首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent studies have shown that cytoplasmic proteins are exported efficiently in Escherichia coli only if they are attached to signal peptides that are recognized by the signal recognition particle and are thereby targeted to the SecYEG complex cotranslationally. The evidence suggests that the entry of these proteins into the secretory pathway at an early stage of translation is necessary to prevent them from folding into a translocation-incompetent conformation. We found, however, that several glycolytic enzymes attached to signal peptides that are recognized by the signal recognition particle were exported inefficiently. Based on previous studies of post-translational export, we hypothesized that the export block was due to the presence of basic residues at the extreme N terminus of each enzyme. Consistent with our hypothesis, we found that the introduction of negatively charged residues into this segment increased the efficiency of export. Export efficiency was sensitive to the number, position, and sequence context of charged residues. The importance of charge for efficient export was underscored by an in silico analysis that revealed a conserved negative charge bias at the N terminus of the mature region of bacterial presecretory proteins. Our results demonstrate that cotranslational targeting of a protein to the E. coli SecYEG complex does not ensure its export but that export also depends on a subsequent event (most likely the initiation of translocation) that involves sequences both within and just beyond the signal peptide.Since the “signal hypothesis” was proposed over 30 years ago (1), it has become clear that signal sequences are not simply generic hydrophobic peptides that earmark proteins for secretion. In bacteria, the features of a signal peptide determine the mechanism by which a given presecretory protein is targeted to the SecYEG translocation complex in the inner membrane (IM).2 Whereas most or all signal peptides are recognized by the signal recognition particle (SRP) in mammalian cells, only a small fraction of Escherichia coli signal peptides are recognized by SRP. These signal peptides are typically extremely hydrophobic (2, 3), but SRP apparently can also recognize slightly less hydrophobic signal peptides that contain a highly basic N terminus (4). SRP recognizes signal peptides as they emerge from translating ribosomes and then targets ribosome-nascent chain complexes to the IM cotranslationally (5). The binding of SRP to its receptor (FtsY), which interacts with the SecYEG complex (6), leads to the release of the nascent chain in the immediate vicinity of the translocation machinery. By targeting nascent polypeptides to the SecYEG complex at an early stage of translation, SRP prevents its substrates from folding into a conformation that is incompatible with translocation through the narrow channel formed by the SecYEG complex (7). Because most signal peptides are not recognized by E. coli SRP, the majority of presecretory proteins are fully synthesized and targeted post-translationally to the IM. These proteins are maintained in a translocation-competent conformation by molecular chaperones such as SecB that keep them unfolded (or loosely folded) (8). Signal peptides themselves also appear to play a role in maintaining translocation competence (9, 10). After mediating the targeting reaction, signal peptides likely play a role in gating open the SecYEG complex to initiate translocation.Interestingly, although signal sequences are the most salient feature of presecretory proteins, they are neither completely necessary nor sufficient to mediate protein export in E. coli (1113). A version of alkaline phosphatase that lacks a signal peptide is still exported, albeit very inefficiently (11). The export of the leaderless protein, unlike the export of wild-type alkaline phosphatase, is strictly dependent on SecB (11). Conversely, the attachment of signal peptides to cytoplasmic proteins often does not promote their export (14). In light of evidence that folding and export are competing events, these observations led to the proposal that exported proteins tend to fold slowly (or are prevented from folding by chaperones) and therefore remain translocation-competent even without a signal peptide, whereas cytoplasmic proteins fold rapidly into a conformation that is incompatible with export. Recent studies that used thioredoxin as a model protein have validated this hypothesis. Whereas the wild-type protein attached to a typical signal peptide remained trapped in the cytoplasm, four of five slow folding mutants were exported efficiently (15). Furthermore, attachment of a signal peptide that is recognized by SRP to thioredoxin led to efficient export (16). This idea was further confirmed by a report in which various DARPins (designed ankyrin Repeat proteins) were attached to different signal peptides. Most of the DARPins were exported efficiently when they were fused to signal peptides that mediate cotranslational targeting but remained in the cytoplasm when they were attached to signal peptides that are bypassed by SRP (17).Despite these observations, there are several lines of evidence suggesting that export efficiency is not simply dictated by the ability of a protein to reach the SecYEG complex before folding into a translocation-incompetent conformation. For reasons that are unclear, some DARPins are secreted inefficiently even when they are routed into the SRP pathway (17). In addition, numerous reports have indicated that the amino acid composition of the segment of post-translationally targeted presecretory proteins that lies just beyond the signal peptide cleavage site has a dramatic effect on export efficiency. Statistical analysis has shown that the first ∼5–15 residues of the mature region of most presecretory proteins produced by Gram-negative bacteria is neutral or has a net negative charge (18). Consistent with the observed sequence bias, the presence of multiple basic residues at the N terminus of the mature region often leads to accumulation of the secretory precursor, whereas conversion of the basic residues to acidic residues restores export (1922). Because different combinations of proteins and signal peptides were used in these studies, the exact number and location of charged residues that impinge on the efficiency of export is unclear. In any case, the effect of the net charge in the region distal to the signal peptide on protein export has never been explained. Although basic residues might conceivably promote premature folding of presecretory proteins or block the cleavage of signal peptides by leader peptidase, it is also possible that they inhibit an uncharacterized post-targeting event. Even if effects on signal peptide cleavage could have been ruled out in the aforementioned studies, however, it would not have been possible to distinguish between effects on protein folding and effects on a hypothetical post-targeting step because only proteins that are targeted post-translationally were monitored.To gain further insight into the factors that govern the efficiency of protein export, we sought an explanation for the observation that the cotranslational targeting of at least some cytoplasmic proteins is insufficient to guarantee their translocation across the IM. We found that the export of several different endogenous E. coli cytoplasmic proteins required not only the attachment of a signal peptide that is recognized by SRP but also a net negative charge just past the signal peptide cleavage site. Taken together with previous results, our data show that the charge of the segment just beyond the signal peptide influences export efficiency irrespective of the mechanism by which a protein is targeted to the IM. Because proteins that are targeted cotranslationally reach the IM before they have a chance to fold, our results imply the existence of a post-targeting step (most likely the initiation of translocation) that is facilitated by acidic residues distal to the signal peptide and inhibited or delayed by basic residues. These results help to resolve a long-standing puzzle about the influence of the mature region of presecretory proteins on protein export and have significant implications for optimizing the export of cytosolic and heterologous proteins in E. coli.  相似文献   

2.
SecB is a cytosolic chaperone which facilitates the transport of a subset of proteins, including membrane proteins such as PhoE and LamB and some periplasmic proteins such as maltose-binding protein, in Escherichia coli. However, not all proteins require SecB for transport, and proteins such as ribose-binding protein are exported efficiently even in SecB-null strains. The characteristics which confer SecB dependence on some proteins but not others have not been defined. To determine the sequence characteristics that are responsible for the SecB requirement, we have inserted a systematic series of short, polymeric sequences into the SecB-independent protein alkaline phosphatase (PhoA). The extent to which these simple sequences convert alkaline phosphatase into a SecB-requiring protein was evaluated in vivo. Using this approach we have examined the roles of the polarity and charge of the sequence, as well as its location within the mature region, in conferring SecB dependence. We find that an insert with as few as 10 residues, of which 3 are basic, confers SecB dependence and that the mutant protein is efficiently exported in the presence of SecB. Remarkably, the basic motifs caused the protein to be translocated in a strict membrane potential-dependent fashion, indicating that the membrane potential is not a barrier to, but rather a requirement for, translocation of the motif. The alkaline phosphatase mutants most sensitive to the loss of SecB are those most sensitive to inhibition of SecA via azide treatment, consistent with the necessity for formation of a preprotein-SecB-SecA complex. Furthermore, the impact of the basic motif depends on location within the mature protein and parallels the accessibility of the location to the secretion apparatus.  相似文献   

3.
The net charge distribution in a region around the signal sequence cleavage site has been calculated for samples of 41 prokaryotic and 165 eukaryotic exported proteins. The results show that prokaryotic proteins in particular have a markedly higher incidence of acidic than of basic residues in this region. The possibility that a "dipolar" structure with a positive net charge difference between the N and C-terminal regions is important for signal sequence function in bacteria is suggested, and invoked to rationalize a number of known export-defective signal sequence mutations.  相似文献   

4.
R Freudl  H Schwarz  M Klose  N R Movva    U Henning 《The EMBO journal》1985,4(13A):3593-3598
Information, in addition to that provided by signal sequences, for translocation across the plasma membrane is thought to be present in exported proteins of Escherichia coli. Such information must also exist for the localization of such proteins. To determine the nature of this information, overlapping inframe deletions have been constructed in the ompA gene which codes for a 325-residue major outer membrane protein. In addition, one deletion, encoding only the NH2-terminal part of the protein up to residue 160, was prepared. The location of each product was determined by immunoelectron microscopy. Proteins missing residues 4-45, 43-84, 46-227, 86-227 or 160-325 of the mature protein were all efficiently translocated across the plasma membrane. The first two proteins were found in the outer membrane, the others in the periplasmic space. It has been proposed that export and sorting signals consist of relatively small amino acid sequences near the NH2 terminus of an outer membrane protein. On the basis of sequence homologies it has also been suggested that such proteins possess a common sorting signal. The locations of the partially deleted proteins described here show that a unique export signal does not exist in the OmpA protein. The proposed common sorting signal spans residues 1-14 of OmpA. Since this region is not essential for routing the protein, the existence of a common sorting signal is doubtful. It is suggested that information both for export (if existent) and localization lies within protein conformation which for the former process should be present repeatedly in the polypeptide.  相似文献   

5.
Positively charged amino acids are known efficiently to block protein secretion in Escherichia coli, when placed within a short distance downstream of a signal sequence. It is not known whether the same applies to protein secretion in eukaryotic cells, though statistical studies of signal sequences of prokaryotic and eukaryotic secretory proteins have suggested that the situation may be different in this case. Here, we show that identical charge mutations in a model protein have different effects on membrane translocation in E. coli and in mammalian microsomes, and that the ‘charge block’ effect is much more pronounced in the prokaryotic system. This finding has implications not only for our understanding of the mechanisms of protein secretion, but also points to a potential problem in the expression of eukaryotic secretory proteins in bacteria.  相似文献   

6.
Signal sequences play a central role in the initial membrane translocation of secretory proteins. Their functions depend on factors such as hydrophobicity and conformation of the signal sequences themselves. However, some characteristics of mature proteins, especially those of the N-terminal region, might also affect the function of the signal sequences. To examine this possibility, several mutants of human lysozyme modified in the N-terminal region of the mature protein were constructed, and their secretion in yeast as well as in vitro translocation into canine pancreatic microsomes were analyzed using an idealized signal sequence L8 (MR(L)8PLAALG). Our results show the following. (1) Change in the charge at the N-terminal residue of the mature protein does not affect secretion drastically. (2) Substitution of a proline residue at the N terminus prevents cleavage of the signal sequence, although translocation itself is not impaired. (3) Excessive positive charges in the N-terminal region delay translocation of the precursor protein across the membrane. (4) Polar and negatively charged residues introduced into the N-terminal region affect the secretion of the mature protein by preventing its correct folding.  相似文献   

7.
Export of N-terminal tails of mitochondrial inner membrane proteins from the mitochondrial matrix is a membrane potential-dependent process, mediated by the Oxa1p translocation machinery. The hydrophilic segments of these membrane proteins, which undergo export, display a characteristic charge profile where intermembrane space-localized segments bear a net negative charge, whereas those remaining in the matrix have a net positive one. Using a model protein, preSu9(1-112)-dihydrofolate reductase (DHFR), which undergoes Oxa1p-mediated N-tail export, we demonstrate here that the net charge of N- and C-flanking regions of the transmembrane domain play a critical role in determining the orientation of the insertion process. The N-tail must bear a net negative charge to be exported to the intermembrane space. Furthermore, a net positive charge of the C-terminal region supports this N-tail export event. These data provide experimental evidence that protein export in mitochondria adheres to the "positive-inside" rule, described for sec-independent sorting of membrane proteins in prokaryotes. We propose here that the importance of a charge profile reflects a need for specific protein-protein interactions to occur in the export reaction, presumably at the level of the Oxa1p export machinery.  相似文献   

8.
The periplasmic, NADP-containing glucose-fructose oxidoreductase of the gram-negative bacterium Zymomonas mobilis belongs to a class of redox cofactor-dependent enzymes which are exported with the aid of a signal peptide containing a so-called twin-arginine motif. In this paper we show that the replacement of one or both arginine residues results in drastically reduced translocation of glucose-fructose oxidoreductase to the periplasm, showing that this motif is essential. Mutant proteins which, in contrast to wild-type glucose-fructose oxidoreductase, bind NADP in a looser and dissociable manner, were severely affected in the kinetics of plasma membrane translocation. These results strongly suggest that the translocation of glucose-fructose oxidoreductase into the periplasm uses a Sec-independent apparatus which recognizes, as an additional signal, a conformational change in the structure of the protein, most likely triggered by cofactor binding. Furthermore, these results suggest that glucose-fructose oxidoreductase is exported in a folded form. A glucose-fructose oxidoreductase:beta-galactosidase fusion protein is not lethal to Z. mobilis cells and leads to the accumulation of the cytosolic preform of wild-type glucose-fructose oxidoreductase expressed in trans but not of a typical Sec-substrate (OmpA), indicating that the glucose-fructose oxidoreductase translocation apparatus can be blocked without interfering with the export of essential proteins via the Sec pathway.  相似文献   

9.
Summary Export of the outer membrane protein, OmpA, across the cytoplasmic membrane of Escherichia coli was severely inhibited by the presence of two, three, four or six additional basic residues at the N-terminus of the mature polypeptide, but not by three similarily positioned acidic residues. Because a few bacterial proteins do possess basic residues close to the leader peptidase cleavage site and because the type of inhibition described here could pose problems in the construction of hybrid secretory proteins, we also studied means of alleviating this form of export incompatibility. Inhibition was abolished when basic residues were preceded by acidic ones. Also, the processing rates of the mutants with two or six basic residues could be partially restored by increasing the length of the hydrophobic core of the signal peptide. Taking this as a precedent, it is suggested that the structure of the signal peptide is an important feature for maintenance of a reasonable rate of translocation of those exported proteins which possess basic residue(s) at the N-terminus of the mature polypeptide.  相似文献   

10.
The mechanisms of protein secretion by pathogenic bacteria remain poorly understood. In gram-negative bacteria, the two-partner secretion pathway exports large, mostly virulence-related "TpsA" proteins across the outer membrane via their dedicated "TpsB" transporters. TpsB transporters belong to the ubiquitous Omp85 superfamily, whose members are involved in protein translocation across, or integration into, cellular membranes. The filamentous hemagglutinin/FhaC pair of Bordetella pertussis is a model two-partner secretion system. We have reconstituted the TpsB transporter FhaC into proteoliposomes and demonstrate that FhaC is the sole outer membrane protein required for translocation of its cognate TpsA protein. This is the first in vitro system for analyzing protein secretion across the outer membrane of gram-negative bacteria. Our data also provide clear evidence for the protein translocation function of Omp85 transporters.  相似文献   

11.
The tetracycline resistance proteins (TetA) of gram-negative bacteria are secondary active transport proteins that contain buried charged amino acids that are important for tetracycline transport. Earlier studies have shown that insertion of TetA proteins into the cytoplasmic membrane is mediated by helical hairpin pairs of transmembrane (TM) segments. However, whether helical hairpins direct spontaneous insertion of TetA or are required instead for its interaction with the cellular secretion (Sec) machinery is unknown. To gain insight into how TetA proteins are inserted into the membrane, we have investigated how tolerant the class C TetA protein encoded by plasmid pBR322 is to placement of charged residues in TM segments. The results show that the great majority of charge substitutions do not interfere with insertion even when placed at locations that cannot be shielded internally within helical hairpins. The only mutations that frequently block insertion are proline substitutions, which may interfere with helical hairpin folding. The ability of TetA to broadly tolerate charge substitutions indicates that the Sec machinery assists in its insertion into the membrane. The results also demonstrate that it is feasible to engineer charged residues into the interior of TetA proteins for the purpose of structure-function analysis.  相似文献   

12.
The transport of proteins binding redox cofactors across a biological membrane is complicated by the fact that insertion of the redox cofactor is often a cytoplasmic process. These cytoplasmically assembled redox proteins must thus be transported in partially or completely folded form. The need for a special transport system for redox proteins was first recognized for periplasmic hydrogenases in gram-negative bacteria. These enzymes, which catalyze the reaction H2 <--> 2H+ + 2e, are composed of a large and a small subunit. Only the small subunit has an unusually long signal sequence of 30-50 amino acid residues, characterized by a conserved motif (S/T)-R-R-x-F-L-K at the N-terminus. This sequence directs export of the large and small subunit complex to the periplasm. Sequencing of microbial genes and genomes has shown that signal sequences with this conserved motif, now referred to as twin-arginine leaders, occur ubiquitously and export different classes of redox proteins, containing iron sulfur clusters, molybdopterin cofactors, polynuclear copper sites or flavin adenine dinucleotide. Mutations in an Escherichia coli operon referred to as mtt (membrane targeting and translocation) or tat (twin arginine translocation) are pleiotropic, i.e. these prevent the expression of a variety of periplasmic oxido-reductases in functional form. The Mtt or Tat pathway is distinct from the well-known Sec pathway and occurs ubiquitously in prokaryotes. The fact that its component proteins share sequence homology with proteins of the delta pH pathway for protein transport associated with chloroplast thylakoid assembly, illustrates the universal nature of this novel protein translocation system.  相似文献   

13.
Rare codons in E. coli and S. typhimurium signal sequences   总被引:8,自引:0,他引:8  
D M Burns  I R Beacham 《FEBS letters》1985,189(2):318-324
Codon usage has been examined in the signal sequences of 27 genes encoding proteins which possess leader peptides, and are inner-membrane located or exported. The results have been compared with codon usage in the corresponding coding sequences of most of the mature proteins. A bias is observed in the usage of rare codons for two of the three hydrophobic amino acids for which there are rare codons. Since hydrophobic residues are predominant in leader peptides, we suggest that a resulting concentration of rare codons in the signal sequence may play a role (or have played a role in the evolutionary past) in the secretion process by delaying translation.  相似文献   

14.
Positively charged amino acids are known efficiently to block protein secretion in Escherichia coli, when placed within a short distance downstream of a signal sequence. It is not known whether the same applies to protein secretion in eukaryotic cells, though statistical studies of signal sequences of prokaryotic and eukaryotic secretory proteins have suggested that the situation may be different in this case. Here, we show that identical charge mutations in a model protein have different effects on membrane translocation in E. coli and in mammalian microsomes, and that the charge block effect is much more pronounced in the prokaryotic system. This finding has implications not only for our understanding of the mechanisms of protein secretion, but also points to a potential problem in the expression of eukaryotic secretory proteins in bacteria.  相似文献   

15.
During the evolution of mitochondria from free-living alpha-proteobacteria, many bacterial genes were transferred into the nuclear genome of eukaryotic cells. This required the development of both targeting signals on the respective polypeptides and protein translocation machineries (translocases) in the mitochondrial membranes. Most components of these translocases have no obvious homologies to bacterial proteins or proteins found in other organelles. Membrane integration of many inner membrane proteins, however, apparently occurs via a conserved sorting pathway whose components and characteristics resemble protein translocation in bacteria. Consistent with this, the topogenic signals of these mitochondrial inner membrane proteins mimic those of bacterial proteins. The requirement for post-translational transport to their final destination has placed considerable constraints on the evolution of mitochondrial protein sequences.  相似文献   

16.
The membrane insertion of the Sec-independent M13 Procoat protein in bacteria requires the membrane electrochemical potential and the integral membrane protein YidC. We show here that YidC is involved in the translocation but not in the targeting of the Procoat protein, because we found the protein was partitioned into the membrane in the absence of YidC. YidC can function also to promote membrane insertion of Procoat mutants that insert independently of the membrane potential, proving that the effect of YidC depletion is not due to a dissipation of the membrane potential. We also found that YidC is absolutely required for Sec-dependent translocation of a long periplasmic loop of a mutant Procoat in which the periplasmic region has been extended from 20 to 194 residues. Furthermore, when Sec-dependent membrane proteins with large periplasmic domains were overproduced under YidC-limited conditions, we found that the exported proteins pro-OmpA and pre-peptidoglycan-associated lipoprotein accumulated in the cytoplasm. This suggests for Sec-dependent proteins that YidC functions at a late stage in membrane insertion, after the Sec translocase interacts with the translocating membrane protein. These studies are consistent with the understanding that YidC cooperates with the Sec translocase for membrane translocation and that YidC is required for clearing the protein-conducting channel.  相似文献   

17.
Two related mammalian proteins, bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP), share high-affinity binding to lipopolysaccharide (LPS), a glycolipid found in the outer membrane of gram-negative bacteria. The recently determined crystal structure of human BPI permits a structure/function analysis, presented here, of the conserved regions of these two proteins sequences. In the seven known sequences of BPI and LBP, 102 residues are completely conserved and may be classified in terms of location, side-chain chemistry, and interactions with other residues. We find that the most highly conserved regions lie at the interfaces between the tertiary structural elements that help create two apolar lipid-binding pockets. Most of the conserved polar and charged residues appear to be involved in inter-residue interactions such as H-bonding. However, in both BPI and LBP a subset of conserved residues with positive charge (lysines 42, 48, 92, 95, and 99 of BPI) have no apparent structural role. These residues cluster at the tip of the NH2-terminal domain, and several coincide with residues known to affect LPS binding; thus, it seems likely that these residues make electrostatic interactions with negatively charged groups of LPS. Overall differences in charge and electrostatic potential between BPI and LBP suggest that BPI''s bactericidal activity is related to the high positive charge of its NH2-terminal domain. A model of human LBP derived from the BPI structure provides a rational basis for future experiments, such as site-directed mutagenesis and inhibitor design.  相似文献   

18.
A cDNA encoding the precursor of the bovine mitochondrial phosphate carrier protein has been cloned from a bovine cDNA library using a mixture of 128 different 17-mer oligonucleotides as hybridisation probe. The protein has an N-terminal extension of 49 amino acids not present in the mature protein. This extension has a net positive charge and is presumed to direct the import of the protein from the cytoplasm to the mitochondrion. Comparison of the protein sequence of the mature phosphate carrier with itself, with ADP/ATP translocase and with the uncoupling protein from brown fat mitochondria shows that all three proteins contain a 3-fold repeated sequence approximately 100 amino acids in length, and that the repeats in the three proteins are related to each other. This implies that the three proteins have related three-dimensional structures and mechanisms and that they share a common evolutionary origin. The distribution of hydrophobic residues in the phosphate carrier protein suggests that each repeated 100 amino acid element is composed of two membrane-spanning alpha-helices linked by an extensive hydrophilic domain. This model is similar to that first proposed for the ADP/ATP translocase and later for the brown fat mitochondria uncoupling protein.  相似文献   

19.
B Wieseler  E Schiltz  M Müller 《FEBS letters》1992,298(2-3):273-276
In Gram-negative bacteria, exported proteins are synthesized with an amino-terminal signal sequence which is cleaved off by the signal peptidase during, or shortly after the translocation process. Here, we report the identification and solubilization of a signal peptidase from the phototrophic bacterium Rhodobacter capsulatus which cleaves homologous and heterologous precursor proteins at the authentic cleavage site. This signal peptidase is the first identified component of the R. capsulatus protein export machinery.  相似文献   

20.
Plant defensins are small and basic antimicrobial peptides characterized by conserved cysteine stabilizing structure with α-helix and triple strand antiparallel β-sheet. In the present study, two novel defensin genes, designated as BhDef1 and BhDef2, was isolated from Brassica hybrid cv Pule, a native unexplored Brassicaceae species found in Thailand. The full-length cDNA of BhDef1 and BhDef2 were 240 and 258 bp encoding a 79 and 85 amino acid residues with 29 and 25 amino acid signal peptide at N-terminal, respectively. The putative BhDef1 and BhDef2 mature proteins showed significant similarity to other Brassicaceae defensins. Their secondary structure comprises of one α-helix and a triple stranded β-sheet stabilized by four disulphide bridges of eight cysteines. BhDef1 and BhDef2 also contain a highly conserved γ-core and α-core motif exhibiting antifungal activity against Colletotrichum gloeosporioides causing anthracnose disease. Six out of eight synthetic BhDef peptide derivatives showed antibacterial activity against both gram-positive bacteria and gram-negative bacteria used in this study. BhDef14, the derivative of BhDef1, showed the highest activity against two test pathogenic bacteria. This activity could probably due to a net positively charge and alpha-helical conformation which are known as the key determinant for the bacterial membrane disruption. To our knowledge, this is the first report on defensin genes isolated from B. hybrid cv Pule. The synthetic peptides designed from their sequences showed antifungal and antibacterial activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号