchymatous tissues of higher plants,and (iii) killed cells of tissues so macerated. A parallelismwas demonstrated between activity estimated by these three criteria. 2. B. cinerea enzyme preparations were active from about pH3.5 to pH 6.0, activity decreasing rapidly from pH 6.o to nearlynil at pH 8.0. Conversely B. aroideae was most active abovepH 8.0, activity decreasing progressively to nearly nil at pH5.5. 3. Both enzymes lost much activity on prolonged dialysis againstdistilled water and this was not recovered on readdition ofdialysed salts. On dialysis against certain salts or salt mixturesreduced or negligible losses occurred. 4. Plasmolysing concentrations of salts or non-electrolytesgreatly retarded the killing action of the enzyme preparations,the effect being out of all proportion to that on macerationor on rate of pectin degradation. 5. Protoplasts were isolated in the plasmolysed condition fromcertain tissues. These were resistant to toxicity in similarmanner to those inside the tissue.  相似文献   

6.
The influence long-term soil drought and potato plants treatment by synthetic analog of cytokinin--polystimulin K on intensity of lipid peroxidation processes and enzymatic antioxidative activity have been investigated. It has been found, that the drought induced the shift of prooxidative-antioxidative balance in respect of lipid peroxidation activation in the potato leaves. It was accompanied by the increase of the ethylene output, membrane permeability, as well as decrease of the lipids content and increase in the enzymatic antioxidative activity (catalase and peroxidase). It is shown, that the intensity of peroxidation processes was higher in budding phases, while enzymatic antioxidative activity was higher in flowering phases in potato plants. Plant exogenous treatment by polystimulin K induced both the decrease in peroxidate oxidation processes, stabilization of catalase and peroxidase activity, as well as the increase in potato resistance to drought.  相似文献   

7.
Acid proteinase II isolated from green wheat leaves in a purifiedform was rapidly inactivated at pH=5.5 to 6.0 by a 50-fold molarexcess of diazoacetyl-DL-norleucine methyl ester (DAN) in thepresence of cupric ions which were essential for inactivation.The acid proteinase was also inactivated by reaction with 1,2-epoxy-3-(p-nitrophenoxy)-propane(EPNP). The inactivation by EPNP was much slower than by DANand the half-life of the activity was 24 hr. (Received February 6, 1978; )  相似文献   

8.
A hydroperoxidase purified from the halophilic archaeon Halobacterium halobium exhibited both catalase and peroxidase activities, which were greatly diminished in a low-salt environment. Therefore, the purification was carried out in 2 M NaCl. Purified protein exhibited catalase activity over the narrow pH range of 6.0 to 7.5 and exhibited peroxidase activity between pH 6.5 and 8.0. Peroxidase activity was maximal at NaCl concentrations above 1 M, although catalase activity required 2 M NaCl for optimal function. Catalase activity was greatest at 50 degrees C; at 90 degrees C, the enzymatic activity was 20% greater than at 25 degrees C. Peroxidase activity decreased rapidly above its maximum at 40 degrees C. An activation energy of 2.5 kcal (ca. 10 kJ)/mol was calculated for catalase, and an activation energy of 4.0 kcal (ca. 17 kJ)/mol was calculated for peroxidase. Catalase activity was not inhibited by 3-amino-1,2,4-triazole but was inhibited by KCN and NaN3 (apparent Ki [KiApp] of 50 and 67.5 microM, respectively). Peroxidative activity was inhibited equally by KCN and NaN3 (KiApp for both, approximately 30 microM). The absorption spectrum showed a Soret peak at 404 nm, and there was no apparent reduction by dithionite. A heme content of 1.43 per tetramer was determined. The protein has a pI of 3.8 and an M(r) of 240,000 and consists of four subunits of 60,300 each.  相似文献   

9.
Xu H  Ruan WB  Gao YB  Song XY  Wei YK 《应用生态学报》2010,21(8):2038-2044
A pot experiment was conducted to study the effects of inoculation with root-knot nematodes on the cucumber leaf N and P contents, and the rhizospheric and non-rhizospheric soil pH and enzyme activities. The rhizospheric soil pH didn't have a significant decrease until the inoculation rate reached 6000 eggs per plant. With the increase of inoculation rate, the leaf N and P contents, rhizospheric soil peroxidase activity, and rhizospheric and non-rhizospheric soil polyphenol oxidase activity all decreased gradually, rhizospheric soil catalase activity was in adverse, non-rhizospheric soil pH decreased after an initial increase, and non-rhizospheric soil catalase activity had no regular change. After inoculation, rhizospheric soil urease activity decreased significantly, but rhizospheric and non-rhizospheric soil phosphatase activity and non-rhizospheric soil peroxidase activity only had a significant decrease under high inoculation rate. In most cases, there existed significant correlations between rhizospheric soil pH, enzyme activities, and leaf N and P contents; and in some cases, there existed significant correlations between non-rhizospheric soil pH, enzyme activities, and leaf N and P contents.  相似文献   

10.
Peroxidase-mediated toxicity to schistosomula of Schistosoma mansoni   总被引:16,自引:0,他引:16  
Guinea pig eosinophil peroxidase (EPO) was capable of killing schistosomula of Schistosoma mansoni in vitro when combined with hydrogen peroxide and a halide. Killing was measured by 51Cr release, by microscopic evaluation of viability, and by reinfection experiments in mice. Parasite killing was dependent on each component of the EPO-H2O2-halide system, was completely inhibited by catalase and azide, and was partially inhibited by cyanide. The EPO-mediated system required 10(-4) M H2O2 and 10(-4) M iodide at pH 7.0, and the schistosomula were killed with exposure to this system of less than 30 min at 37 degrees C. At pH 6.0, the EPO-mediated system showed significant cidal activity with 10(-6) M iodide. Canine neutrophil peroxidase (myeloperoxidase [MPO]) was also able to kill schistosomula in vitro in the presence of 10(-4) M H2O2 and 10(-4) iodide at pH 7.0 and pH 6.0. Physiologic concentrations of chloride (0.1 M) could substitute for iodide at pH 7.0 and pH 6.0 as the halide cofactor; however, at pH 7.0, a higher concentration of enzyme was required. These findings with isolated enzyme systems are compatible with a role for peroxidase in the host defense against schistosomula.  相似文献   

11.
The crude fraction extracted at pH 6.0 from sprouting potato tubers (pH 6.0 fraction) hydrolyzed casein and BAN A at pH 6.0. This pH 6.0 fraction contained not only caseinase activity but also gelatinase activity, detected by active staining of PAGE-gel with gelatin, as endopeptidases, and both activities increased during sprouting of tubers. This endopeptidase, also active on Azocolase, had an optimum pH at pH 6.0, whereas the crude fraction extracted at pH 6.0 from fresh potato tubers contained little endopeptidase activities in the whole pH range. Inhibition by monoiodoacetate or antipain indicated this endopeptidase to be a cysteine protease.  相似文献   

12.
Enzymatic transformation of different PCB congeners was studied using two oxidative enzymes, horseradish peroxidase and cytochrome c. The optimum pH and hydrogen peroxide concentration for the maximum catalytic efficiency of the enzymes were pH 4.0 to 6.0 and 0.5 to 1.0 mm, respectively. There was a rapid initial catalysis phase during the first 6 h and then the reaction rate slowed down. Addition of polyethylene glycol at low concentrations (50-100 ppm) to the reaction mixture had a significant protective effect on the activity of both enzymes and enhanced the transformation rate. Di-, tetra- and hexa-chlorinated biphenyls were better substrates as compared to tri- and penta-chlorinated biphenyls for horseradish peroxidase. Cytochrome c exhibited preference for lower chlorinated congeners. Under optimum conditions the transformation efficiency of horseradish peroxidase and cytochrome c was 60-80% and 66-93%, respectively, depending on the congener.  相似文献   

13.
A novel cytochrome c and a catalase-peroxidase with alkaline peroxidase activity were purified from the culture supernatant of Bacillus sp. No.13 and characterized. The cytochrome c exhibited absorption maxima at 408 nm (Soret band) in its oxidized state, and 550 (alpha-band), 521 (beta-band), and 415 (Soret band) nm in its reduced state. The native cytochrome c with a relative molecular mass of 15,000 was composed of two identical subunits. The cytochrome c showed over 50 times higher peroxidase activity than those of known c-type cytochromes from various sources. The optimum pH and temperature of the peroxidase activity were about 10.0 and 70 degrees C, respectively. The peroxidase activity is stable in the pH range of 6.0 to 10.8 (30 degrees C, 1-h treatment), and at temperatures up to 80 degrees C (pH 8.5, 20-min treatment). The heme content was determined to be 1 heme per subunit. The amino acid sequence of the cytochrome c showed high homology with those of the c-type cytochromes from Bacillus subtilis and Bacillus sp. PS3. The catalase-peroxidase showed high catalase activity and considerable peroxidase activity, the specific activities being 55,000 and 0.94 micromol/min/mg, respectively. The optimum pH and temperature of the peroxidase activity were in the range of 6.4 to 10.1 and 60 degrees C, respectively. The catalase-peroxidase showed a lower K(m) value (0.67 mM) as to H(2)O(2) than known catalase-peroxidases.  相似文献   

14.
In young females of the black scale, Saissetia oleae, the optimum conditions for invertase activity involve a reaction mixture of pH 5.5 and 2% sucrose at 37°C for 60 min; for amylase, pH 6.0 and 0.5% starch at 37°C for 45 min; and for trehalase, pH 5.5 and 1.5% trehalose at 37°C for 60 min. At optimal conditions and using standard enzyme activity units, both invertase and trehalase activities were much higher (about 8-fold) than that of amylase, indicating the importance of these enzymes in food digestion and energy supply.The enzyme activities were strongly affected by various host plants. Trehalase activity in scales reared on potato sprouts was about 3.5- and 4-fold that obtained in scales reared on oleander and citrus plants, respectively. An increase of about 40% for invertase and 60% amylase activity was obtained in scales reared on potato sprouts as compared with those reared on oleander or citrus plants.A good correlation was observed between enzyme activity-especially of trehalase-and scale development. The duration of one generation of the black scale reared on potato sprouts was 2.5 to 3 months, on oleander 4 to 5 months, and on citrus above 6 months. These results suggest that trehalase and to some extent invertase could be used as parameters to assess the adaptability of the black scale to its host plant.  相似文献   

15.
Cotton (Gossypium hirsutum L.) ovule cultures secreted a soluble peroxidase into the surrounding medium, resulting in a 200-fold increase in this activity during the 30-day growth period. The peroxidase activity was thermostable from 4°C to 60°C and displayed a pH optimum of 5.5 to 6.0. The ovule peroxidase was susceptible to periodate treatment and very resistant to protease digestion. The data suggest that the peroxidase activity is a glycoprotein. Interpretation of peroxidase data may be complicated by the presence of phenol oxidase activity in the same preparations. The presence of phenol oxidases was ruled out by the inaction of a tyrosinase-specific inhibitor, tropolone.Abbreviations PMSF phenylmethylsulfonyl fluoride  相似文献   

16.
Potato tubers grown in experimental plots maintained at nominalpH values ranging from 4.5 to 7.5 were sampled by striking coresections from heel to rose ends. These were divided into consecutivepieces and analyzed for cations and anions and also the traceelements iron, manganese and copper. Linear regression equationswere fitted to each set of data thus giving the gradient ofeach constituent from heel to rose ends of the tubers. The gradientof each constituent within the tuber could then be comparedin relation to soil pH. Only the calcium content of the tuberincreased markedly with increased pH but the ratios of potassiumplus sodium to calcium plus magnesium and of phosphorus to ironboth showed maxima at pH 6 and decreased towards either endof the pH range. Solanum tuberosum, potato, tuber, calcium availability, soil pH  相似文献   

17.
Regulation of Pyruvate Decarboxylase In Vitro and In Vivo   总被引:2,自引:0,他引:2  
Results presented in this paper strongly support the view thatregulation of the key enzyme of alcoholic fermentation, pyruvatedecarboxylase (PDC), is achieved in a number of ways, all associatedwith possible lowering of the cytoplasmic pH during anoxia.These mechanisms include not only the well-known acid pH optimumof PDC, but also long-term, reversible changes in characteristicsof the enzyme established both in vitro and in vivo. Following transfer of desalted extracts from pH 6.0 to 7.4,maximal activity of PDC was decreased, while there was a considerableincrease in the lag before maximal activity was reached. Similarchanges in enzyme characteristics were observed when wheat (Triticumaestivum L. cv. Gamenya) roots and rice (Oryza sativa L. cv.Calrose) coleoptiles were transferred from anoxic to aerobicsolutions, provided PDC was assayed within 10 min of the startof maceration. All of the above changes were usually readilyreversible when extracts were returned to pH 6.0, or when plantswere returned to anoxic solutions. Additional regulation of PDC would be achieved by the S0.5 forpyruvate which is 0.75 mol m–3 at pH 6.0, 1.0 mol m–3at pH 6.8, and 2.5 mol m–3 at pH 7.4; the latter is wellabove estimates for pyruvate concentrations in the cytoplasmof aerated tissues. We assess that the combined effects of the acid pH optimum,the high S0.5 at pH 7.4 and the long-term decreases in activityobserved during incubation at pH 7.4 would reduce PDC activityin aerobic cells to at most 7% of the activity in anoxic cells.Possible additional controls for the pathway of alcoholic fermentationare briefly considered. Key words: PDC, regulation, anoxia  相似文献   

18.
Control of pH in a System of Flowing Solution Culture using a Microcomputer   总被引:1,自引:0,他引:1  
A system is described which uses a microcomputer to controlpH in flowing solution culture and a brief account is givenof its performance when intact perennial ryegrass (Lolium perenneL.) plants were grown in nutrient solutions with pH controlledat 5.0, 5.5, 6.0 and 7.0. Key words: pH, Microcomputer  相似文献   

19.
Cell-free extracts from soft rots of potato tubers caused byErwinia atroseptica and Corticium praticola readily caused cellseparation and loss of electrolytes in discs of potato tubers.Both were most rapid at pH and Ca++ ion concentration optimalfor the activity of a pectate trans-climinase in the E. atrosepticaextract and a pectate polygalacturonase in the C. praticolarot extract. Permeability changes and killing of protoplastsbut not cell separation were delayed when solutes at plasmolysingconcentrations were added to the solutions of the cell-separatingenzymes. The role of these enzymes in the permeability changesand killing of protoplasts is discussed.  相似文献   

20.
A putative perA gene from Archaeoglobus fulgidus was cloned and expressed in Escherichia coli BL21(DE3), and the recombinant catalase-peroxidase was purified to homogeneity. The enzyme is a homodimer with a subunit molecular mass of 85 kDa. UV-visible spectroscopic analysis indicated the presence of protoheme IX as a prosthetic group (ferric heme), in a stoichiometry of 0.25 heme per subunit. Electron paramagnetic resonance analysis confirmed the presence of ferric heme and identified the proximal axial ligand as a histidine. The enzyme showed both catalase and peroxidase activity with pH optima of 6.0 and 4.5, respectively. Optimal temperatures of 70 degrees C and 80 degrees C were found for the catalase and peroxidase activity, respectively. The catalase activity strongly exceeded the peroxidase activity, with Vmax values of 9600 and 36 U mg(-1), respectively. Km values for H2O2 of 8.6 and 0.85 mM were found for catalase and peroxidase, respectively. Common heme inhibitors such as cyanide, azide, and hydroxylamine inhibited peroxidase activity. However, unlike all other catalase-peroxidases, the enzyme was also inhibited by 3-amino-1,2,4-triazole. Although the enzyme exhibited a high thermostability, rapid inactivation occurred in the presence of H2O2, with half-life values of less than 1 min. This is the first catalase-peroxidase characterized from a hyperthermophilic microorganism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号