首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Naturally occurring tufts of the mixotroph Thiothrix nivea blanketed the East Everglades (Dade County, Fla.) Chekika artesian well and runoff areas. The rate of HCO(3) fixation by these Thiothrix tufts was determined to be 14.0 +/- 5.4 nmol of HCO(3) per min per mg of dry weight, which reflected a growth rate of 5.0%/h. The addition of 10 mM glucose, ribose, acetate, or pyruvate or 0.05% Casamino Acids (Difco Laboratories, Detroit, Mich.) did not appear to alter the HCO(3) fixation rate. Whereas 1 mM acetate or 10 mM lactate, ethanol, glycerol, alpha-ketoglutarate, succinate, fumarate, or citrate slightly stimulated HCO(3) fixation, 5 to 10 mM malate inhibited HCO(3) fixation by 90%. Pure Thiothrix cultures isolated from Chekika fixed HCO(3) at rates as high as 29.9 +/- 2.8 nmol of HCO(3) per min per mg of dry weight in the presence of growth medium. Malate did not have a suppressive effect but rather slightly stimulated in vivo HCO(3) fixation.  相似文献   

2.
Chemoautotrophic symbioses, in which endosymbiotic bacteria are the major source of organic carbon for the host, are found in marine habitats where sulfide and oxygen coexist. The purpose of this study was to determine the influence of pH, alternate sulfur sources, and electron acceptors on carbon fixation and to investigate which form(s) of inorganic carbon is taken up and fixed by the gamma-proteobacterial endosymbionts of the protobranch bivalve Solemya velum. Symbiont-enriched suspensions were generated by homogenization of S. velum gills, followed by velocity centrifugation to pellet the symbiont cells. Carbon fixation was measured by incubating the cells with 14C-labeled dissolved inorganic carbon. When oxygen was present, both sulfide and thiosulfate stimulated carbon fixation; however, elevated levels of either sulfide (>0.5 mM) or oxygen (1 mM) were inhibitory. In the absence of oxygen, nitrate did not enhance carbon fixation rates when sulfide was present. Symbionts fixed carbon most rapidly between pH 7.5 and 8.5. Under optimal pH, sulfide, and oxygen conditions, symbiont carbon fixation rates correlated with the concentrations of extracellular CO2 and not with HCO3 concentrations. The half-saturation constant for carbon fixation with respect to extracellular dissolved CO2 was 28 ± 3 μM, and the average maximal velocity was 50.8 ± 7.1 μmol min−1 g of protein−1. The reliance of S. velum symbionts on extracellular CO2 is consistent with their intracellular lifestyle, since HCO3 utilization would require protein-mediated transport across the bacteriocyte membrane, perisymbiont vacuole membrane, and symbiont outer and inner membranes. The use of CO2 may be a general trait shared with many symbioses with an intracellular chemoautotrophic partner.  相似文献   

3.
Acetate dominated the extracellular pool of volatile fatty acids (VFAs) in the hindgut fluid of Reticulitermes flavipes, Zootermopsis angusticollis, and Incisitermes schwarzi, where it occurred at concentrations of 57.9 to 80.6 mM and accounted for 94 to 98 mol% of all VFAs. Small amounts of C3 to C5 VFAs were also observed. Acetate was also the major VFA in hindgut homogenates of Schedorhinotermes lamanianus, Prorhinotermes simplex, Coptotermes formosanus, and Nasutitermes corniger. Estimates of in situ acetogenesis by the hindgut microbiota of R. flavipes (20.2 to 43.3 nmol · termite−1 · h−1) revealed that this activity could support 77 to 100% of the respiratory requirements of the termite (51.6 to 63.6 nmol of O2 · termite−1 · h−1). This conclusion was buttressed by the demonstration of acetate in R. flavipes hemolymph (at 9.0 to 11.6 mM), but not in feces, and by the ability of termite tissues to readily oxidize acetate to CO2. About 85% of the acetate produced by the hindgut microbiota was derived from cellulose C; the remainder was derived from hemicellulose C. Selective removal of major groups of microbes from the hindgut of R. flavipes indicated that protozoa were primarily responsible for acetogenesis but that bacteria also functioned in this capacity. H2 and CH4 were evolved by R. flavipes (usually about 0.4 nmol · termite−1 · h−1), but these compounds represented a minor fate of electrons derived from wood dissimilation within R. flavipes. A working model is proposed for symbiotic wood polysaccharide degradation in R. flavipes, and the possible roles of individual gut microbes, including CO2-reducing acetogenic bacteria, are discussed.  相似文献   

4.
Microbial Methanogenesis and Acetate Metabolism in a Meromictic Lake   总被引:10,自引:8,他引:2       下载免费PDF全文
Methanogenesis and the anaerobic metabolism of acetate were examined in the sediment and water column of Knaack Lake, a small biogenic meromictic lake located in central Wisconsin. The lake was sharply stratified during the summer and was anaerobic below a depth of 3 m. Large concentrations (4,000 μmol/liter) of dissolved methane were detected in the bottom waters. A methane concentration maximum occurred at 4 m above the sediment. The production of 14CH4 from 14C-labeled HCOOH, HCO3, and CH3OH and [2-14C]acetate demonstrated microbial methanogenesis in the water column of the lake. The maximum rate of methanogenesis calculated from reduction of H14CO3 by endogenous electron donors in the surface sediment (depth, 22 m) was 7.6 nmol/h per 10 ml and in the water column (depth, 21 m) was 0.6 nmol/h per 10 ml. The methyl group of acetate was simultaneously metabolized to CH4 and CO2 in the anaerobic portions of the lake. Acetate oxidation was greatest in surface waters and decreased with water depth. Acetate was metabolized primarily to methane in the sediments and water immediately above the sediment. Sulfide inhibition studies and temperature activity profiles demonstrated that acetate metabolism was performed by several microbial populations. Sulfide additions (less than 5 μg/ml) to water from 21.5 m stimulated methanogenesis from acetate, but inhibited CO2 production. Sulfate addition (1 mM) had no significant effect on acetate metabolism in water from 21.5 m, whereas nitrate additions (10 to 14,000 μg/liter) completely inhibited methanogenesis and stimulated CO2 formation.  相似文献   

5.
Photosynthetic carbon metabolism of a marine grass   总被引:5,自引:4,他引:5       下载免费PDF全文
The δ13C value of a tropical marine grass Thalassia testudinum is −9.04‰. This value is similar to the δ13C value of terrestrial tropical grasses. The δ13C values of the organic acid fraction, the amino acid fraction, the sugar fraction, malic acid, and glucose are: −11.2‰, −13.1‰, −10.1‰, −11.1‰, and −11.5‰, respectively. The δ13C values of malic acid and glucose of Thalassia are similar to the δ13C values of these intermediates in sorghum leaves and attest to the presence of the photosynthetic C4-dicarboxylic acid pathway in this marine grass. The inorganic HCO3 for the growth of the grass fluctuates between −6.7 to −2.7‰ during the day. If CO2 fixation in Thalassia is catalyzed by phosphoenolpyruvate carboxylase (which would result in a −3‰ fractionation between HCO3 and malic acid), the predicted δ13C value for Thalassia would be −9.7 to −5.7‰. This range is close to the observed range of −12.6 to −7.8‰ for Thalassia and agree with the operation of the C4-dicarboxylic acid pathway in this plant. The early products of the fixation of HCO3 in the leaf sections are malic acid and aspartic acid which are similar to the early products of CO2 fixation in C4 terrestrial plants.  相似文献   

6.
Limited cell growth and the resulting low volumetric productivity of ethanologenic Escherichia coli KO11 in mineral salts medium containing xylose have been attributed to inadequate partitioning of carbon skeletons into the synthesis of glutamate and other products derived from the citrate arm of the anaerobic tricarboxylic acid pathway. The results of nuclear magnetic resonance investigations of intracellular osmolytes under different growth conditions coupled with those of studies using genetically modified strains have confirmed and extended this hypothesis. During anaerobic growth in mineral salts medium containing 9% xylose (600 mM) and 1% corn steep liquor, proline was the only abundant osmolyte (71.9 nmol ml−1 optical density at 550 nm [OD550] unit−1), and growth was limited. Under aerobic conditions in the same medium, twice the cell mass was produced, and cells contained a mixture of osmolytes: glutamate (17.0 nmol ml−1 OD550 unit−1), trehalose (9.9 nmol ml−1 OD550 unit−1), and betaine (19.8 nmol ml−1 OD550 unit−1). Two independent genetic modifications of E. coli KO11 (functional expression of Bacillus subtilis citZ encoding NADH-insensitive citrate synthase; deletion of ackA encoding acetate kinase) and the addition of a metabolite, such as glutamate (11 mM) or acetate (24 mM), as a supplement each increased the intracellular glutamate pool during fermentation, doubled cell growth, and increased volumetric productivity. This apparent requirement for a larger glutamate pool for increased growth and volumetric productivity was completely eliminated by the addition of a protective osmolyte (2 mM betaine or 0.25 mM dimethylsulfoniopropionate), consistent with adaptation to osmotic stress rather than relief of a specific biosynthetic requirement.  相似文献   

7.
Suspension-cultured cells of Rosa damascena that have been irradiated with ultraviolet light (254 nanometers, 2.1 × 104 joules per square meter) rapidly lose K+ and HCO3 ions to the medium. If the HCO3 is derived from respiratory CO2 inside the cell, then loss of HCO3 should be accompanied by an acidification of the cytoplasm. Estimates of the pH of control and ultraviolet-irradiated cells by 31P-nuclear magnetic resonance spectroscopy indicated that, following irradiation, the pH of both cytoplasm and vacuole dropped by 0.2 to 0.3 units. This change was not as great as was predicted from the observed HCO3 loss. Analysis of nitrogenous compounds in the cell suggested that reduction of nitrate and synthesis of γ-aminobutyric acid absorbed some of the protons formed by the synthesis and dissociation of bicarbonate.  相似文献   

8.
We examined rates of N2 fixation from the surface to 2000 m depth in the Eastern Tropical South Pacific (ETSP) during El Niño (2010) and La Niña (2011). Replicated vertical profiles performed under oxygen-free conditions show that N2 fixation takes place both in euphotic and aphotic waters, with rates reaching 155 to 509 µmol N m−2 d−1 in 2010 and 24±14 to 118±87 µmol N m−2 d−1 in 2011. In the aphotic layers, volumetric N2 fixation rates were relatively low (<1.00 nmol N L−1 d−1), but when integrated over the whole aphotic layer, they accounted for 87–90% of total rates (euphotic+aphotic) for the two cruises. Phylogenetic studies performed in microcosms experiments confirm the presence of diazotrophs in the deep waters of the Oxygen Minimum Zone (OMZ), which were comprised of non-cyanobacterial diazotrophs affiliated with nifH clusters 1K (predominantly comprised of α-proteobacteria), 1G (predominantly comprised of γ-proteobacteria), and 3 (sulfate reducing genera of the δ-proteobacteria and Clostridium spp., Vibrio spp.). Organic and inorganic nutrient addition bioassays revealed that amino acids significantly stimulated N2 fixation in the core of the OMZ at all stations tested and as did simple carbohydrates at stations located nearest the coast of Peru/Chile. The episodic supply of these substrates from upper layers are hypothesized to explain the observed variability of N2 fixation in the ETSP.  相似文献   

9.
Chloride channels in the luminal membrane of exocrine gland acini from frog skin (Rana esculenta) constituted a single homogeneous population. In cell-attached patches, channels activated upon exposure to isoproterenol, forskolin, or dibutyryl-cAMP and isobutyl-1-methyl-xanthine rectified in the outward direction with a conductance of 10.0 ± 0.4 pS for outgoing currents. Channels in stimulated cells reversed at 0 mV applied potential, whereas channels in unstimulated cells reversed at depolarized potentials (28.1 ± 6.7 mV), indicating that Cl was above electrochemical equilibrium in unstimulated, but not in stimulated, cells. In excised inside-out patches with 25 mM Cl on the inside, activity of small (8-pS) linear Cl-selective channels was dependent upon bath ATP (1.5 mM) and increased upon exposure to cAMP-dependent protein kinase. The channels displayed a single substate, located just below 2/3 of the full channel amplitude. Halide selectivity was identified as PBr > PI > PCl from the Goldman equation; however, the conductance sequence when either halide was permeating the channel was GCl > GBr >> GI. In inside-out patches, the channels were blocked reversibly by 5-nitro-2-(3-phenylpropylamino)benzoic acid, glibenclamide, and diphenylamine-2-carboxylic acid, whereas 4,4-diisothiocyanatostilbene-2,2-disulfonic acid blocked channel activity completely and irreversibly. Single-channel kinetics revealed one open state (mean lifetime = 158 ± 72 ms) and two closed states (lifetimes: 12 ± 4 and 224 ± 31 ms, respectively). Power density spectra had a double-Lorentzian form with corner frequencies 0.85 ± 0.11 and 27.9 ± 2.9 Hz, respectively. These channels are considered homologous to the cystic fibrosis transmembrane conductance regulator Cl channel, which has been localized to the submucosal skin glands in Xenopus by immunohistochemistry (Engelhardt, J.F., S.S. Smith, E. Allen, J.R. Yankaskas, D.C. Dawson, and J.M. Wilson. 1994. Am. J. Physiol. 267: C491–C500) and, when stimulated by cAMP-dependent phosphorylation, are suggested to function in chloride secretion.  相似文献   

10.
The denitrification rates in a marine sediment, estimated by using 15N-nitrate, Vmax, Km, and sediment nitrate concentrations, were 12.5 and 2.0 nmol of N2-N cm−3 day−1 at 0 to 1 and 1 to 3 cm, respectively, at 12°C. The total rate was 165 nmol of N2-N m−2 day−1.  相似文献   

11.
Transcellular Cl movement across acinar cells is the rate-limiting step for salivary gland fluid secretion. Basolateral Nkcc1 Na+-K+-2Cl cotransporters play a critical role in fluid secretion by promoting the intracellular accumulation of Cl above its equilibrium potential. However, salivation is only partially abolished in the absence of Nkcc1 cotransporter activity, suggesting that another Cl uptake pathway concentrates Cl ions in acinar cells. To identify alternative molecular mechanisms, we studied mice lacking Ae2 and Ae4 Cl/HCO3 exchangers. We found that salivation stimulated by muscarinic and β-adrenergic receptor agonists was normal in the submandibular glands of Ae2−/− mice. In contrast, saliva secretion was reduced by 35% in Ae4−/− mice. The decrease in salivation was not related to loss of Na+-K+-2Cl cotransporter or Na+/H+ exchanger activity in Ae4−/− mice but correlated with reduced Cl uptake during β-adrenergic receptor activation of cAMP signaling. Direct measurements of Cl/HCO3 exchanger activity revealed that HCO3-dependent Cl uptake was reduced in the acinar cells of Ae2−/− and Ae4−/− mice. Moreover, Cl/HCO3 exchanger activity was nearly abolished in double Ae4/Ae2 knock-out mice, suggesting that most of the Cl/HCO3 exchanger activity in submandibular acinar cells depends on Ae2 and Ae4 expression. In conclusion, both Ae2 and Ae4 anion exchangers are functionally expressed in submandibular acinar cells; however, only Ae4 expression appears to be important for cAMP-dependent regulation of fluid secretion.  相似文献   

12.
A study of anaerobic sediments below cyanobacterial mats of a low-salinity meltwater pond called Orange Pond on the McMurdo Ice Shelf at temperatures simulating those in the summer season (<5°C) revealed that both sulfate reduction and methane production were important terminal anaerobic processes. Addition of [2-14C]acetate to sediment samples resulted in the passage of label mainly to CO2. Acetate addition (0 to 27 mM) had little effect on methanogenesis (a 1.1-fold increase), and while the rate of acetate dissimilation was greater than the rate of methane production (6.4 nmol cm−3 h−1 compared to 2.5 to 6 nmol cm−3 h−1), the portion of methane production attributed to acetate cleavage was <2%. Substantial increases in the methane production rate were observed with H2 (2.4-fold), and H2 uptake was totally accounted for by methane production under physiological conditions. Formate also stimulated methane production (twofold), presumably through H2 release mediated through hydrogen lyase. Addition of sulfate up to 50-fold the natural levels in the sediment (interstitial concentration, ~0.3 mM) did not substantially inhibit methanogenesis, but the process was inhibited by 50-fold chloride (36 mM). No net rate of methane oxidation was observed when sediments were incubated anaerobically, and denitrification rates were substantially lower than rates for sulfate reduction and methanogenesis. The results indicate that carbon flow from acetate is coupled mainly to sulfate reduction and that methane is largely generated from H2 and CO2 where chloride, but not sulfate, has a modulating role. Rates of methanogenesis at in situ temperatures were four- to fivefold less than maximal rates found at 20°C.  相似文献   

13.
At low levels of dissolved inorganic carbon (DIC) and alkaline pH the rate of photosynthesis by air-grown cells of Synechococcus leopoliensis (UTEX 625) was enhanced 7- to 10-fold by 20 millimolar Na+. The rate of photosynthesis greatly exceeded the CO2 supply rate and indicated that HCO3 was taken up by a Na+-dependent mechanism. In contrast, photosynthesis by Synechococcus grown in standing culture proceeded rapidly in the absence of Na+ and exceeded the CO2 supply rate by 8 to 45 times. The apparent photosynthetic affinity (K½) for DIC was high (6-40 micromolar) and was not markedly affected by Na+ concentration, whereas with air-grown cells K½ (DIC) decreased by more than an order of magnitude in the presence of Na+. Lithium, which inhibited Na+-dependent HCO3 uptake in air-grown cells, had little effect on Na+-independent HCO3 uptake by standing culture cells. A component of total HCO3 uptake in standing culture cells was also Na+-dependent with a K½ (Na+) of 4.8 millimolar and was inhibited by lithium. Analysis of 14C-fixation during isotopic disequilibrium indicated that standing culture cells also possessed a Na+-independent CO2 transport system. The conversion from Na+-independent to Na+-dependent HCO3 uptake was readily accomplished by transferring cells grown in standing to growth in cultures bubbled with air. These results demonstrated that the conditions experienced during growth influenced the mode by which Ssynechococcus acquired HCO3 for subsequent photosynthetic fixation.  相似文献   

14.
Two methanotrophic bacteria, Methylobacter albus BG8 and Methylosinus trichosporium OB3b, oxidized atmospheric methane during batch growth on methanol. Methane consumption was rapidly and substantially diminished (95% over 9 days) when washed cell suspensions were incubated without methanol in the presence of atmospheric methane (1.7 ppm). Methanotrophic activity was stimulated after methanol (10 mM) but not methane (1,000 ppm) addition. M. albus BG8 grown in continuous culture for 80 days with methanol retained the ability to oxidize atmospheric methane and oxidized methane in a chemostat air supply. Methane oxidation during growth on methanol was not affected by methane deprivation. Differences in the kinetics of methane uptake (apparent Km and Vmax) were observed between batch- and chemostat-grown cultures. The Vmax and apparent Km values (means ± standard errors) for methanol-limited chemostat cultures were 133 ± 46 nmol of methane 108 cells−1 h−1 and 916 ± 235 ppm of methane (1.2 μM), respectively. These values were significantly lower than those determined with batch-grown cultures (Vmax of 648 ± 195 nmol of methane 108 cells−1 h−1 and apparent Km of 5,025 ± 1,234 ppm of methane [6.3 μM]). Methane consumption by soils was stimulated by the addition of methanol. These results suggest that methanol or other nonmethane substrates may promote atmospheric methane oxidation in situ.  相似文献   

15.
Filamentous sulfur bacteria of the genus Thioploca occur as dense mats on the continental shelf off the coast of Chile and Peru. Since little is known about their nitrogen, sulfur, and carbon metabolism, this study was undertaken to investigate their (eco)physiology. Thioploca is able to store internally high concentrations of sulfur globules and nitrate. It has been previously hypothesized that these large vacuolated bacteria can oxidize sulfide by reducing their internally stored nitrate. We examined this nitrate reduction by incubation experiments of washed Thioploca sheaths with trichomes in combination with 15N compounds and mass spectrometry and found that these Thioploca samples produce ammonium at a rate of 1 nmol min−1 mg of protein−1. Controls showed no significant activity. Sulfate was shown to be the end product of sulfide oxidation and was observed at a rate of 2 to 3 nmol min−1 mg of protein−1. The ammonium and sulfate production rates were not influenced by the addition of sulfide, suggesting that sulfide is first oxidized to elemental sulfur, and in a second independent step elemental sulfur is oxidized to sulfate. The average sulfide oxidation rate measured was 5 nmol min−1 mg of protein−1 and could be increased to 10.7 nmol min−1 mg of protein−1 after the trichomes were starved for 45 h. Incorporation of 14CO2 was at a rate of 0.4 to 0.8 nmol min−1 mg of protein−1, which is half the rate calculated from sulfide oxidation. [2-14C]acetate incorporation was 0.4 nmol min−1 mg of protein−1, which is equal to the CO2 fixation rate, and no 14CO2 production was detected. These results suggest that Thioploca species are facultative chemolithoautotrophs capable of mixotrophic growth. Microautoradiography confirmed that Thioploca cells assimilated the majority of the radiocarbon from [2-14C]acetate, with only a minor contribution by epibiontic bacteria present in the samples.  相似文献   

16.
The product of pxcA (formerly known as cotA) is involved in light-induced Na+-dependent proton extrusion. In the presence of 2,5-dimethyl-p-benzoquinone, net proton extrusion by Synechocystis sp. strain PCC6803 ceased after 1 min of illumination and a postillumination influx of protons was observed, suggesting that the PxcA-dependent, light-dependent proton extrusion equilibrates with a light-independent influx of protons. A photosystem I (PS I) deletion mutant extruded a large number of protons in the light. Thus, PS II-dependent electron transfer and proton translocation are major factors in light-driven proton extrusion, presumably mediated by ATP synthesis. Inhibition of CO2 fixation by glyceraldehyde in a cytochrome c oxidase (COX) deletion mutant strongly inhibited the proton extrusion. Leakage of PS II-generated electrons to oxygen via COX appears to be required for proton extrusion when CO2 fixation is inhibited. At pH 8.0, NO3 uptake activity was very low in the pxcA mutant at low [Na+] (~100 μM). At pH 6.5, the pxcA strain did not take up CO2 or NO3 at low [Na+] and showed very low CO2 uptake activity even at 15 mM Na+. A possible role of PxcA-dependent proton exchange in charge and pH homeostasis during uptake of CO2, HCO3, and NO3 is discussed.  相似文献   

17.
In the preceding paper (Bevensee, M.O., R.A. Weed, and W.F. Boron. 1997. J. Gen. Physiol. 110: 453–465.), we showed that a Na+-driven influx of HCO3 causes the increase in intracellular pH (pHi) observed when astrocytes cultured from rat hippocampus are exposed to 5% CO2/17 mM HCO3 . In the present study, we used the pH-sensitive fluorescent indicator 2′,7′-biscarboxyethyl-5,6-carboxyfluorescein (BCECF) and the perforated patch-clamp technique to determine whether this transporter is a Na+-driven Cl-HCO3 exchanger, an electrogenic Na/HCO3 cotransporter, or an electroneutral Na/HCO3 cotransporter. To determine if the transporter is a Na+-driven Cl-HCO3 exchanger, we depleted the cells of intracellular Cl by incubating them in a Cl-free solution for an average of ∼11 min. We verified the depletion with the Cl-sensitive dye N-(6-methoxyquinolyl)acetoethyl ester (MQAE). In Cl-depleted cells, the pHi still increases after one or more exposures to CO2/HCO3 . Furthermore, the pHi decrease elicited by external Na+ removal does not require external Cl. Therefore, the transporter cannot be a Na+-driven Cl-HCO3 exchanger. To determine if the transporter is an electrogenic Na/ HCO3 cotransporter, we measured pHi and plasma membrane voltage (Vm) while removing external Na+, in the presence/absence of CO2/HCO3 and in the presence/absence of 400 μM 4,4′-diisothiocyanatostilbene-2,2′-disulphonic acid (DIDS). The CO2/HCO3 solutions contained 20% CO2 and 68 mM HCO3 , pH 7.3, to maximize the HCO3 flux. In pHi experiments, removing external Na+ in the presence of CO2/HCO3 elicited an equivalent HCO3 efflux of 281 μM s−1. The HCO3 influx elicited by returning external Na+ was inhibited 63% by DIDS, so that the predicted DIDS-sensitive Vm change was 3.3 mV. Indeed, we found that removing external Na+ elicited a DIDS-sensitive depolarization that was 2.6 mV larger in the presence than in the absence of CO2/ HCO3 . Thus, the Na/HCO3 cotransporter is electrogenic. Because a cotransporter with a Na+:HCO3 stoichiometry of 1:3 or higher would predict a net HCO3 efflux, rather than the required influx, we conclude that rat hippocampal astrocytes have an electrogenic Na/HCO3 cotransporter with a stoichiometry of 1:2.  相似文献   

18.
The species of inorganic carbon (CO2 or HCO3) taken up a source of substrate for photosynthetic fixation by isolated Asparagus sprengeri mesophyll cells is investigated. Discrimination between CO2 or HCO3 transport, during steady state photosynthesis, is achieved by monitoring the changes (by 14C fixation) which occur in the specific activity of the intracellular pool of inorganic carbon when the inorganic carbon present in the suspending medium is in a state of isotopic disequilibrium. Quantitative comparisons between theoretical (CO2 or HCO3 transport) and experimental time-courses of 14C incorporation, over the pH range of 5.2 to 7.5, indicate that the specific activity of extracellular CO2, rather than HCO3, is the appropriate predictor of the intracellular specific activity. It is concluded, therefore, that CO2 is the major source of exogenous inorganic carbon taken up by Asparagus cells. However, at high pH (8.5), a component of net DIC uptake may be attributable to HCO3 transport, as the incorporation of 14C during isotopic disequilibrium exceeds the maximum possible incorporation predicted on the basis of CO2 uptake alone. The contribution of HCO3 to net inorganic carbon uptake (pH 8.5) is variable, ranging from 5 to 16%, but is independent of the extracellular HCO3 concentration. The evidence for direct HCO3 transport is subject to alternative explanations and must, therefore, be regarded as equivocal. Nonlinear regression analysis of the rate of 14C incorporation as a function of time indicates the presence of a small extracellular resistance to the diffusion of CO2, which is partially alleviated by a high extracellular concentration of HCO3.  相似文献   

19.
20.
Photosynthesis, respiration, N2 fixation and ammonium release were studied directly in Nodularia spumigena during a bloom in the Baltic Sea using a combination of microsensors, stable isotope tracer experiments combined with nanoscale secondary ion mass spectrometry (nanoSIMS) and fluorometry. Cell-specific net C- and N2-fixation rates by N. spumigena were 81.6±6.7 and 11.4±0.9 fmol N per cell per h, respectively. During light, the net C:N fixation ratio was 8.0±0.8. During darkness, carbon fixation was not detectable, but N2 fixation was 5.4±0.4 fmol N per cell per h. Net photosynthesis varied between 0.34 and 250 nmol O2 h−1 in colonies with diameters ranging between 0.13 and 5.0 mm, and it reached the theoretical upper limit set by diffusion of dissolved inorganic carbon to colonies (>1 mm). Dark respiration of the same colonies varied between 0.038 and 87 nmol O2 h−1, and it reached the limit set by O2 diffusion from the surrounding water to colonies (>1 mm). N2 fixation associated with N. spumigena colonies (>1 mm) comprised on average 18% of the total N2 fixation in the bulk water. Net NH4+ release in colonies equaled 8–33% of the estimated gross N2 fixation during photosynthesis. NH4+ concentrations within light-exposed colonies, modeled from measured net NH4+ release rates, were 60-fold higher than that of the bulk. Hence, N. spumigena colonies comprise highly productive microenvironments and an attractive NH4+ microenvironment to be utilized by other (micro)organisms in the Baltic Sea where dissolved inorganic nitrogen is limiting growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号