首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanism of pantothenate transport into rabbit renal brush-border membrane vesicles was studied. Under voltage-clamped conditions, an inward NaCl gradient induced the transient accumulation of pantothenate against its concentration gradient, indicating Na+/pantothenate cotransport. K+, Rb+, Li+, NH4+, and choline+ were ineffective in replacing Na+. Pantothenate analogs, D-glucose, and various carboxylic acids did not inhibit Na+-dependent pantothenate transport, suggesting that this system is specific for pantothenate. Kinetic analysis of the Na+-dependent pantothenate uptake revealed a single transport system which obeyed Michaelis-Menten kinetics (Km = 16 microM and Vmax = 6.7 pmol X mg-1 X 10 s-1). Imposition of an inside-negative membrane potential caused net uphill pantothenate accumulation in the presence of Na+ but absence of a Na+ gradient, indicating that Na+/pantothenate cotransport is electrogenic. The relationship between extravesicular Na+ concentration and pantothenate transport measured under voltage-clamped conditions was sigmoidal: a Hill coefficient (napp) of 2 and a [Na+]0.5 of 55 mM were calculated. It is suggested that an anionic pantothenate1- molecule is cotransported with two Na+ to give a net charge of +1. The coupling of pantothenate transport to the Na+ electrochemical gradient may provide an efficient mechanism for reabsorption of pantothenate in the kidney.  相似文献   

2.
An alpha 2-macroglobulin (alpha 2M)-like proteinase inhibitor from plasma of the crayfish Pacifastacus leniusculus was purified to apparent homogeneity by acid precipitation, hydrophobic interaction chromatography, affinity chromatography on concanavalin A-Sepharose and anion-exchange chromatography. The subunit Mr is about 190,000. Pore-size-limit electrophoresis proved the native protein to be a dimer. The purified protein resembled vertebrate alpha 2 Ms in that it protected trypsin from inhibition by soyabean trypsin inhibitor, and in its sensitivity to methylamine treatment. Methylamine also prevented the protein from being autolytically cleaved into Mr 60,000 and 140,000 fragments when subjected to heat treatment. The amino acid composition showed similarities with both human alpha 2 M and an alpha 2 M-like protein from the arthropod Limulus polyphemus. These data indicate that this Pacifastacus alpha 2M-like protein (P alpha 2M) may be a distantly related homologue of vertebrate alpha 2Ms.  相似文献   

3.
The uptake of citrate by renal brush-border vesicles, prepared according to the method of Vannier, occurs by Na+-linked cotransport. It is ‘positive rheogenic’, i.e., stimulated by an (inside) negative, and inhibited by an (inside) positive electrical potential. The question arises whether, besides Na+, other ions (e.g., K+ and H+) participate in the cotransport. As to K+, neither an inward nor an outward directed K+ gradient has a significant effect on the citrate movement, but at equal concentrations of K+ inside and outside, equilibrium exchange of citrate, and to a smaller extent, the Na+-linked net uptake of citrate, are significantly stimulated. This observation is consistent with a hypothetical model in which K+ acts by accelerating both the empty and the fully loaded translocator. As to H+, citrate uptake is also stimulated by decreasing extravesicular pH, an effect previously attributed to protonization of the citrate anion in the assumption that the resulting secondary citrate anion is more acceptable to the translocator site. It was found, however, that the pH effect is still apparent if the concentration of the secondary citrate is kept constant by adjusting the total citrate concentration. This is taken as an argument against the above assumption and as being consistent with H+-linked cotransport. After the overshoot peak citrate exits slowly, and even after several hours does not attain equilibrium distribution, presumably owing to trapping by vesicular calcium.  相似文献   

4.
Brush-border membranes of renal proximal tubules were solubilized with deoxycholate and some proteins were separated and incorporated into proteoliposomes by a reconstitution procedure which was analyzed in detail. The proteoliposomes contained mainly polypeptides with molecular weights of 152,000, 94,000, and 52,000, each of which could be separated further into homologous polypeptides with different isoelectric points. In the proteoliposomes, Na+ cotransport systems for D-glucose, acidic and neutral amino acids, and mono- and dicarboxylic acids were demonstrated by showing that due to an inwardly directed Na+ gradient the substrate concentrations in the proteoliposomes increased significantly over their respective equilibrium values. Using inhibition experiments, selectivity of the different transporters could be demonstrated. Studying the reconstituted L-glutamate transporter in detail, countertransport of L-glutamate and K+ was shown (i) at Na+ equilibrium the intraliposomal L-glutamate concentration increased significantly over the equilibrium value if an outside-directed K+ gradient was applied; (ii) Rb+ influx was significantly stimulated by the outflux of L-glutamate. By applying a K+ diffusion potential across the liposomal membrane by addition of valinomycin it could be shown that during L-glutamate transport in the presence of Na+ and K+ positive charge is transferred together with L-glutamate and Na+. The apparent Km value of L-glutamate uptake driven by concentration differences of 89 mM Na+ (out greater than in) and 89 mM K+ (in greater than out) was 26.3 +/- 1.3 microM. The Vmax value of 70.2 +/- 2.3 pmol X mg of protein-1 X S-1 was half the value measured in intact membranes.  相似文献   

5.
The uptake of citrate by renal brush-border vesicles, prepared according to the method of Vannier, occurs by Na+-linked cotransport. It is 'positive rheogenic', i.e., stimulated by an (inside) negative, and inhibited by an (inside) positive electrical potential. The question arises whether, besides Na+, other ions (e.g., K+ and H+) participate in the cotransport. As to K+, neither an inward nor an outward directed K+ gradient has a significant effect on the citrate movement, but at equal concentrations of K+ inside and outside, equilibrium exchange of citrate, and to a smaller extent, the Na+-linked net uptake of citrate, are significantly stimulated. This observation is consistent with a hypothetical model in which K+ acts by accelerating both the empty and the fully loaded translocator. As to H+, citrate uptake is also stimulated by decreasing extravesicular pH, an effect previously attributed to protonization of the citrate anion in the assumption that the resulting secondary citrate anion is more acceptable to the translocator site. It was found, however, that the pH effect is still apparent if the concentration of the secondary citrate is kept constant by adjusting the total citrate concentration. This is taken as an argument against the above assumption and as being consistent with H+-linked cotransport. After the overshoot peak citrate exits slowly, and even after several hours does not attain equilibrium distribution, presumably owing to trapping by vesicular calcium.  相似文献   

6.
The role of thiol groups in H+-gradient-dependent dipeptide transport in rabbit renal brush-border membrane vesicles was investigated using glycylsarcosine as the substrate. Treatment of the membrane vesicles with a thiol-group-reducing agent, dimercaptopropanol, stimulated Gly-Sar transport. On the other hand, treatment with thiol group oxidants such as 5,5'-dithiobis(2-nitrobenzoic acid), plumbagin and phenazine methosulfate inhibited Gly-Sar transport. These effects were irreversible, because washing the membranes after treatment failed to reverse the effects. Incubation of the membrane vesicles with phenylarsine oxide, a reagent which interacts specifically with vicinal dithiols, significantly inhibited Gly-Sar transport. In all cases, the stimulation or the inhibition of the dipeptide transport was primarily due to changes in the maximal velocity of the transport system, the apparent affinity constant remaining unaltered. These results demonstrate the involvement of one or more vicinal dithiol groups in the function of the renal dipeptide transport system and that these thiol groups must exist in reduced form to maintain maximal transport activity. In addition, these data indirectly suggest that a dithiol-disulfide interchange may play a role in the function of the renal dipeptide transport system.  相似文献   

7.
We have investigated the symmetry of Na+-succinate cotransport in rabbit renal brush-border membrane vesicles. Succinate influx and efflux kinetics were measured under voltage-clamped conditions using [14C]succinate and a rapid filtration procedure. Both influx and efflux were Na+-dependent, saturable, temperature-sensitive, and influenced by the trans Na+ and succinate concentrations. The system was judged to be asymmetric, since the maximal velocity for influx was 3-fold higher than that for efflux, and trans Na+ inhibited influx more than efflux. This may be due to the asymmetrical insertion of the transporter in the brush-border membrane, which leads to differences in either the forward and backward translocation rates of the fully loaded carrier or the Na+ and succinate binding constants at the inner and outer faces of the membrane.  相似文献   

8.
Phospholipid asymmetry in renal brush-border membranes   总被引:1,自引:0,他引:1  
The topological distribution of phospholipids between the inside and the outside of rabbit kidney brush-border membranes has been investigated by incubating membrane vesicles with sphingomyelinase, phospholipases A2 from bee venom and hog pancreas, phospholipases C and D, and trinitrobenzene sulfonate. Orientation and integrity of vesicles upon phospholipase treatment was determined by using two monoclonal antibodies recognizing an extracytoplasmic and a cytoplasmic domain, respectively, of the neutral endopeptidase (EC 3.4.24.11). It is shown that the transbilayer distribution of phospholipids is highly asymmetrical in kidney brush-border membranes: sphingomyelin accounted for 75% of the phospholipids present in the external leaflet, whereas phosphatidylethanolamine and phosphatidylserine plus phosphatidylinositol were found to comprise the majority of the inner layer of the membrane.  相似文献   

9.
Trehalase (EC 3.2.1.28) associated with renal and intestinal brush-border membranes was solubilized by highly purified phosphatidylinositol-specific phospholipase C (EC 3.1.4.10) from Bacillus thuringiensis, but not by phosphatidylcholine-hydrolyzing phospholipase C (EC 3.1.4.3) from Clostridium welchii or phospholipase D (EC 3.1.4.4) from cabbage. The solubilized trehalase was not adsorbed on phenyl-Sepharose, indicating that it was hydrophilic. Phosphatidylinositol-specific phospholipase C also converted Triton X-100-solubilized amphipathic trehalase into a hydrophilic form. These results suggest that trehalase is bound to the membrane through a direct and specific interaction with phosphatidylinositol.  相似文献   

10.
Summary It has been suggested previously that La3+ can replace Na+ on various cotransport systems in renal brush border membranes. In the present study, we used rabbit renal brush border membrane vesicles to examine the specificity and kinetics of Ln3+/proline cotransport. Experiments were carried out under zero-trans, voltage clamped conditions using a rapid-mix/filtration technique. Initial experiments confirmed that La3+ produced the classical overshoot phenomenon. The initial rates of proline uptake relative to Na+ were Eu3+, Tb3+, Nd3+, Pr3+, Ho3+ (3.3)>Na+ (1.0)>La3+ (0.86) > choline+ (0.1). At a saturating salt concentration, uptake saturated with increasing proline concentration: theK t andJ max were 0.05mm and 17 pmol mg–1 sec–1 in Na+; and 0.28mm and 73 pmol mg–1 sec–1 in Tb3+. The higherJ max in Tb3+ indicates that the Tb3+-proline loaded carrier is more effective than the Na+-proline loaded carrier in overcoming some rate-limiting barriers in the transport process. Na+ activated proline uptake with a Hill coefficient of 1.6 and aK 0.5 of 21mm, while Tb3+ activated with a Hill coefficient of 0.88 and aK 0.5 of 28mm. The Hill coefficient for Na+ suggests two binding sites, whereas the Hill coefficient for Tb3+ may indicate negative cooperativity between the trivalent ligands at the binding sites. We conclude that lanthanides are able to substitute for Na+ on the brush border proline carrier and that the lanthanides may serve as useful probes for the ligand binding sites.  相似文献   

11.
This protocol describes a method for the isolation and purification of renal proximal tubular brush-border membranes in high yield and high purity. Based on a different reactivity of the brush-border membrane compared to other cellular membranes with divalent cations, such as Mg2+, purified membrane vesicles can be obtained after a few differential centrifugation steps (within approximately 3 h) that are suitable for in vitro studies, such as transport experiments or protein and lipid analysis.  相似文献   

12.
13.
Summary In the present study, we have examined the direct actions of angiotensin II (AII) in rabbit renal brush border membrane (BBM) where binding sites for AII exist. Addition of AII (10–11–10–7 m) was found to stimulate22Na uptake by the isolated BBM vesicles directly. AII did not affect the Na+-dependent BBM glucose uptake, and the effect of AII on BBM22Na+ uptake was inhibited by amiloride, suggesting the involvement of Na+/H+ exchange mechanism. BBM proton permeability as assessed by acridine orange quenching was not affected by AII, indicating the direct effect of AII on Na+/H+ antiport system.In search of the signal transduction mechanism, it was found that AII activated BBM phospholipase A2 (PLA) and that BBM contains a 42-kDa guanine nucleotide-binding regulatory protein (G-protein) that underwent pertussis toxin (PTX)-catalyzed ADP-ribosylation. Addition of GTP potentiated, while GDP-ßS or PTX abolished, the effects of AII on BBM PLA and22Na+ uptake, suggesting the involvement of G-protein in AII's actions. On the other hand, inhibition of PLA by mepacrine prevented AII's effect on BBM22Na+ uptake, and activation of PLA by mellitin or addition of arachidonic acid similarly enhanced BBM22Na+ uptake, suggesting the role of PLA activation in mediating AII's effect on BBM22Na+ uptake.In summary, results of the present study show a direct stimulatory effect of AII on BBM Na+/H+ antiport system, and suggest the presence of a local signal transduction system involving G-protein mediated PLA activation.  相似文献   

14.
Adenosine transport has been further characterized in rat renal brush-border membranes (BBM). The uptake shows two components, one sodium-independent and one sodium-dependent. Both components reflect, at least partly, translocation via a carrier mechanism, since the presence of adenosine inside the vesicles stimulates adenosine uptake in the presence as well as in the absence of sodium outside the vesicles. The sodium-dependent component is saturable (Km adenosine = 2.9 microM, Vmax = 142 pmol/min per mg protein) and is abolished at low temperatures. The sodium-independent uptake has apparently two components: one saturable (Km = 4-10 microM, Vmax = 174 pmol/min per mg protein) and one non-saturable (Vmax = 3.4 pmol/min per mg protein, Km greater than 2000 microM). Inosine, guanosine, 2-chloroadenosine and 2'-deoxyadenosine inhibit the sodium-dependent and -independent transport, as shown by trans-stimulation experiments, probably because of translocation via the respective transporter. Uridine and dipyridamole inhibited only the sodium-dependent uptake. Other analogs of adenosine showed no inhibition. The kinetic parameters of the inhibitors of the sodium-dependent component were further investigated. Inosine was the most potent inhibitor with a Ki (1.9 microM) less than the Km of adenosine. This suggests a physiological role for the BBM ecto-adenosine deaminase (enzyme which extracellularly converts adenosine to inosine), balancing the amount of nucleoside taken up as adenosine or inosine by the renal proximal tubule cell.  相似文献   

15.
Summary Ion dependence and electrogenicity of taurine uptake were studied in rabbit renal outer cortical brush-border membrane vesicles isolated by differential precipitation. Na+-d-glucose cotransport was followed in parallel to monitor changes in the membrane potential. Concentrative taurine flux was dependent on a chemical and/or an electrical Na+ gradient (K+ diffusion potential) and could be completely inhibited by other -amino acids. It displayed a specific anion requirement (ClBrSCN>I>NO 3 ). At chemical Na+ equilibrium, Cl gradients, depending on their orientation, stimulated or inhibited taurine uptake more than could be attributed solely to electrical anion effects, although a Cl gradient alone could not energize an overshoot. Furthermore, taurine tracer exchange was significantly stimulated by Cl as well as Br. The Cl stoichiometry was found to be one, whereas taurine transport, in the presence of Cl, was sigmoidally related to the Na+ concentration, resulting in a coupling ratio of 2 to 3 Na+: 1 taurine. Upon Cl replacement with gluconate, taurine uptake showed a reduced potential sensitivity and was no longer detectably affected by the Na+ concentration (up to 150mm). These results suggest a 2 to 3 Na+:1 Cl:1 taurine cotransport mechanism driven mainly by the Na+ gradient, which is sensitive to the membrane potential due to a negatively charged empty carrier. Cl appears to stimulate taurine flux primarily by facilitating the formation of the translocated solute-carrier complex.  相似文献   

16.
Tyrosine protein kinase (TPK) activity was detected in rat renal brush-border membranes (BBM) using poly(Glu80Na,Tyr20) as a substrate. Maximal TPK activity required prior detergent dispersion of the membranes with 0.05% Triton X-100 and the presence of vanadate, a potent inhibitor of phosphotyrosine protein phosphatases, in the phosphorylation medium. Optimal conditions for measurement of TPK activity were 10 mM of MgCl2 and MnCl2, at 30 degrees C and pH 7.0. TPK activity was inhibited by genistein, with a IC50 value of 15 microM, while no inhibition was observed in the presence of 1-(5-isoquinolinesulfonyl)-2-methyl-piperazine dihydrochloride (H7), an inhibitor of serine-threonine kinases. TPK activity was enriched 4-fold in the BBM fraction relative to cortex homogenate. It was co-enriched with BBM enzyme markers, but not with those of the basolateral membrane (BLM). The endogenous substrates of TPK in brush-border and basolateral membranes were determined by Western blot analysis using an antiphosphotyrosine monoclonal antibody (PY20). Various phosphotyrosine-containing proteins were found in the BBM (31, 34, 46, 50, 53, 72, 90, 118 and 170 kDa) and in the BLM (37, 48, 50, 53, 72, 90, 130 and 170 kDa). Addition of exogenous insulin receptor to BBM and BLM increased the phosphorylation of most of the substrates. Solubilization of the TPK activity from BBM with 0.5% CHAPS and subsequent gel filtration on Superdex 75 yielded two peaks of tyrosine protein kinase activity with apparent molecular masses of 49 and 66 kDa. These results provide evidence for a non-receptor TPK activity associated with the renal tubular luminal membrane.  相似文献   

17.
Proton pathways in rat renal brush-border and basolateral membranes   总被引:7,自引:0,他引:7  
The quenching of acridine orange fluorescence was used to monitor the formation and dissipation of pH gradients in brush-border and basolateral membrane vesicles isolated from rat kidney cortex. The fluorescence changes of acridine orange were shown to be sensitive exclusively to transmembrane delta pH and not to membrane potential difference. In brush-border membrane vesicles, an Na+ (Li+)-H+ exchange was confirmed. At physiological Na+ concentrations, 40-70% of Na+-H+ exchange was mediated by the electroneutral Na+-H+ antiporter; the remainder consisted of Na+ and H+ movements through parallel conductive pathways. Both modes of Na+-H+ exchange were saturable, with half-maximal rates at about 13 and 24 mM Na+, respectively. Besides a Na+ gradient, a K+ gradient was also able to produce an intravesicular acidification, demonstrating conductance pathways for H+ and K+ in brush-border membranes. Experiments with Cl- or SO2-4 gradients failed to demonstrate measurable Cl--OH- or SO2-4-OH- exchange by an electroneutral antiporter in brush-border membrane vesicles; only Cl- conductance was found. In basolateral membrane vesicles, neither Na+(Li+)-H+ exchange nor Na+ or K+ conductances were found. However, in the presence of valinomycin-induced K+ diffusion potential, H+ conductance of basolateral membranes was demonstrated, which was unaffected by ethoxzolamide and 4,4'-diisothiocyanostilbene-2,2-disulfonic acid. A Cl- conductance of the membranes was also found, but antiporter-mediated electroneutral Cl--OH- or SO2-4-OH- exchange could not be detected by the dye method. The restriction of the electroneutral Na+-H+ exchanger to the luminal membrane can explain net secretion of protons in the mammalian proximal tubule which leads to the reabsorption of bicarbonate.  相似文献   

18.
Transport of glycylglycine into rabbit renal brush-border membrane vesicles was found to be Na+-independent, H+ gradient-dependent and electrogenic. Marked overshoot uptake of the dipeptide was observed when an inward-directed proton gradient and inside-negative potential difference were imposed simultaneously across the vesicular membranes. Saturable depolarization of vesicular membranes could be demonstrated with glycylglycine by use of a fluorescent cyanine dye, di-S-C3(5). The results indicate that glycylglycine is contransported with H+ across the membranes.  相似文献   

19.
The rate of efflux of L-glutamate from renal brush-border membrane vesicles was enhanced by Na+ and by extravesicular L-glutamate, but not by D-glutamate nor analogs of L-glutamate that do not share the Na+-L-glutamate co-transport system. These results suggest that efflux was mediated by the Na+-L-glutamate carrier. The efflux of L-glutamate was increased by extravesicular K+ or Rb+ but not by Li+, choline+, or Tris+. These findings, together with previous results showing that intravesicular K+ or Rb+ increased L-glutamate uptake and that a K+ gradient energized the concentrative uptake of the acidic amino acid in the absence of other gradients, provide evidence consistent with the hypothesis that the co-transport of Na+-L-glutamate is coupled to the transmembrane flux of K+.  相似文献   

20.
L-Phe-L-Pro-L-Ala is a tripeptide which is hydrolysable almost exclusively by dipeptidyl peptidase IV in rabbit renal brush-border membrane vesicles. In order to delineate the mechanism of the transport of an intact tripeptide across the brush-border membrane, we studied the characteristics of the uptake of [3H]Phe-Pro-Ala in membrane vesicles in which the activity of dipeptidylpeptidase IV was completely inhibited by treatment with di-isopropyl fluorophosphate. In these vesicles, uptake of radiolabel from the tripeptide was found to be Na(+)-independent, but was greatly stimulated by an inwardly directed H+ gradient. The H(+)-gradient-dependent radiolabel uptake appeared to be an active process, because the time course of uptake exhibited an overshoot phenomenon. The process was also electrogenic, being stimulated by an inside-negative membrane potential. Under the uptake-measurement conditions there was no detectable hydrolysis of [3H]Phe-Pro-Ala in the incubation medium when di-isopropyl fluorophosphate-treated membrane vesicles were used. Analysis of intravesicular contents revealed that the radiolabel inside the vesicles was predominantly (greater than 90%) in the form of intact tripeptide. These data indicate that the uptake of radiolabel from [3H]Phe-Pro-Ala in the presence of an inwardly directed H+ gradient represents almost exclusively uptake of intact tripeptide. Uphill transport of the tripeptide was also demonstrable in the presence of an inwardly directed Na+ or K+ gradient, but only if nigericin was added to the medium. Under these conditions, nigericin, an ionophore for Na+, K+ and H+, was expected to generate a transmembrane H+ gradient. Uptake of Phe-Pro-Ala in the presence of a H+ gradient was inhibited by di- and tri-peptides, but not by free amino acids. It is concluded that tripeptide/H+ co-transport is the mechanism of Phe-Pro-Ala uptake in rabbit renal brush-border membrane vesicles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号