首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
DNA primase activity has been resolved from a purified DNA primase-polymerase alpha complex of HeLa cells by hydrophobic affinity chromatography on phenylSepharose followed by chromatography on hexylagarose. This procedure provides a good yield (55%) of DNA primase that is free from polymerase alpha. The free DNA primase activity was purified to near homogeneity and its properties characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the purified free DNA primase showed a major protein staining band of Mr 70,000. The native enzyme in velocity sedimentation has an S20'W of 5. DNA primase synthesizes RNA oligomers with single-stranded M-13 DNA, poly(dT) and poly(dC) templates that are elongated by the DNA polymerase alpha in a manner that has already been described for several purified eukaryotic DNA primase-polymerase alpha complexes. The purified free DNA primase activity is resistant to neutralizing anti-human DNA polymerase alpha antibodies, BuPdGTP and aphidicolin that specifically inhibit the free DNA polymerase alpha and also DNA polymerase alpha complexed with the primase. The free primase activity is more sensitive to monovalent salt concentrations and is more labile than polymerase alpha. Taken together these results indicate that the DNA primase and polymerase alpha activities of the DNA primase-polymerase alpha complex reside on separate polypeptides that associate tightly through hydrophobic interactions.  相似文献   

2.
With a specific stimulating factor of mouse DNA replicase for its detection, a novel form of DNA polymerase alpha (DNA replicase) associated with DNA primase activity was partially purified from several vertebrates, i.e. the cherry salmon Oncorhyncus masou, the frog Xenopus laevis, the chick, and human (HeLa cells). Activity similar to DNA replicase was also partially purified from embryos of the sea urchin Anthocidaris crassispina. In all vertebrates examined, two forms of DNA polymerase alpha were separated by chromatography on ion-exchange columns; one form (DNA replicase) was associated with DNA primase activity and could utilize unprimed single-stranded DNAs as template, and the other could not utilize unprimed single-stranded DNAs. The sedimentation coefficient of the former, the novel form, obtained from each vertebrate in a glycerol gradient at high ionic strength was slightly larger than that of the other form which had no primase activity, except in the case of chick embryos where the sedimentation coefficients of the two forms were almost the same. The initiator RNA synthesized with the DNA primase activity associated with DNA replicase obtained from salmon, chick, HeLa cells, and sea urchin was 8 to 10 nucleotides long. The stimulating factor obtained from Ehrlich ascites cells has been found to stimulate both the activities of DNA primase and DNA polymerase in DNA replicase obtained from all the vertebrates examined, when unprimed single-stranded DNA was used as template, while the factor failed to stimulate both the activities of the enzyme of sea urchin embryos. This factor thus should be an effective tool in studies on the mechanism of vertebrate DNA replication.  相似文献   

3.
The inhibition of highly purified herpes simplex virus (HSV)-induced and host cell DNA polymerases by the triphosphate form of 9-(2-hydroxyethoxymethyl)guanine (acyclovir; acycloguanosine) was examined. Acyclovir triphosphate (acyclo-GTP) competitively inhibited the incorporation of dGMP into DNA, catalyzed by HSV DNA polymerase; apparent Km and Ki values of dGTP and acyclo-GTP were 0.15 microM and 0.003 microM, respectively. HeLa DNA polymerase alpha was also competitively inhibited; Km and Ki values of dGTP and acyclo-GTP were 1.2 microM and 0.18 microM, respectively. In contrast, HeLa DNA polymerase beta was insensitive to the analogue. The "limited" DNA synthesis observed when dGTP was omitted from HSV or alpha DNA polymerase reactions was inhibited by acyclo-GTP in a concentration-dependent manner. Prior incubation of activated DNA, acyclo-GTP, and DNA polymerase (alpha or HSV resulted in a marked decrease in the utilization of the primer-template in subsequent DNA polymerase reactions. This decreased ability of preincubated primer-templates to support DNA synthesis was dependent on acyclo-GTP, enzyme concentration, and the time of prior incubation. Acyclo-GMP-terminated DNA was found to inhibit HSV DNA polymerase-catalyzed DNA synthesis. Kinetic experiments with variable concentrations of activated DNA and fixed concentrations of acyclo-GMP-terminated DNA revealed a noncompetitive inhibition of HSV-1 DNA polymerase. The apparent Km of 3'-hydroxyl termini was 1.1 X 10(-7) M, the Kii and Kis of acyclo-GMP termini in activated DNA were 8.8 X 10(-8) M and 2.1 X 10(-9) M, respectively. Finally, 14C-labeled acyclo-GMP residues incorporated into activated DNA by HSV-1 DNA polymerase could not be excised by the polymerase-associated 3',5'-exonuclease activity.  相似文献   

4.
A DNA primase activity was isolated from pea chloroplasts and examined for its role in replication. The DNA primase activity was separated from the majority of the chloroplast RNA polymerase activity by linear salt gradient elution from a DEAE-cellulose column, and the two enzyme activities were separately purified through heparin-Sepharose columns. The primase activity was not inhibited by tagetitoxin, a specific inhibitor of chloroplast RNA polymerase, or by polyclonal antibodies prepared against purified pea chloroplast RNA polymerase, while the RNA polymerase activity was inhibited completely by either tagetitoxin or the polyclonal antibodies. The DNA primase activity was capable of priming DNA replication on single-stranded templates including poly(dT), poly(dC), M13mp19, and M13mp19_+ 2.1, which contains the AT-rich pea chloroplast origin of replication. The RNA polymerase fraction was incapable of supporting incorporation of 3H-TTP in in vitro replication reactions using any of these single-stranded DNA templates. Glycerol gradient analysis indicated that the pea chloroplast DNA primase (115–120 kDa) separated from the pea chloroplast DNA polymerase (90 kDa), but is much smaller than chloroplast RNA polymerase. Because of these differences in size, template specificity, sensitivity to inhibitors, and elution characteristics, it is clear that the pea chloroplast DNA primase is an distinct enzyme form RNA polymerase. In vitro replication activity using the DNA primase fraction required all four rNTPs for optimum activity. The chloroplast DNA primase was capable of priming DNA replication activity on any single-stranded M13 template, but shows a strong preference for M13mp19+2.1. Primers synthesized using M13mp19+2.1 are resistant to DNase I, and range in size from 4 to about 60 nucleotides.  相似文献   

5.
Herpes simplex virus (HSV) DNA polymerase was isolated on a large-scale from African green monkey kidney cells infected with HSV type 1 (HSV-1) strain Angelotti. After DNA-cellulose chromatography the enzyme showed a specific activity of 48,000 units/mg protein. Three major single polypeptides with molecular weights of 144,000, 74,000 and 29,000 were copurified with the enzyme activity at the DNA-cellulose ste. By its chromatographic behavior and by template studies, the HSV DNA polymerase activity was clearly distinguishable from cellular alpha, beta and gamma DNA polymerase activities. Two exonucleolytic activities were found in the DNA-cellulose enzyme preparation. The main exonucleolytic activity, which degraded both single-stranded and double-stranded DNA to deoxynucleoside 5'-monophosphates, was separated by subsequent velocity sedimentation. The remaining exonucleolytic activity was not separable from the HSV DNA polymerase by several chromatographic steps and by velocity sedimentation at high ionic strength. This novel exonuclease and HSV DNA polymerase were equally sensitive both to phosphonoacetic acid and Zn2+ ions, inhibitors of the viral polymerase. Similar to the 3'-to-5'-exonuclease of procaryotic DNA polymerases and mammalian DNA polymerase delta, the HSV-polymerase-associated exonuclease catalyzed the removal of 3'-terminal nucleotides from the primer/template as well as the template-dependent conversion of deoxynucleoside triphosphates to monophosphates.  相似文献   

6.
T Yagura  T Kozu  T Seno  S Tanaka 《Biochemistry》1987,26(24):7749-7754
A hybrid cell line (HDR-854-E4) secreting monoclonal antibody (E4 antibody) against a subunit of human DNA polymerase alpha was established by immunizing mice with DNA replicase complex (DNA polymerase alpha-primase complex) prepared from HeLa cells. The E4 antibody immunoprecipitates DNA replicase complex from both human and mouse cells. The E4 antibody neutralizes the primase activity as assessed either by the direct primase assay (incorporation of [alpha-32P]AMP) or by assay of DNA polymerase activity coupled with the primase activity using unprimed poly(dT) as a template. The E4 antibody does not neutralize DNA polymerase alpha activity with the activated calf thymus DNA as a template. Western immunoblotting analysis shows that the E4 antibody binds to a polypeptide of 77 kilodaltons (kDa) which is tightly associated with DNA polymerase alpha. The 77-kDa polypeptide was distinguished from the catalytic subunit (160 and 180 kDa) for DNA synthesis which was detected by another monoclonal antibody, HDR-863-A5. Furthermore, it is unlikely that the 77-kDa peptide is the primase, since we found that the E4 antibody also immunoprecipitates the mouse 7.3S DNA polymerase alpha which has no primase activity, and Western immunoblotting analysis shows that the 77-kDa polypeptide is a subunit of the 7.3S DNA polymerase alpha. Furthermore, after dissociation of the primase from mouse DNA replicase by chromatography on a hydroxyapatite column in the presence of dimethyl sulfoxide and ethylene glycol, the 77-kDa polypeptide is associated with DNA polymerase alpha, and not with the primase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
The influence of 9-beta-D-arabinofuranosyladenine (beta araAdo) and of its anomer 9-alpha-D-arabinofuranosyladenine (alpha araAdo) was studied in non-infected cells and cells infected with herpes simplex virus type 1 (HSV-1) and HSV type 2 (HSV-2). alpha AraAdo is a strong inhibitor of proliferation of non-infected cells. Multiplication of HSV-1 and HSV-2 is not affected at all by alpha araAdo, while their growth is strongly inhibited by beta araAdo. alpha AraAdo exerts no effect on the incorporation of dThd into HSV DNA, but blocks the incorporation into host cell DNA. Its anomer, beta araAdo, affects the incorporation rate of both the viral DNA system and the host cell DNA system (the latter one to a lesser extent). alpha AraAMP is incorporated into newly synthesized cellular DNA but not into HSV DNA. Enzymic studies relevant that alpha araATP has no effect on the HSV DNA polymerase system but a high inhibitory potency in the host cell DNA polymerase alpha system. The anomeric form, beta araATP, is a sensitive inhibitor of HSV DNA polymerase while the cellular DNA polymerases alpha and beta are more refractory.  相似文献   

8.
A Bolden  J Aucker    A Weissbach 《Journal of virology》1975,16(6):1584-1592
Purified nuclei, isolated from appropriately infected HeLa cells, are shown to synthesize large amounts of either herpes simplex virus (HSV) or vaccinia virus DNA in vitro. The rate of synthesis of DNA by nuclei from infected cells is up to 30 times higher than the synthesis of host DNA in vitro by nuclei isolated from uninfected HeLa cells. Thus HSV nuclei obtained from HSV-infected cells make DNA in vitro at a rate comparable to that seen in the intact, infected cell. Molecular hybridization studies showed that 80% of the DNA sequences synthesized in vitro by nuclei from herpesvirus-infected cells are herpesvirus specific. Vaccinia virus nuclei from vaccinia virus-infected cells, also produce comparable percentages of vaccinia virus-specific DNA sequences. Adenovirus nuclei from adenovirus 2-infected HeLa cells, which also synthesize viral DNA in vitro, have been included in this study. Synthesis of DNA by HSV or vaccinia virus nuclei is markedly inhibited by the corresponding viral-specific antisera. These antisera inhibit in a similar fashion the purified herpesvirus-induced or vaccinia virus-induced DNA polymerase isolated from infected cells. Phosphonoacetic acid, reported to be a specific inhibitor of herpesvirus formation and the herpesvirus-induced DNA polymerase, is equally effective as an inhibitor of HSV DNA synthesis in isolated nuclei in vitro. However, we also find phosphonoacetic acid to be an effective inhibitor of vaccinia virus nuclear DNA synthesis and the purified vaccinia virus-induced DNA polymerase. In addition, this compound shows significant inhibition of DNA synthesis in isolated nuclei obtained from adenovirus-infected or uninfected cells and is a potent inhibitor of HeLa cell DNA polymerase alpha.  相似文献   

9.
The baculovirus replication factors LEF-1 and LEF-2 of the Autographa californica multinucleocapsid nucleopolyhedrovirus were overexpressed as fusions containing a hemagglutinin (HA) epitope and a HIS(6) tag using recombinant baculoviruses. LEF-1 was purified to near homogeneity and found to have primase activity in an indirect assay employing Escherichia coli DNA polymerase I (Klenow enzyme) and poly(dT) template. The LEF-1 primase products were also directly characterized by electrophoresis in 20% polyacrylamide-8 M urea gels and agarose gels. Primer synthesis was time dependent, and products of several hundred nucleotides or more were observed from the M13 single-stranded DNA (ssDNA) template. The LEF-1 primase was absolutely dependent on divalent cations (Mg(2+)), and optimal activity was supported by 10 mM MgCl(2). An alkaline pH (8.8 to 9.4) was optimal, whereas monovalent salt (KCl) was inhibitory. Mutation of an invariant aspartic acid in a putative primase domain caused LEF-1 activity to be abolished. Upon ultracentrifugation in glycerol gradients, LEF-1 was found to have a sedimentation coefficient of 3S that is consistent with its being present as a monomer. Elution profiles of LEF-1 and LEF-2 from ssDNA-cellulose and DEAE resin suggested that LEF-2 may bind to both DNA and LEF-1.  相似文献   

10.
Properties of herpes simplex virus type 1 and type 2 DNA polymerase   总被引:25,自引:0,他引:25  
Herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2) DNA polymerases were highly purified from infected HeLa BU cells by DEAE cellulose, phosphocellulose and DNA cellulose column chromatography. DNA exonuclease activity but not endonuclease activity was found associated with both types of DNA polymerase. Both DNA polymerase activities could be activated by salt in a similar fashion with the optimal activity in the range of ionic strength between 0.22 and 0.29 alpha. At an ionic strength of 0.14, spermidine and putrescine in the concentration range (0--5 mM) studied could mimic the action of KCI in stimulating DNA polymerase activity. Spermine, in the same concentration range, had a biphasic effect. At an ionic strength of 0.29 all three polyamines were inhibitory. HSV-1 and HSV-2 DNA polymerase are similar in their column chromatographic behavior, sedimentation rate in sucrose gradient centrifugation, and activation energy, but they differ in their heat stability at 45 degrees C with the HSV-2 enzyme more stable than the HSV-1 enzyme. Kinetic behavior of both enzymes is similar, with Km values for deoxyribonucleoside triphosphates in the range of 5 . 10(-7) to 1.8 . 10(-8) M. IdUTP and dUTP served as apparent competitive inhibitors with respect to dTTP, and AraATP acted as an apparent competitive inhibitor with respect to dATP. AraATP could not replace dATP in the DNA polymerization reaction; in contrast, IdUTP could replace TTP. Phosphonoformic acid behaved as an uncompetitive inhibitor with respect to DNA. The ID(50) value estimated was foind to be dependent on the purity of the DNA polymerase used and the ionic strength of the assay condition. Each DNA-polymerase associated DNA exonuclease had the same stability at 45 degrees C as its DNA polymerase. The associated DNAase activity was inhibited by phosphonoformic acid and high ionic strength of the assay condition.  相似文献   

11.
DNA synthesis in chromatin isolated from herpes simplex virus type 1-infected HeLa cells (HSV chromatin) was examined in vitro. The HSV chromatin was found to carry out an initial limited synthesis of DNA in vitro, 50 to 64 pmol of dTMP incorporated in 10(6) nuclei per 10 min, which is comparable to that found in nuclei isolated from HSV-infected cells. DNA synthesis in vitro proceeded for only 30 min, and both HSV DNA and host DNA were synthesized in significant amounts. The HSV and host DNA synthesis in isolated chromatin were inhibited to the same extent by anti-HSV antiserum or by phosphonoacetic acid. The results indicate that the HSV-induced DNA polymerase is most likely involved in the synthesis of host and HSV DNA in isolated chromatin, even though this chromatin contains small amounts of the host gamma-polymerase in addition to the HSV-induced DNA polymerase. The HSV chromatin contains no detectable levels of DNA polymerases alpha and beta, even though infected cells have normal, or increased, levels of these enzymes.  相似文献   

12.
DNA primase has been partially purified from wheat germ. This enzyme, like DNA primases characterized from many procaryotic and eucaryotic sources, catalyses the synthesis of primers involved in DNA replication. However, the wheat enzyme differs from animal DNA primase in that it is found partially associated with a DNA polymerase which differs greatly from DNA polymerase alpha. Moreover, the only wheat DNA polymerase able to initiate on a natural or synthetic RNA primer is DNA polymerase A. In this report we describe in greater detail the chromatographic behaviour of wheat DNA primase and its copurification with DNA polymerase A. Some biochemical properties of wheat DNA primase such as pH optimum, Mn + 2 or Mg + 2 optima, and temperature optimum have been determined. The enzyme is strongly inhibited by KCI, cordycepine triphosphate and dATP, and to a lesser extent by cAMP and formycine triphosphate. The primase product reaction is resistant to DNAse digestion and sensitive to RNAse digestion. Primase catalyses primer synthesis on M13 ssDNA as template allowing E.coli DNA polymerase I to replicate the primed M13 single-stranded DNA leading to double-stranded M13 DNA (RF). M13 replication experiments were performed with wheat DNA polymerases A, B, CI and CII purified in our laboratory. Only DNA polymerase A is able to recognize RNA-primed M13 ssDNA.  相似文献   

13.
Transformation of mouse cells (Ltk(-)) and human cells (HeLa Bu) from a thymidine kinase (TK)-minus to a TK(+) phenotype (herpes simplex virus [HSV]-transformed cells) has been induced by infection with ultraviolet-irradiated HSV type 2 (HSV-2), as well as by HSV type 1 (HSV-1). Medium containing methotrexate, thymidine, adenine, guanosine, and glycine was used to select for cells able to utilize exogenous thymidine. We have determined the kinetics of thermal inactivation of TK from cells lytically infected with HSV-1 or HSV-2 and from HSV-1- and HSV-2-transformed cells. Three hours of incubation at 41 C produces a 20-fold decrease in the TK activity of cell extracts from HSV-2-transformed cells and Ltk(-) cells lytically infected with HSV-2. The same conditions produce only a twofold decrease in the TK activities from HSV-1-transformed cells and cells lytically infected with HSV-1. This finding supports the hypothesis that an HSV structural gene coding for TK has been incorporated in the HSV-transformed cells.  相似文献   

14.
We have purified DNA polymerase alpha from a temperature-sensitive mutant cell line of mouse FM3A cells, tsFT20, that shows temperature-sensitive activity of DNA polymerase alpha (Murakami, Y., Yasuda, H., Miyazawa, H., Hanaoka, F., and Yamada, M. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 1761-1765). The purified enzyme was composed of two polypeptides with the same apparent molecular weights as those of purified DNA polymerase alpha from the parental strain, FM3A (Mr 180,000 and 68,000). Heat inactivation experiments revealed that this purified DNA polymerase alpha from tsFT20 cells was more heat-labile than the wild-type enzyme. We have also purified primase from both ts-FT20 cells and wild-type cells. Both primase fractions consist of two polypeptides with molecular weights of 54,000 and 46,000. No difference was observed between the heat labilities of the primases from tsFT20 cells and wild-type cells. Comparisons of wild-type and mutant polymerase indicated that the temperature-sensitive mutation in DNA polymerase alpha from tsFT20 cells affect the dCTP-binding site of the enzyme. The mutation also changed the optimum pH and the optimum KCl concentration of the enzyme.  相似文献   

15.
A subset of DNA replication proteins of herpes simplex virus (HSV) comprising the single-strand DNA-binding protein, ICP8 (UL29), and the helicase-primase complex (UL5, UL8, and UL52 proteins) has previously been shown to be sufficient for the replication of adeno-associated virus (AAV). We recently demonstrated complex formation between ICP8, AAV Rep78, and the single-stranded DNA AAV genome, both in vitro and in the nuclear HSV replication domains of coinfected cells. In this study the functional role(s) of HSV helicase and primase during AAV DNA replication were analyzed. To differentiate between their necessity as structural components of the HSV replication complex or as active enzymes, point mutations within the helicase and primase catalytic domains were analyzed. In two complementary approaches the remaining HSV helper functions were either provided by infection with HSV mutants or by plasmid transfection. We show here that upon cotransfection of the minimal four HSV proteins (i.e., the four proteins constituting the minimal requirements for basal AAV replication), UL52 primase catalytic activity was not required for AAV DNA replication. In contrast, UL5 helicase activity was necessary for fully efficient replication. Confocal microscopy confirmed that all mutants retained the ability to support formation of ICP8-positive nuclear replication foci, to which AAV Rep78 colocalized in a manner strictly dependent on the presence of AAV single-stranded DNA (ssDNA). The data indicate that recruitment of AAV Rep78 and ssDNA to nuclear replication sites by the four HSV helper proteins is maintained in the absence of catalytic primase or helicase activities and suggest an involvement of the HSV UL5 helicase activity during AAV DNA replication.  相似文献   

16.
17.
Herpes simplex virus induces the replication of foreign DNA.   总被引:4,自引:0,他引:4       下载免费PDF全文
Plasmids containing the simian virus 40 (SV40) DNA replication origin and the large T gene are replicated efficiently in Vero monkey cells but not in rabbit skin cells. Efficient replication of the plasmids was observed in rabbit skin cells infected with herpes simplex virus type 1 (HSV-1) and HSV-2. The HSV-induced replication required the large T antigen and the SV40 replication origin. However, it produced concatemeric molecules resembling replicative intermediates of HSV DNA and was sensitive to phosphonoacetate at concentrations known to inhibit the HSV DNA polymerase. Therefore, it involved the HSV DNA polymerase itself or a viral gene product(s) which was expressed following the replication of HSV DNA. Analyses of test plasmids lacking SV40 or HSV DNA sequences showed that, under some conditions, HSV also induced low-level replication of test plasmids containing no known eucaryotic replication origins. Together, these results show that HSV induces a DNA replicative activity which amplifies foreign DNA. The relevance of these findings to the putative transforming potential of HSV is discussed.  相似文献   

18.
Herpes simplex virus type 1 (HSV-1) encodes a heterotrimeric helicase/primase complex consisting of UL5, UL8, and UL52. UL5 contains conserved helicase motifs, while UL52 contains conserved primase motifs, including a zinc finger motif. Although HSV-1 and HSV-2 UL52s contain a leucine residue at position 986, most other herpesvirus primase homologues contain a phenylalanine at this position. We constructed an HSV-1 UL52 L986F mutation and found that it can complement a UL52 null virus more efficiently than the wild type (WT). We thus predicted that the UL5/8/52 complex containing the L986F mutation might possess increased primase activity; however, it exhibited only 25% of the WT level of primase activity. Interestingly, the mutant complex displayed elevated levels of DNA binding and single-stranded DNA-dependent ATPase and helicase activities. This result confirms a complex interdependence between the helicase and primase subunits. We previously showed that primase-defective mutants failed to recruit the polymerase catalytic subunit UL30 to prereplicative sites, suggesting that an active primase, or primer synthesis, is required for polymerase recruitment. Although L986F exhibits decreased primase activity, it can support efficient replication and recruit UL30 efficiently to replication compartments, indicating that a partially active primase is capable of recruiting polymerase. Extraction with detergents prior to fixation can extract nucleosolic proteins but not proteins bound to chromatin or the nuclear matrix. We showed that UL30 was extracted from replication compartments while UL42 remained bound, suggesting that UL30 may be tethered to the replication fork by protein-protein interactions.  相似文献   

19.
T F Ho  J S Gupta  E A Faust 《Biochemistry》1989,28(11):4622-4628
Two species of DNA polymerase alpha free of primase activity were identified in extracts of Ehrlich mouse cells that had been infected with minute virus of mice. Primase-free forms of DNA polymerase alpha eluted with 150 and 180 mM NaCl during ion-exchange chromatography on DEAE-cellulose columns, exhibited sedimentation coefficients of 11 S and 8.2 S, respectively, and were inhibited by aphidicolin, N2-(p-n-butylphenyl)-9-(2-deoxy-beta-D-ribofuranosyl)guanine 5'-triphosphate, and 2-(p-n-butylanilino)-9-(2-deoxy-beta-D-ribofuranosyl)adenine 5'-triphosphate. The ratio of primase-free DNA polymerase alpha to the DNA polymerase alpha-primase complex increased from 1.5 to greater than 100 during the course of infection, and free primase was produced during the MVM replicative cycle.  相似文献   

20.
A partially purified primase-polymerase complex from the yeast, Saccharomyces cerevisiae, was capable of replicating a single stranded circular phage DNA into a replicative form with high efficiency. The primase-polymerase complex exhibited primase activity and polymerase activity on singly primed circular ssDNA as well as on gapped DNA. In addition, it was able to replicate an unprimed, single-stranded, circular phage DNA through a coupled primase-polymerase action. On Biogel A-O.5m filtration the primase-polymerase activities appeared in the void volume, demonstrating a mass of greater than 500 kilodaltons. Primase and various primase-polymerase complexes synthesized unique primers on single stranded DNA templates and the size distribution of primers was dependent on the structure of the DNA and the nature of the primase-polymerase assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号