首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In uncoupled pig-heart mitochondria the rate of the reduction of duroquinone by succinate in the presence of cyanide is inhibited by about 50% by antimycin. This inhibition approaches completion when myxothiazol is also added or British anti-Lewisite-treated (BAL-treated) mitochondria are used. If mitochondria are replaced by isolated succinate:cytochrome c oxidoreductase, the inhibition by antimycin alone is complete. The reduction of a plastoquinone homologue with an isoprenoid side chain (plastoquinone-2) is strongly inhibited by antimycin with either mitochondria or succinate:cytochrome c reductase. The reduction by succinate of plastoquinone analogues with an n-alkyl side chain in the presence of mitochondria is inhibited neither by antimycin nor by myxothiazol, but is sensitive to the combined use of these two inhibitors. On the other hand, the reduction of the ubiquinone homologues Q2, Q4, Q6 and Q10 and an analogue, 2,3-dimethoxyl-5-n-decyl-6-methyl-1,4-benzoquinone, is not sensitive to any inhibitor of QH2:cytochrome c reductase tested or their combined use, either in normal or BAL-treated mitochondria or in isolated succinate:cytochrome c reductase. It is concluded that quinones with a ubiquinone ring can be reduced directly by succinate:Q reductase, whereas those with a plastoquinone ring can not. Reduction of the latter compounds requires participation of either center i or center o (Mitchell, P. (1975) FEBS Lett. 56, 1-6) or both, of QH2:cytochrome c oxidoreductase. It is proposed that a saturated side chain promotes, while an isoprenoid side chain prevents reduction of these compounds at center o.  相似文献   

2.
Mezzetti A  Leibl W  Breton J  Nabedryk E 《FEBS letters》2003,537(1-3):161-165
The photoreduction of the quinone (Q) pool in the photosynthetic membrane of the purple bacterium Rhodobacter sphaeroides was investigated by steady-state and time-resolved Fourier transform infrared difference spectroscopy. The results are consistent with the existence of a homogeneous Q pool inside the chromatophore membrane, with a size of around 20 Q molecules per reaction center. IR marker bands for the quinone/quinol (Q/QH(2)) redox couple were recognized. QH(2) bands are identified at 1491, 1470, 1433 and 1388-1375 cm(-1). The 1491 cm(-1) band, which is sensitive to (1)H/(2)H exchange, is assigned to a C-C ring mode coupled to a C-OH mode. A feature at approximately 1743/1720 cm(-1) is tentatively related to a perturbation of the carbonyl modes of phospholipid head groups induced by QH(2) formation. Complex conformational changes of the protein in the amide I and II spectral ranges are also apparent during reduction and reoxidation of the Q pool.  相似文献   

3.
Evidence for coenzyme Q function in transplasma membrane electron transport   总被引:2,自引:0,他引:2  
Transplasma membrane electron transport activity has been associated with stimulation of cell growth. Coenzyme Q is present in plasma membranes and because of its lipid solubility would be a logical carrier to transport electrons across the plasma membrane. Extraction of coenzyme Q from isolated rat liver plasma membranes decreases the NADH ferricyanide reductase and added coenzyme Q10 restores the activity. Piericidin and other analogs of coenzyme Q inhibit transplasma membrane electron transport as measured by ferricyanide reduction by intact cells and NADH ferricyanide reduction by isolated plasma membranes. The inhibition by the analogs is reversed by added coenzyme Q10. Thus, coenzyme Q in plasma membrane may act as a transmembrane electron carrier for the redox system which has been shown to control cell growth.  相似文献   

4.
The study objective was to use pulmonary arterial endothelial cells to examine kinetics and mechanisms contributing to the disposition of the quinone 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone, DQ) observed during passage through the pulmonary circulation. The approach was to add DQ, durohydroquinone (DQH2), or DQ with the cell membrane-impermeant oxidizing agent, ferricyanide (Fe(CN)6(3)-), to the cell medium, and to measure the medium concentrations of substrates and products over time. Studies were carried out under control conditions and with dicumarol, to inhibit NAD(P)H:quinone oxidoreductase 1 (NQO1), or cyanide, to inhibit mitochondrial electron transport. In control cells, DQH2 appears in the extracellular medium of cells incubated with DQ, and DQ appears when the cells are incubated with DQH2. Dicumarol blocked the appearance of DQH2 when DQ was added to the cell medium, and cyanide blocked the appearance of DQ when DQH2 was added to the cell medium, suggesting that the two electron reductase NQO1 dominates DQ reduction and mitochondrial electron transport complex III is the predominant route of DQH2 oxidation. In the presence of cyanide, the addition of DQ also resulted in an increased rate of appearance of DQH2 and stimulation of cyanide-insensitive oxygen consumption. As DQH2 does not autoxidize-comproportionate over the study time course, these observations suggest a cyanide-stimulated one-electron DQ reduction and durosemiquinone (DQ*-) autoxidation. The latter processes are apparently confined to the cell interior, as the cell membrane impermeant oxidant, ferricyanide, did not inhibit the DQ-stimulated cyanide-insensitive oxygen consumption. Thus, regardless of whether DQ is reduced via a one- or two-electron reduction pathway, the net effect in the extracellular medium is the appearance of DQH2. These endothelial redox functions and their apposition to the vessel lumen are consistent with the pulmonary endothelium being an important site of DQ reduction to DQH2 observed in the lungs.  相似文献   

5.
The lungs can substantially influence the redox status of redox-active plasma constituents. Our objective was to examine aspects of the kinetics and mechanisms that determine pulmonary disposition of redox-active compounds during passage through the pulmonary circulation. Experiments were carried out on rat and mouse lungs with 2,3,5,6-tetramethyl-1,4-benzoquinone [duroquinone (DQ)] as a model amphipathic quinone reductase substrate. We measured DQ and durohydroquinone (DQH2) concentrations in the lung venous effluent after injecting, or while infusing, DQ or DQH2 into the pulmonary arterial inflow. The maximum net rates of DQ reduction to DQH2 in the rat and mouse lungs were approximately 4.9 and 2.5 micromol. min(-1).g dry lung wt(-1), respectively. The net rate was apparently the result of freely permeating access of DQ and DQH2 to tissue sites of redox reactions, dominated by dicumarol-sensitive DQ reduction to DQH2 and cyanide-sensitive DQH2 reoxidation back to DQ. The dicumarol sensitivity along with immunodetectable expression of NAD(P)H-quinone oxidoreductase 1 (NQO1) in the rat lung tissue suggest cytoplasmic NQO1 as the dominant site of DQ reduction. The effect of cyanide on DQH2 oxidation suggests that the dominant site of oxidation is complex III of the mitochondrial electron transport chain. If one envisions DQ as a model compound for examining the disposition of amphipathic NQO1 substrates in the lungs, the results are consistent with a role for lung NQO1 in determining the redox status of such compounds in the circulation. For DQ, the effect is conversion of a redox-cycling, oxygen-activating quinone into a stable hydroquinone.  相似文献   

6.
Quinoprotein alcohol dehydrogenase (ADH) of acetic acid bacteria is a membrane-bound enzyme that functions as the primary dehydrogenase in the ethanol oxidase respiratory chain. It consists of three subunits and has a pyrroloquinoline quinone (PQQ) in the active site and four heme c moieties as electron transfer mediators. Of these, three heme c sites and a further site have been found to be involved in ubiquinone (Q) reduction and ubiquinol (QH2) oxidation respectively (Matsushita et al., Biochim. Biophys. Acta, 1409, 154-164 (1999)). In this study, it was found that ADH solubilized and purified with dodecyl maltoside, but not with Triton X-100, had a tightly bound Q, and thus two different ADHs, one having the tightly bound Q (Q-bound ADH) and Q-free ADH, could be obtained. The Q-binding sites of both the ADHs were characterized using specific inhibitors, a substituted phenol PC16 (a Q analog inhibitor) and antimycin A. Based on the inhibition kinetics of Q2 reductase and ubiquinol-2 (Q2H2) oxidase activities, it was suggested that there are one and two PC16-binding sites in Q-bound ADH and Q-free ADH respectively. On the other hand, with antimycin A, only one binding site was found for Q2 reductase and Q2H2 oxidase activities, irrespective of the presence of bound Q. These results suggest that ADH has a high-affinity Q binding site (QH) besides low-affinity Q reduction and QH2 oxidation sites, and that the bound Q in the QH site is involved in the electron transfer between heme c moieties and bulk Q or QH2 in the low-affinity sites.  相似文献   

7.
The cytochrome bc1 complex recycles one of the two electrons from quinol (QH2) oxidation at center P by reducing quinone (Q) at center N to semiquinone (SQ), which is bound tightly. We have analyzed the properties of SQ bound at center N of the yeast bc1 complex. The EPR-detectable signal, which reports SQ bound in the vicinity of reduced bH heme, was abolished by the center N inhibitors antimycin, funiculosin, and ilicicolin H, but was unchanged by the center P inhibitors myxothiazol and stigmatellin. After correcting for the EPR-silent SQ bound close to oxidized bH, we calculated a midpoint redox potential (Em) of approximately 90 mV for all bound SQ. Considering the Em values for bH and free Q, this result indicates that center N preferentially stabilizes SQ.bH(3+) complexes. This favors recycling of the electron coming from center P and also implies a >2.5-fold higher affinity for QH2 than for Q at center N, which would potentially inhibit bH oxidation by Q. Using pre-steady-state kinetics, we show that Q does not inhibit the initial rate of bH reduction by QH2 through center N, but does decrease the extent of reduction, indicating that Q binds only when bH is reduced, whereas QH2 binds when bH is oxidized. Kinetic modeling of these results suggests that formation of SQ at one center N in the dimer allows stabilization of SQ in the other monomer by Q reduction after intradimer electron transfer. This model allows maximum SQ.bH(3+) formation without inhibition of Q binding by QH2.  相似文献   

8.
Zhu Z  Gunner MR 《Biochemistry》2005,44(1):82-96
Proteins bind redox cofactors, modifying their electrochemistry and affinity by specific interactions of the binding site with each cofactor redox state. Photosynthetic reaction centers from Rhodobacter sphaeroides have three ubiquinone-binding sites, Q(A), and proximal and distal Q(B) sites. Ubiquinones, which can be doubly reduced and bind 2 protons, have 9 redox states. However, only Q and Q(-) are seen in the Q(A) site and Q, Q(-), and QH(2) in the proximal Q(B) site. The distal Q(B) function is uncertain. Multiple conformation continuum electrostatics (MCCE) was used to compare the ubiquinone electrochemical midpoints (E(m)) and pK(a) values at these three sites. At pH 7, the Q(A)/Q(A)(-) E(m) is -40 mV and proximal Q(B)/Q(B)(-) -10 mV in agreement with the experimental values (assuming a solution ubiquinone E(m) of -145 mV). Q(B) reduction requires changes in nearby residue protonation and SerL223 reorientation. The distal Q(B)/Q(B)(-) E(m) is a much more unfavorable -260 mV. Q(A) and proximal Q(B) sites generally stabilize species with a -1 charge, while the distal Q(B) site prefers binding neutral species. In each site, the dianion is destabilized because favorable interactions with the residues and backbone increase with charge (q), while the unfavorable loss of solvation energy increases with q(2). Therefore, proton binding before a second reduction, forming QH and then QH(-), is always preferred to forming the dianion (Q(-)(2)). The final product QH(2) is higher in energy at the proximal Q(B) site than in solution; therefore, it binds poorly, favoring release. In contrast, QH(2) binds more tightly than Q at the distal Q(B) site.  相似文献   

9.
The objective of this study was to examine the impact of chronic hyperoxic exposure (95% O2 for 48 h) on intact bovine pulmonary arterial endothelial cell redox metabolism of 2,3,5,6-tetramethyl-1,4-benzoquinone (duroquinone, DQ). DQ or durohydroquinone (DQH2) was added to normoxic or hyperoxia-exposed cells in air-saturated medium, and the medium DQ concentrations were measured over 30 min. DQ disappeared from the medium when DQ was added and appeared in the medium when DQH2 was added, such that after approximately 15 min, a steady-state DQ concentration was approached that was approximately 4.5 times lower for the hyperoxia-exposed than the normoxic cells. The rate of DQ-mediated reduction of the cell membrane-impermeant redox indicator, potassium ferricyanide [Fe(CN)6(3-)], was also approximately twofold faster for the hyperoxia-exposed cells. Inhibitor studies and mathematical modeling suggested that in both normoxic and hyperoxia-exposed cells, NAD(P)H:quinone oxidoreductase 1 (NQO1) was the dominant DQ reductase and mitochondrial electron transport complex III the dominant DQH2 oxidase involved and that the difference between the net effects of the cells on DQ redox status could be attributed primarily to a twofold increase in the maximum NQO1-mediated DQ reduction rate in the hyperoxia-exposed cells. Accordingly, NQO1 protein and total activity were higher in hyperoxia-exposed than normoxic cell cytosolic fractions. One outcome for hyperoxia-exposed cells was enhanced protection from cell-mediated DQ redox cycling. This study demonstrates that exposure to chronic hyperoxia increases the capacity of pulmonary arterial endothelial cells to reduce DQ to DQH2 via a hyperoxia-induced increase in NQO1 protein and total activity.  相似文献   

10.
Our laboratories have described a novel class of ectoproteins at the cell surface with both NADH or hydroquinone oxidase (NOX) and protein disulfide-thiol interchange activities (ECTO-NOX proteins). The two activities exhibited by these proteins alternate to generate characteristic patterns of oscillations where the period length is independent of temperature. The period length for the constitutive ECTO-NOX is 24 min. Here we describe a distinctive age-related ECTO-NOX (arNOX) whose activity is blocked by coenzyme Q10. arNOX occurs exclusively in aged cells and tissues. The period length of the oscillations is 26 min. Rather than reducing 1/2 O2 to H2O, electrons are transferred to O2 to form superoxide. Superoxide formation was demonstrated by superoxide dismutase-sensitive reduction of ferricytochrome c and by reduction of a superoxide-specific tetrazolium salt. Quinone inhibition was given by coenzymes Q8, 9 and Q10 but not by Q0, Q2, Q4, Q6 or 7. The arNOX provides a mechanism to propagate reactive oxygen species generated at the cell surface to surrounding cells and circulating lipoproteins of importance to atherogenesis. Inhibition of arNOX by dietary coenzyme Q10 provides a rational basis for dietary coenzyme 10 use to retard aging-related arterial lesions.  相似文献   

11.
Aspects of the crystal structures of the hetero-oligomeric cytochrome bc(1) and b(6)f ("bc") complexes relevant to their electron/proton transfer function and the associated redox reactions of the lipophilic quinones are discussed. Differences between the b(6)f and bc(1) complexes are emphasized. The cytochrome bc(1) and b(6)f dimeric complexes diverge in structure from a core of subunits that coordinate redox groups consisting of two bis-histidine coordinated hemes, a heme b(n) and b(p) on the electrochemically negative (n) and positive (p) sides of the complex, the high potential [2Fe-2S] cluster and c-type heme at the p-side aqueous interface and aqueous phase, respectively, and quinone/quinol binding sites on the n- and p-sides of the complex. The bc(1) and b(6)f complexes diverge in subunit composition and structure away from this core. b(6)f Also contains additional prosthetic groups including a c-type heme c(n) on the n-side, and a chlorophyll a and β-carotene. Common structure aspects; functions of the symmetric dimer. (I) Quinone exchange with the bilayer. An inter-monomer protein-free cavity of approximately 30? along the membrane normal×25? (central inter-monomer distance)×15? (depth in the center), is common to both bc(1) and b(6)f complexes, providing a niche in which the lipophilic quinone/quinol (Q/QH(2)) can be exchanged with the membrane bilayer. (II) Electron transfer. The dimeric structure and the proximity of the two hemes b(p) on the electrochemically positive side of the complex in the two monomer units allow the possibility of two alternate routes of electron transfer across the complex from heme b(p) to b(n): intra-monomer and inter-monomer involving electron cross-over between the two hemes b(p). A structure-based summary of inter-heme distances in seven bc complexes, representing mitochondrial, chromatophore, cyanobacterial, and algal sources, indicates that, based on the distance parameter, the intra-monomer pathway would be favored kinetically. (III) Separation of quinone binding sites. A consequence of the dimer structure and the position of the Q/QH(2) binding sites is that the p-side QH(2) oxidation and n-side Q reduction sites are each well separated. Therefore, in the event of an overlap in residence time by QH(2) or Q molecules at the two oxidation or reduction sites, their spatial separation would result in minimal steric interference between extended Q or QH(2) isoprenoid chains. (IV) Trans-membrane QH(2)/Q transfer. (i) n/p-side QH(2)/Q transfer may be hindered by lipid acyl chains; (ii) the shorter less hindered inter-monomer pathway across the complex would not pass through the center of the cavity, as inferred from the n-side antimycin site on one monomer and the p-side stigmatellin site on the other residing on the same surface of the complex. (V) Narrow p-side portal for QH(2)/Q passage. The [2Fe-2S] cluster that serves as oxidant, and whose histidine ligand serves as a H(+) acceptor in the oxidation of QH(2), is connected to the inter-monomer cavity by a narrow extended portal, which is also occupied in the b(6)f complex by the 20 carbon phytyl chain of the bound chlorophyll.  相似文献   

12.
The objective was to determine the impact of intact normoxic and hyperoxia-exposed (95% O(2) for 48 h) bovine pulmonary arterial endothelial cells in culture on the redox status of the coenzyme Q(10) homolog coenzyme Q(1) (CoQ(1)). When CoQ(1) (50 microM) was incubated with the cells for 30 min, its concentration in the medium decreased over time, reaching a lower level for normoxic than hyperoxia-exposed cells. The decreases in CoQ(1) concentration were associated with generation of CoQ(1) hydroquinone (CoQ(1)H(2)), wherein 3.4 times more CoQ(1)H(2) was produced in the normoxic than hyperoxia-exposed cell medium (8.2 +/- 0.3 and 2.4 +/- 0.4 microM, means +/- SE, respectively) after 30 min. The maximum CoQ(1) reduction rate for the hyperoxia-exposed cells, measured using the cell membrane-impermeant redox indicator potassium ferricyanide, was about one-half that of normoxic cells (11.4 and 24.1 nmol x min(-1) x mg(-1) cell protein, respectively). The mitochondrial electron transport complex I inhibitor rotenone decreased the CoQ(1) reduction rate by 85% in the normoxic cells and 44% in the hyperoxia-exposed cells. There was little or no inhibitory effect of NAD(P)H:quinone oxidoreductase 1 (NQO1) inhibitors on CoQ(1) reduction. Intact cell oxygen consumption rates and complex I activities in mitochondria-enriched fractions were also lower for hyperoxia-exposed than normoxic cells. The implication is that intact pulmonary endothelial cells influence the redox status of CoQ(1) via complex I-mediated reduction to CoQ(1)H(2), which appears in the extracellular medium, and that the hyperoxic exposure decreases the overall CoQ(1) reduction capacity via a depression in complex I activity.  相似文献   

13.
Our objectives were to investigate the pulmonary vascular effects of exogenously administered bradykinin at normal and reduced levels of cardiac index in intact conscious dogs and to assess the extent to which the pulmonary vascular response to bradykinin is the result of either cyclooxygenase pathway activation or reflex activation of sympathetic beta-adrenergic and -cholinergic receptors. Multipoint pulmonary vascular pressure-cardiac index (P/Q) plots were constructed during normoxia in conscious dogs by step-wise constriction of the thoracic inferior vena cava to reduce Q. In intact dogs, bradykinin (2 micrograms X kg-1 X min-1 iv) caused systemic vasodilation, i.e., systemic arterial pressure was slightly decreased (P less than 0.05), Q was markedly increased (P less than 0.01), and mixed venous PO2 and oxygen saturation (SO2) were increased (P less than 0.01). Bradykinin decreased (P less than 0.01) the pulmonary vascular pressure gradient (pulmonary arterial pressure-pulmonary capillary wedge pressure) over the entire range of Q studied (140-60 ml X min-1 X kg-1) in intact dogs. During cyclooxygenase pathway inhibition with indomethacin, bradykinin again decreased (P less than 0.05) pulmonary arterial pressure-pulmonary capillary wedge pressure at every level of Q, although the magnitude of the vasodilator response was diminished at lower levels of Q (60 ml X min-1 X kg-1). Following combined administration of sympathetic beta-adrenergic and -cholinergic receptor antagonists, bradykinin still decreased (P less than 0.01) pulmonary arterial pressure-pulmonary capillary wedge pressure over the range of Q from 160 to 60 ml X min-1 X kg-1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
MoOCl3(THF)2 (THF = tetrahydrofuran) reacts with 8-hydroxyquinoline (QH) to form [MoOCl3(QH)2], which contains neutral monodentate ligands, [MoOCl(Q)2], and anionic bidentate ligands, and the dimeric [Mo2O3(Q)4], which contains anionic bidentate ligands and both terminal and bridging oxo donors. In dichloromethane [MoOCl3(QH)2] dissolves to give three species, and epr measurements identify these as unchanged [MoOCl3(QH)2], [MoOCl(Q)2] and a third species characterised by a value of 1.979. No g value of this magnitude has previously been obtained for molybdenum(V) complexes which do not contain sulphur donors, and the significance of epr measurements as an indication of the nature of molybdenum coordination in flavoenzymes must be questioned. These complexes have also been characterised by vibrational and electronic spectral measurements.  相似文献   

15.
Ubiquinol (QH2) is a lipid-soluble molecule that participates in cellular redox reactions. Previous studies have shown that yeast mutants lacking QH2 are hypersensitive to treatment with polyunsaturated fatty acids (PUFAs) indicating that QH2 can function as an antioxidant in vivo. In this study the effect of 1 mM linolenic acid on levels of Q6 and Q6H2 is assessed in both wild-type and respiration-deficient (atp2 delta) strains. The response of Q-deficient mutants to other forms of oxidative stress is further characterized to define those conditions where QH2 acts as an antioxidant. Endogenous antioxidant defense systems were also assessed in wild-type, Q-deficient, and atp2 delta strains. Superoxide dismutase (SOD) activity decreased and catalase activity increased in both Q-deficient and atp2 delta mutants compared to wild-type cells, suggesting that such changes result from the loss of respiration rather than the lack of Q.  相似文献   

16.
Free-radical interactions between hydroquinones (QH2) and ascorbate (AscH-) have a profound impact in many biological situations. Despite the obvious biological significance, not much is known about the kinetics of reactions of QH2 and AscH- with their corresponding free radicals, i.e., semiquinones, Q1.-, and the ascorbate radical, Asc.-. Furthermore, a general approach to reliably measure rate constants for the above reactions is fraught with complications. In this work, the kinetic behavior of Q.- and Asc.-, after pulse radiolytic oxidation of mixtures of a series of alkyl- and methoxysubstituted hydroquinones and ascorbate by azide radicals in aqueous buffer, pH 7.40, was monitored in submillisecond range by time-resolved UV spectroscopy. Rate constants for reactions of Q.- with AscH-(reaction [1]) and Asc.- (reaction [2]) were directly determined by using new kinetic procedures which distinguished between reactions [1] and [2]. The results show that the rate constants for reaction [2] vary only within a narrow range from 1.2 x 10(8) to 2.5 x 10(8) M(-1) s(-1) and do not display any pronounced correlation with Q.- structures. In contrast, the value of k1 for nonsubstituted Q.- was found to be (1.8 +/- 0.2) x 10(5) M(-1) s(-1) and decreases with the number of alkyl and methoxy substituents as well as with the decrease of the one-electron reduction potential E(Q.-/QH2).  相似文献   

17.
Dimeric ubiquinol:cytochrome c reductase of Neurospora mitochondria was isolated as a protein-Triton complex and free of ubiquinol (Q). The enzyme was incorporated into phosphatidylcholine membranes together with Q. The effects of varying the molar ratio of Q to enzyme on the electron transfer from duroquinol (DHQ2) to the cytochromes c, c1 and b were studied. The rate of electron flow from DQH2 to cytochrome c was 15 times increased by Q and was maximal when one molecule of Q was bound to one enzyme dimer. The apparent Km value for DQH2 of the Q-free enzyme was 5 microM and of the Q-supplemented enzyme 25 microM. The pre-steady-state rate of electron transfer from DQH2 to cytochrome c1 was also 15 times increased by Q and was maximal with one Q molecule bound to one enzyme dimer. This effect of Q was inhibited by antimycin. The pre-steady-state rate of electron transfer from DQH2 to cytochrome b was 5 times decreased when Q was bound to the enzyme and this effect of Q was insensitive to myxothiazol. The H+/2e- stoichiometry with DQH2 as substrate of the Q-supplemented enzyme was 3.6. These results are interpreted in accordance with a Q-cycle mechanism operating in a dimeric cytochrome reductase. Each enzyme monomer catalyses a single electron transfer from the QH2-oxidation centre to the Q-reduction centre and the two monomers cooperate in the reduction of Q to QH2 at one Q-reduction centre. This centre contains two different binding sites for Q. DQH2 does not properly react at the QH2-oxidation centre. DQH2, however, binds to the loose Q-binding site of the Q-reduction centre and reduces the Q bound to the tight Q-binding site of the centre. The QH2 thus formed at the Q-reduction centre serves as electron donor for the QH2-oxidation centre.  相似文献   

18.
The technique based on monitoring oxygen consumption was applied to study 12 alkyl- and methoxy-substituted p-hydroquinones (QH(2)) as a chain-breaking antioxidant during the oxidation of styrene and methyl linoleate (ML) in bulk as well as ML oxidation in micellar solution of sodium dodecyl sulfate (SDS) at 37 degrees C. The antioxidant activities of QH(2) were characterized by two parameters: the rate constant k(1) for reaction of QH(2) with the peroxy radical LO(2)*: QH(2)+LO(2)*-->QH*+LOOH and the stoichiometric factor of inhibition, f, which shows how many kinetic chains may be terminated by one molecule of QH(2). In the case of styrene and ML oxidation in bulk, f values never exceed two; for the majority of QH(2), f was found to be significantly less than two due to the interaction of QH* with molecular oxygen. In the absence of superoxide dismutase (SOD), all the studied QH(2) displayed a very moderate if any antioxidant capability during ML oxidation in SDS micelles. When 20U/ml SOD was added, the majority of QH(2) showed a pronounced ability to inhibit ML oxidation, f parameter being ca. one. The features of QH(2) as an antioxidant in aqueous environment are suggested to associate with the reactivity of semiquinone (Q*(-)). Q*(-) reacts readily with molecular oxygen with formation of superoxide (O(2)*(-)); further reactions of O(2)*(-) result in fast depleting QH(2) and chain propagation. The addition of SOD results in purging a reaction mixture from O(2)*(-) and, as a corollary, in depressing undesirable reactions with the participation of O(2)*(-). With all the oxidation models, QH(2) were found to be very reactive to LO(2)*. The rate constants k(1) decreased progressively when going from the oxidation of styrene to ML oxidation in bulk and further to ML oxidation in SDS micelles.  相似文献   

19.
Complex I (NADH-ubiquinone oxidoreductase) can form superoxide during forward electron flow (NADH-oxidizing) or, at sufficiently high protonmotive force, during reverse electron transport from the ubiquinone (Q) pool (NAD(+)-reducing). We designed an assay system to allow titration of the redox state of the superoxide-generating site during reverse electron transport in rat skeletal muscle mitochondria: a protonmotive force generated by ATP hydrolysis, succinate:malonate to alter electron supply and modulate the redox state of the Q pool, and inhibition of complex III to prevent QH(2) oxidation via the Q cycle. Stepwise oxidation of the QH(2)/Q pool by increasing malonate concentration slowed the rates of both reverse electron transport and rotenone-sensitive superoxide production by complex I. However, the superoxide production rate was not uniquely related to the resultant potential of the NADH/NAD(+) redox couple. Thus, there is a superoxide producer during reverse electron transport at complex I that responds to Q pool redox state and is not in equilibrium with the NAD reduction state. In contrast, superoxide production during forward electron transport in the presence of rotenone was uniquely related to NAD redox state. These results support a two-site model of complex I superoxide production; one site in equilibrium with the NAD pool, presumably the flavin of the FMN moiety (site I(F)) and the other dependent not only on NAD redox state, but also on protonmotive force and the reduction state of the Q pool, presumably a semiquinone in the Q-binding site (site I(Q)).  相似文献   

20.
Systemic to pulmonary flow from bronchial circulation, important in perfusing potentially ischemic regions distal to pulmonary vascular obstructions, depends on driving pressure between an upstream site in intrathoracic systemic arterial network and pulmonary vascular bed. The reported increase of pulmonary infarctions in heart failure may be due to a reduction of this driving pressure. We measured upstream element for driving pressure for systemic to pulmonary flow from bronchial circulation by raising pulmonary venous pressure (Ppv) until the systemic to pulmonary flow from bronchial circulation ceased. We assumed that this was the same as upstream pressure when there was flow. Systemic to pulmonary flow from bronchial circulation was measured in left lower lobes (LLL) of 21 anesthetized open-chest dogs from volume of blood that overflowed from pump-perfused (90-110 ml/min) pulmonary vascular circuit of LLL and was corrected by any changes of LLL fluid volume (wt). Systemic to pulmonary flow from bronchial circulation upstream pressure was linearly related to systemic arterial pressure (slope = 0.24, R = 0.845). Increasing Ppv caused a progressive reduction of systemic to pulmonary flow from bronchial circulation, which stopped when Ppv was 44 +/- 6 cmH2O and pulmonary arterial pressure was 46 +/- 7 cmH2O. A further increase in Ppv reversed systemic to pulmonary flow from bronchial circulation with blood flowing back into the dog. When net systemic to pulmonary flow from bronchial circulation by the overflow and weight change technique was zero a small bidirectional flow (3.7 +/- 2.9 ml.min-1 X 100 g dry lobe wt-1) was detected by dispersion of tagged red blood cells that had been injected.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号