首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Transforming growth factor beta (TGF-β) stimulates protein complex formation on a TGF-β response element (TAE) found in the distal portion (−1624) of the collagen alpha 1(I) promoter. To identify the fibroblast proteins in this complex, an expression library constructed from human embryonic lung fibroblasts mRNA was screened using a tetramer of TAE. Y-box binding protein (YB-1), was identified as a protein in the TAE–protein complex. The protein expressed by phage clones formed a specific complex with labeled TAE but not mutated TAE (mTAE) similar to the complex formed with nuclear protein. Nuclear protein–TAE complexes isolated from native gels contained YB-1 by Western analysis. TGF-β treatment increased the amount of YB-1 protein in nuclear extracts, decreased its amount in cytoplasm, but did not alter the steady state levels of YB-1 mRNA. A full-length YB-1 protein expressed in human lung fibroblasts was primarily located in the nucleus with punctate staining in cytoplasmic regions. The expression of YB-1 decreased in the cytoplasm after 2 h of TGF-β treatment. Therefore, the increased binding activity seen in TGF-β-stimulated nuclear extracts was due primarily to relocalization of YB-1 from the cytoplasm to the nuclear compartment. Co-transfection of YB-1 cDNA with a collagen promoter–reporter construct caused a dose-dependent activation of collagen promoter activity in rat fibroblasts whereas the promoter with a mutation in the TAE element was not sensitive to YB-1 co-expression. In conclusion, we have identified YB-1 as a protein that interacts with a TGF-β response element in the distal region of the collagen alpha 1(I) gene. YB-1 protein activates the collagen promoter and translocates into the nucleus during TGF-β addition to fibroblasts, suggesting a role for this protein in TGF-β signaling.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
L D Kerr  D B Miller  L M Matrisian 《Cell》1990,61(2):267-278
Transforming growth factor beta 1 (TGF-beta 1) inhibits the growth factor and oncogene induction of transin/stromelysin, a secreted matrix-degrading metalloprotease. We demonstrate that a 10 bp element in the transin promoter is required for the TGF-beta 1 inhibitory effects and that this sequence is conserved in the promoter regions of several other TGF-beta 1-inhibited genes. The TGF-beta 1 inhibitory element (TIE) specifically binds a nuclear protein complex from TGF-beta 1-stimulated rat fibroblasts. Interestingly, this complex contained the c-fos proto-oncogene product, Fos, and induction of Fos expression was required for the inhibitory effect of TGF-beta 1 on transin gene expression. These results suggest that TGF-beta 1 inhibition of gene expression is mediated by the binding of a Fos-containing protein complex to the TIE promoter sequences.  相似文献   

11.
12.
13.
14.
The constitutive secretion of latent TGF-beta by many cell types in culture suggests that extracellular mechanisms to control the activity of this potent cytokine are important in the pathogenesis of the diseases in which this cytokine may be involved, including fibrotic disorders. In this study, we focused on the alpha(v)beta3 integrin, which is recently demonstrated to function as an active receptor for latent TGF-beta1 through its interaction with latency-associated peptide-beta1, and investigated the involvement of this integrin in the pathogenesis of scleroderma. Scleroderma fibroblasts exhibited increased alpha(v)beta3 expression compared with normal fibroblasts in vivo and in vitro. In scleroderma fibroblasts, ERK pathway was constitutively activated and such abnormality induced the up-regulation of alpha(v)beta3. Transient overexpression of alpha(v)beta3 in normal fibroblasts induced the increase in the promoter activity of human alpha2(I) collagen gene and the decrease in that of human MMP-1 gene. These effects of alpha(v)beta3 were almost completely abolished by the treatment with anti-TGF-beta Ab or TGF-beta1 antisense oligonucleotide. Furthermore, the addition of anti-alpha(v)beta3) Ab reversed the expression of type I procollagen protein and MMP-1 protein, the promoter activity of human alpha2(I) collagen gene, and the myofibroblastic phenotype in scleroderma fibroblasts. These results suggest that the up-regulated expression of alpha(v)beta3 contributes to the establishment of autocrine TGF-beta loop in scleroderma fibroblasts, and this integrin is a potent target for the treatment of scleroderma.  相似文献   

15.
We have identified two distinct sequence elements in the mouse alpha 1(III) collagen promoter which are protected from DNase I digestion by the binding of factors present in crude nuclear extracts of NIH 3T3 fibroblasts. Small substitution mutations were introduced into these promoter elements and shown by the gel retardation (gel mobility shift) and DNase I protection assays to decrease or eliminate factor binding to the mutated element but not to the remaining wild-type element, indicating that two distinct factors recognize these separate promoter regions. Region A appears to bind a factor related to the Jun/AP-1 protein, whereas the factor binding to region B remains as yet unidentified. Mutagenesis of either region decreased the activity of the alpha 1(III) collagen promoter in DNA transfection assays by about 3-fold for the A region (located between - 122 and - 106) and about 5-fold for the B region (located between -83 and -61). These results indicate that regions A and B in the mouse alpha 1(III) collagen promoter are positive cis-regulatory elements, independently binding two distinct trans-activating factors.  相似文献   

16.
17.
A positive cis-acting element, the B element, located between -83 and -61 in the mouse alpha 1(III) collagen promoter, binds a factor present in nuclear extracts of NIH 3T3 fibroblasts and HeLa cells. We have purified this factor using ion exchange chromatography, sequence-specific DNA affinity chromatography, and sodium dodecyl sulfate-polyacrylamide gel fractionation. The DNA sequence used for the affinity chromatography was a single-base substitution in the B element that increased the stability of the B element-protein complex by 50%. Purification of the B element-binding factor (BBF) by DNA affinity chromatography resulted in the apparent loss of most or all of the DNA-binding activity of this factor. The DNA-binding activity could, however, be reconstituted by combining two chromatographic fractions: the high-salt eluate and the column flow-through. When the partially purified high-salt eluate was size-fractionated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis with subsequent renaturation of gel fractions from guanidine HCl, the purified BBF (apparent molecular weight of about 95,000) bound to the B element with high affinity. These results suggest that during DNA affinity purification of BBF a factor that inhibits BBF DNA binding was co-eluted with BBF. This inhibition of BBF DNA binding was reversed by the addition of the DNA affinity column flow-through. The binding of BBF to the B element of the mouse alpha 1(III) collagen promoter is therefore an apparently complex process involving interactions between BBF and other protein factors.  相似文献   

18.
19.
20.
Acetaldehyde was previously shown to activate the alpha1(I) and alpha2(I) collagen promoters and to increase collagen production in activated stellate cells. Also, CCAAT/enhancer binding protein beta (C/EBPbeta) binds and activates the mouse alpha1(I) collagen promoter. This study investigates the role of C/EBPbeta in mediating the activation of the alpha1(I) collagen promoter by acetaldehyde. Nuclear extracts isolated from cultured activated rat hepatic stellate cells formed four protein-DNA complexes on electrophoretic mobility shift assay with an oligonucleotide including the C/EBP binding site between -365 and -335 in the alpha1(I) collagen promoter. The four complexes were identified to represent C/EBPbeta binding to the oligonucleotide by supershift with C/EBPbeta antibody. The principal C/EBP isoform found in the nuclear extracts from stellate cells was C/EBPbeta, with very low amounts of C/EBPalpha detected. Acetaldehyde (200 microM) increased C/EBPbeta protein in stellate nuclear extracts, increased its binding to the promoter, and activated the alpha1(I) collagen promoter in transfected stellate cells. Mutation of the C/EBPbeta binding site markedly decreased nuclear protein binding. A transfected promoter, mutated at the C/EBP binding site, had decreased basal activity, was not activated by acetaldehyde, and was not activated when cotransfected with a C/EBPbeta expression vector. This study shows that C/EBPbeta is the predominant C/EBP isoform found in activated stellate cells and that increased C/EBPbeta protein and C/EBPbeta binding to a proximal C/EBP binding site in the promoter mediates the activating effect of acetaldehyde.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号