首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N Noy  Z J Xu 《Biochemistry》1990,29(16):3888-3892
Retinol (vitamin A alcohol) is a hydrophobic compound and distributes in vivo mainly between binding proteins and cellular membranes. To better clarify the nature of the interactions of retinol with these phases which have a high affinity for it, the thermodynamic parameters of these interactions were studied. The temperature-dependence profiles of the binding of retinol to bovine retinol binding protein, bovine serum albumin, unilamellar vesicles of dioleoylphosphatidylcholine, and plasma membranes from rat liver were determined. It was found that binding of retinol to retinol binding protein is characterized by a large increase in entropy (T delta S degrees = +10.32 kcal/mol) and no change in enthalpy. Binding to albumin is driven by enthalpy (delta H degrees = -8.34 kcal/mol) and is accompanied by a decrease in entropy (T delta S degrees = -2.88 kcal/mol). Partitioning of retinal into unilamellar vesicles and into plasma membranes is stabilized both by enthalpic (delta H degrees was -3.3 and -5.5 kcal/mol, respectively) and by entropic (T delta S degrees was +4.44 and +2.91 kcal/mol, respectively) components. The implications of these finding are discussed.  相似文献   

2.
Microcalorimetric titrations of calmodulin with Ca2+ and trifluoperazine (TFP) at various molar ratios have been carried out at 25 degrees C and at pH 7.0. Ca2+ binding to calmodulin produces heat (-delta H) in the presence of TFP, while heat is absorbed in the absence of TFP. The total heat produced by Ca2+ binding to all four sites is increased at increasing TFP-to-calmodulin ratios, attaining a plateau at about 7. These results indicate that at the higher ratios, the enthalpy changes (delta H) associated with Ca2+ binding are affected by TFP molecules bound at both high- and low-affinity sites. In addition, the Ca2+ binding reaction of the calmodulin-TFP complex is driven solely by a favorable enthalpy change of -27 kJ/mol of site; the entropy change (delta S) is -35 J/mol/K. These thermodynamic changes are opposite to those for TFP-free calmodulin and distinctly different from other Ca2+ binding proteins such as skeletal and cardiac troponin C and parvalbumin, where the reaction is driven by favorable changes of entropy as well as enthalpy.  相似文献   

3.
Sharrow SD  Novotny MV  Stone MJ 《Biochemistry》2003,42(20):6302-6309
The mouse pheromone 2-sec-butyl-4,5-dihydrothiazole (SBT) binds to an occluded, nonpolar cavity in the mouse major urinary protein-I (MUP-I). The thermodynamics of this interaction have been characterized using isothermal titration calorimetry (ITC). MUP-I-SBT binding is accompanied by a large favorable enthalpy change (DeltaH = -11.2 kcal/mol at 25 degrees C), an unfavorable entropy change (-TDeltaS = 2.8 kcal/mol at 25 degrees C), and a negative heat capacity change [DeltaC(p)() = -165 cal/(mol K)]. Thermodynamic analysis of binding between MUP-I and several 2-alkyl-4,5-dihydrothiazole ligands indicated that the alkyl chain contributes more favorably to the enthalpy and less favorably to the entropy of binding than would be expected on the basis of the hydrophobic desolvation of short-chain alcohols. However, solvent transfer experiments indicated that desolvation of SBT is accompanied by a net unfavorable change in enthalpy (DeltaH = +1.0 kcal/mol) and favorable change in entropy (-TDeltaS = -1.8 kcal/mol). These results are discussed in terms of the possible physical origins of the binding thermodynamics, including (1) hydrophobic desolvation of both the protein and the ligand, (2) formation of a buried water-mediated hydrogen bond network between the protein and ligand, (3) formation of strong van der Waals interactions, and (4) changes in the structure, dynamics, and/or hydration of the protein upon binding.  相似文献   

4.
Guan R  Ho MC  Brenowitz M  Tyler PC  Evans GB  Almo SC  Schramm VL 《Biochemistry》2011,50(47):10408-10417
Human 5'-methylthioadenosine phosphorylase (MTAP) links the polyamine biosynthetic and S-adenosyl-l-methionine salvage pathways and is a target for anticancer drugs. p-Cl-PhT-DADMe-ImmA is a 10 pM, slow-onset tight-binding transition state analogue inhibitor of the enzyme. Titration of homotrimeric MTAP with this inhibitor established equivalent binding and independent catalytic function of the three catalytic sites. Thermodynamic analysis of MTAP with tight-binding inhibitors revealed entropic-driven interactions with small enthalpic penalties. A large negative heat capacity change of -600 cal/(mol K) upon inhibitor binding to MTAP is consistent with altered hydrophobic interactions and release of water. Crystal structures of apo MTAP and MTAP in complex with p-Cl-PhT-DADMe-ImmA were determined at 1.9 and 2.0 ? resolution, respectively. Inhibitor binding caused condensation of the enzyme active site, reorganization at the trimer interfaces, the release of water from the active sites and subunit interfaces, and compaction of the trimeric structure. These structural changes cause the entropy-favored binding of transition state analogues. Homotrimeric human MTAP is contrasted to the structurally related homotrimeric human purine nucleoside phosphorylase. p-Cl-PhT-DADMe-ImmA binding to MTAP involves a favorable entropy term of -17.6 kcal/mol with unfavorable enthalpy of 2.6 kcal/mol. In contrast, binding of an 8.5 pM transition state analogue to human PNP has been shown to exhibit the opposite behavior, with an unfavorable entropy term of 3.5 kcal/mol and a favorable enthalpy of -18.6 kcal/mol. Transition state analogue interactions reflect protein architecture near the transition state, and the profound thermodynamic differences for MTAP and PNP suggest dramatic differences in contributions to catalysis from protein architecture.  相似文献   

5.
Thermodynamics of the Ca2+ binding to bovine alpha-lactalbumin   总被引:1,自引:0,他引:1  
Bovine alpha-lactalbumin contains one strong Ca2+-binding site. The free energy (delta G0), enthalpy (delta H0), and entropy (delta S0) of binding of Ca2+ to this site have been calculated from microcalorimetric experiments. The enthalpy of binding was dependent on the metal-free bovine alpha-lactalbumin concentration. At 0.8 mg ml-1, metal-free bovine alpha-lactalbumin delta H0 was -110 +/- 6 kJ mol-1. At this concentration the binding constant was estimated from a mathematical analysis of the titration curves to be greater than 10(7) M-1. This means that delta G0 is smaller than -40 kJ mol-1 and delta S0 is less negative than -235 J.K-1 mol-1. The binding of Ca2+ is therefore enthalpy-driven. From binding experiments as a function of temperature, a delta Cp value of -4.1 kJ.K-1 mol-1 was calculated. This value is dependent on the protein concentration. A tentative explanation for this large value is given.  相似文献   

6.
Ca2+ binding to rabbit skeletal calsequestrin was studied at physiological ionic strength by equilibrium flow dialysis, Hummel-Dryer gel filtration and microcalorimetry. 31 Ca(2+)-binding sites with a mean dissociation constant (KD) of 0.79 mM were titrated in the absence, and 23 sites with a KD of 0.88 mM in the presence of 3 mM Mg2+. No cooperativity was observed. For Mg2+ binding, the combination of gel filtration and microcalorimetry yielded a stoichiometry of 26 Mg2+/protein with a KD of 2mM. 1 mM Ca2+ decreased the stoichiometry to 20 Mg2+/protein. Binding of Ca2+ in the absence and presence of 3 mM Mg2+ was accompanied by a release of 2.0 and 2.7 H+/protein, respectively. Mg2+ binding did not lead to a significant proton release suggesting a qualitative difference in the Ca(2+)- and Mg(2+)-binding sites. After correction for proton release, the enthalpy change for Ca2+ binding was very low (-1.5 kJ/protein in the absence, and -15 kJ/protein in the presence of 3 mM Mg2+). The entropy change (+59 J/K.site in the absence and +56 J/K.site in the presence of Mg2+) was therefore virtually the sole driving force for Ca2+ binding. Mg2+ binding is slightly more exothermic (-12.6 kJ/protein), but as for Ca2+, the entropy change (+50 J/K.site) constituted the major driving force of the reaction. A fluorimetric study indicates that the conformation of tryptophan in Mg(2+)-saturated calsequestrin was clearly different from that in the Ca(2+)-saturated protein, but that the (Ca2+ + Mg2+)-saturated protein was not distinct from the Ca(2+)-saturated protein. Thus, in addition to the thermodynamic characterization of the Ca2+/calsequestrin interaction, our data indicate that Ca2+ and Mg2+ do not bind to the same sites on calsequestrin. The data also predict considerable proton fluxes upon Ca(2+)-Mg2+ exchange in vivo.  相似文献   

7.
The binding of Ca2+ to calmodulin and its two tryptic fragments has been studied using microcalorimetry. The binding process is accompanied by the uptake or release of protons, depending on the ionic strength. With no added salt, the total enthalpy change for the binding of four calcium ions to calmodulin is -41 kJ mol-1 but in the presence of 0.15 mM KCl delta Htot is +17 kJ mol-1. The mode of binding of Ca2+ is also completely different with and without added salt. It is also shown that for the C-terminal fragment of calmodulin, TR2C, the drastic reduction in delta Gtot for the binding process on increasing the ionic strength is largely an enthalpic effect. Domain interactions in calmodulin are indicated by the fact that the sum of the enthalpies of calcium binding to the two tryptic fragments is not the same as the total binding enthalpy to calmodulin itself. The binding of Ca2+ to calmodulin has also been studied calorimetrically at different temperatures in the range 21-37 degrees C. delta Cp is large and negative in this interval.  相似文献   

8.
The enthalpy change of the binding of Ca2+ and Mn2+ to equine lysozyme was measured at 25 degrees C and pH 7.5 by batch microcalorimetry: delta H degrees Ca2+ = -76 +/- 5 kJ mol-1, delta H degrees Mn2+ = -21 +/- 10 kJ mol-1. Binding constants, log KCa2+ = 6.5 +/- 0.2 and log KMn2+ = 4.1 +/- 0.5, were calculated from the calorimetric data. Therefore, delta S degrees Ca2+ = -131 +/- 20 JK-1 mol-1 and delta S degrees Mn2+ = 8 +/- 44 JK-1 mol-1. Removal of Ca2+ induces small but significant changes in the circular dichroism spectrum, indicating the existence of a partially unfolded apo-conformation, comparable with, but different from, the apo-conformation of bovine alpha-lactalbumin.  相似文献   

9.
The addition of polylysine to a heavy fraction of sarcoplasmic reticulum (SR) vesicles produces a rapid Ca2+ release with no appreciable lag period. The polylysine concentration for half-maximal activation (C1/2) is approximately 0.99 micrograms/ml, or 0.3 microM, the lowest C 1/2 for Ca2+ release-inducing reagents reported in the literature. The time course and the [Ca2+] dependence of polylysine-induced release are similar to those of caffeine-induced Ca2+ release. At higher concentrations of polylysine (e.g., 10 micrograms/ml), however, little or no Ca2+ release occurs. Upon photolysis of SR vesicles with the photocrosslinkable radiolabeled polylysine derivative, [3H]succinimidyl azido benzoate polylysine, 0.28 and 0.52-1.2 mol polylysine were bound to 1 mol of the 400-kDa foot protein at activating (3 micrograms/ml) and inhibitory (10 micrograms/ml) concentrations of polylysine, respectively. On the other hand, the amounts of polylysine bound to the other SR proteins (mol/mol) were negligible (e.g., less than or equal to 0.0127 mol polylysine/mol calsequestrin). This suggests that the binding of polylysine to the foot protein is responsible not only for the induction of release but also for inactivation. These results provide direct evidence that the receptor for the chemical trigger of Ca2+ release is localized within the foot protein. Ruthenium red, which inhibits polylysine-induced Ca2+ release, does not inhibit polylysine binding to the foot protein, suggesting that the polylysine binding domain of the foot protein is different from the channel domain.  相似文献   

10.
Comparison of the binding of Na+ and Ca2+ to bovine alpha-lactalbumin   总被引:2,自引:0,他引:2  
alpha-Lactalbumin is a metal-binding protein which binds Ca2+- and Na+-ions competitively to one specific site, giving rise to a large conformational change of the protein. For this reason, the enthalpy change of binding Ca2+ to apo-alpha-lactalbumin (delta Ho) is strongly dependent on the concentration of Na+ ions in the medium. From that relationship a molar enthalpy of -145 +/- 3 kJ X mol-1 is calculated for the Ca2+-binding at pH 7.4 and 25 degrees C, while a delta Ho of -5 +/- 3 kJ X mol-1 is found to substitute a complexed Na+ by a Ca2+-ion. These measurements also allowed us to calculate a binding constant for Na+ of 195 +/- 18 M-1. The molar enthalpy of Na+-loading was found to be -142 +/- 3 kJ X mol-1, a value very close to delta Ho of the binding of Ca2+ to alpha-lactalbumin. Both enthalpy changes in binding Ca2+ and Na+ are independent of the protein concentration. These exothermic values are in agreement with the hypothesis that both Na+- and Ca2+-ions are able to induce the same conformational change in alpha-lactalbumin upon which hydrophobic regions are removed from the solvent, yielding a less hydrophobic protein. The latter is confirmed by means of affinity measurements of the hydrophobic fluorescent probe 4,4'-bis[1-(phenylamino)-8-naphthalene sulphonate](bis-ANS) to alpha-lactalbumin. The association constant (Ka) decreased from (6.6 +/- 0.5) X 10(4) M-1 in the absence of NaCl to (2.7 +/- 0.2) X 10(4) M-1 in 75 mM NaCl, while the maximum intensity (Imax) of the binary bis-ANS-alpha-lactalbumin complex remained constant at 0.44 +/- 0.02 (arbitrary units). The Ka value of bis-ANS for Ca2+-alpha-lactalbumin was determined at (1.7 +/- 0.2) X 10(4) M-1 and Imax was 0.43 +/- 0.02 (arbitrary units). The difference in hydrophobicity between the two conformational states of the protein was further demonstrated by adsorption experiments of both conformers to phenyl-Sepharose. Apo-alpha-lactalbumin, hydrophobically bound to phenyl-Sepharose, can be eluted by adding Ca2- or Na+-solutions.  相似文献   

11.
Thermodynamic quantities for the binding of Mg2+ (in the presence of Ca2+) and Pi (in the presence of Mg2+ and absence of Ca2+) to sarcoplasmic reticulum ATPase were determined from isothermal titration calorimetry measurements at 25 degrees C. Mg2+ and Pi are involved in reversal of the ATPase hydrolytic reaction, and their interactions with the ATPase are conveniently studied under equilibrium conditions. We found that the Mg2+ binding reaction is endothermic with a binding constant (Kb) = 142 +/- 4 M(-1), a binding enthalpy of 180 +/- 3 kJ mol(-1), and an entropy contribution (TdeltaSb) = 192 +/- 3 kJ mol(-1). Similarly, Pi binding is also an endothermic reaction with Kb = 167 +/- 17 M(-1), deltaHb = 65.3 +/- 5.4 kJ mol(-1), and TdeltaSb = 77.9 +/- 5.4 kJ mol(-1). Our measurements demonstrate that the ATPase can absorb heat from the environment upon ligand binding, and emphasize the important role of entropic mechanisms in energy transduction by this enzyme.  相似文献   

12.
The binding of Ca2+ to porcine pancreatic phospholipase A2 was studied by batch microcalorimetry. Enthalpies of binding at 25 degrees C were determined as a function of Ca2+ concentration in buffered solutions at pH 8.0 using both the Tris-HCl and Hepes-NaOH buffer systems. The calorimetric results indicate that protons are released on calcium binding and that in addition to the binding of the active-site calcium, there appears to be weak binding of a second Ca2+. Results from potentiometric titrations indicate that this proton release on binding Ca2+ arises from a change in pK of a histidine(s) functional group. The thermodynamic functions delta G0, delta H0 and delta S0 for calcium binding to phospholipase A2 have been determined. These results are compared with literature data for Ca2+ complex formation with some small molecules and also the protein troponin-C.  相似文献   

13.
14.
Enthalpies of ligand binding to bovine neurophysins   总被引:1,自引:0,他引:1  
Flow microcalorimetry and batch microcalorimetry have been used to survey the energetics of ligand binding by bovine neurophysins I and II. Calorimetry studies were supplemented by van't Hoff analyses of binding constants determined by circular dichroism. Free energies of binding of a series of di- and tripeptides that bind to the strong hormone binding site of neurophysin were partitioned into their enthalpic and entropic components. The results indicate that, at 25 degrees C, the binding of most peptides is an enthalpy-driven reaction associated with negative entropy and heat capacity changes. Studies elsewhere, supported by evidence here, indicate that the principal component of the negative enthalpy change does not arise from the increase in neurophysin dimerization associated with peptide binding. Accordingly, the negative enthalpy change is attributed to direct bonding interactions with peptide and possibly also to peptide-induced changes in tertiary or quaternary organization. Comparison of the binding enthalpies of different peptides indicated two types of bonding interactions that contribute to the negative enthalpy change of peptide ligation. Substitution of an aromatic- or sulfur-containing side chain for an aliphatic side chain in position 1 of bound peptides led to increases in negative enthalpy of from 1 to 6 kcal/mol, demonstrating that interactions typically classified as hydrophobic can have a significant exothermic component at 25 degrees C. Similarly, loss of hydrogen bonding potential in the peptide decreased the enthalpy change upon binding, in keeping with the expected enthalpic contribution of hydrogen bonds. In particular, the data suggested that the peptide backbone between residues 2 and 3 and the phenolic hydroxyl group in position 2 participate in hydrogen bonding.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Both the Ca2+-bound and Ca2+-free forms of alpha-lactalbumin can assume essentially the same folded conformation as evidenced by similarity in their CD and proton n.m.r. spectra. Thermal unfolding followed by the aromatic CD has shown that the stability of the folded state is markedly enhanced by Ca2+ and that the stabilization is almost entirely entropic; addition of 0.1 mM Ca2+ shifts the transition temperature from 40 degrees to 62 degrees in 0.1M Na+ at pH 7.0. The enthalpy change of the unfolding, coincident between the two forms, is, however, significantly smaller than that known for lysozyme. The n.m.r. spectrum under the condition that both the forms of the protein are in the folded state reflects minor environmental changes of certain protons upon Ca2+ binding, and these changes are shown to afford useful probes for assessment of the location of the binding site. From the pH dependence and temperature dependence of the spectrum and also by using spin decoupling in the aromatic region (6.4-8.7 p.p.m.), it is shown that none of histidyl residues are affected and that at least two tryptophanyl ring protons experience environmental changes upon Ca2+ binding to the folded apo-protein. Effect of free excess Ca2+ on the spectrum has also shown that in native alpha-lactalbumin there is only one Ca2+-binding site that is detectable by the present method.  相似文献   

16.
The interaction between Ca(2+) and EDTA has been studied using isothermal titration calorimetry to elucidate the detailed mechanism of complex formation and to relate the apparent thermodynamic parameters of calcium binding to the intrinsic effects of ionization. It has been shown that Ca(2+) binding to EDTA is an exothermic process in the temperature range 5-48 degrees C and is highly dependent on the buffer in which the reaction occurs. Calorimetric measurements along with pH-titration of EDTA under different solvent conditions shows that the apparent enthalpy effect of the binding is predominantly from the protonation of buffer. Subtraction of the ionization effect of buffer from the total enthalpy shows that the enthalpy of binding Ca(2+) to EDTA is -0.56 kcal mol(-1) at pH 7.5. The DeltaH value strongly depends on solvent conditions as a result of the degree of ionization of the two amino groups in the EDTA molecule, but depends little on temperature, indicating that the heat capacity increment for metal binding is close to zero. At physiological pH values where the amino groups of EDTA with pK(a)=6.16 and pK(a)=10.26 are differently ionized, the coordination of the Ca(2+) ion into the complex leads to release of one proton due to deprotonation of the amino group having pK(a)=10.26. Increasing the pH up to 11.2, where little or no ionization occurs, leads to elimination of the enthalpy component due to ionization, while its decrease to pH 2 leads to its increase, due to protonation of the two amino groups. The heat effect of Ca(2+)/EDTA interactions, excluding the deprotonation enthalpy of the amino groups, i.e. that associated with the intrinsic enthalpy of binding, is higher in value (Delta(b)H(o)=-5.4 kcal mol(-1)) than the apparent enthalpy of binding. Thus, the large DeltaG value for Ca(2+) binding to EDTA arises not only from favorable entropic but also enthalpic changes, depending on the ionization state of the amino groups involved in coordination of the calcium. This explains the great variability in DeltaH obtained in previous studies. The ionization enthalpy is always unfavorable, and therefore dramatically decreases Ca(2+) affinity by reduction of the enthalpy term of the stability function. The origin of the enthalpy and entropy terms in the stability of the Ca(2+)-EDTA complex is discussed.  相似文献   

17.
18.
Chromogranin A is a high capacity, low affinity Ca2+ binding protein which undergoes Ca2+- and pH-dependent conformational changes, and has recently been suggested to play a Ca2+-buffering role in the secretory vesicle of adrenal medullary chromaffin cell, the major inositol 1,4,5-trisphosphate-sensitive intracellular Ca2+ store of chromaffin cell (Yoo, S.H., and Albanesi, J.P. (1990) J. Biol. Chem. 265, 13446-13448). In the present study, it is shown that chromogranin A exists in a monomer-dimer equilibrium at pH 7.5 and in a monomer-tetramer equilibrium at pH 5.5. The pH appears monomer-tetramer equilibrium at pH 5.5. The pH appears to be a necessary and sufficient factor determining the types of oligomers formed. Although Ca2+ did not change the type of oligomerization, it had a very significant effect on the values of the thermodynamic parameters characterizing the associations. The delta G0 values for a monomer-dimer equilibrium were -7 to -8 kcal/mol, while those for a monomer-tetramer equilibrium were -20 to -23 kcal/mol. At pH 5.5, the values of delta H0, delta S0, and delta C0p were large and negative in the absence of Ca2+ and large and positive in the presence of 35 mM Ca2+, implying markedly different reaction mechanisms. Extrapolation of the results to 37 degrees C and 1 mM chromogranin A suggests that chromogranin A is virtually 100% tetramer at pH 5.5 in the presence of 35 mM Ca2+ but is 96% dimer at pH 7.5 in the absence of Ca2+, the two conditions resembling those seen in vivo. These results suggest that chromogranin A is mostly dimer in the endoplasmic reticulum and cis-Golgi area and is essentially all tetramer in the vesicle.  相似文献   

19.
From skeletal muscle myosin light chains readily dissociate from the myosin oligomer in the absence of divalent cations, and unlike rabbit skeletal muscle myosin light chains, the released light chains of frog skeletal muscle myosin have a high Ca2+ binding affinity. Whereas each Ca2+ binding light chain of frog skeletal muscle myosin, when in association with the heavy chains bound 1 mol of Ca2+, when in the dissociated state bound 0.5 mol of Ca2+; the latter were readily displaced with low Mg2+ concentrations. Whereas 10(-5) M Mg2+ displaced all of the Ca2+ binding sites on the released light chains at Ca2+ concentration ranges of 10(-7) to 10(-4) M, there was negligible displacement of the Ca2+ binding sites with native frog skeletal muscle myosin under these same conditions.  相似文献   

20.
The binding of NAD+, NADH, and ADP-ribose to horse liver alcohol dehydrogenase has been studied calorimetrically as a function of pH at 25 degrees C. The enthalpy of NADH binding is 0 +/- 0.5 kcal mol-1 in the pH range 6 to 8.6. The enthalpy of NAD+ binding, however, varies with pH in a sigmoidal fashion and is -4.0 kcal mol(NAD)-1 at pH 6.0 and +4.5 kcal mol(NAD)-1 at pH 8.6 with an apparent pKa of 7.6 +/- 0.2. The enthalpy of proton ionization of the group on the enzyme is calculated to be in the range 8.8 to 9.8 kcal mol(H+)-1. In conjunction with the available thermodynamic data on the ionization of zinc-bound water in model compounds, it is concluded that the group with a pKa of 9.8 in the free enzyme and 7.6 in the enzyme . NAD+ binary complex is, most likely, the zinc-bound water molecule. Our studies with zinc-free enzyme provide further evidence for this conclusion. Therefore, the processes involving a conformational change of the enzyme upon NAD+ binding and the suggested mechanism of subsequent quenching of the fluorescence of Trp-314 implicating the participation of an ionized tyrosine group must be re-evaluated in the light of this thermodynamic study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号