首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Syntheses of 2-Se-(1,2,3,4-tetra-O-acetyl-β-D-glucopyranosyl)-3-N,N-dimethyl-selenopseudourea hydroiodide (3), 1,2,3,4-tetra-O-acetyl-6-S-dimethylarsino-6-thio-β-D-glucopyranose (4), 1,2,3,4-tetra-O-acetyl-6-Se-dimethylarsino-6-seleno-β-D-glucopyranose (7), 6-S-dimethylarsino-6-thio-β-D-glucopyranose (5), and 6-Se-dimethylarsino-6-seleno-β-D-glucopyranose (9) are described. Various spectral properties of the compounds are given. The relative rates of alkaline hydrolysis of 5 and 9 are compared.  相似文献   

2.
The syntheses of 1,2:3,4-di-O-isopropylidene-6-S-dimethylarsino-6-thio-α-D-galactopyranose (2), methyl 6-S-dimethylarsino-6-thio-D-galactopyranoside (3), and 1,2:3,4-di-O-isopropylidene-6-Se-dimethylarsino-6-seleno-α-D-galactopyranose (8) are reported. The attempted preparation of 6-Se-dimethylarsino-6-seleno-D-galactopyranose (9) is also discussed. The n.m.r. spectra of these compounds are unexceptional, except for the slight downfield shift of the arsenic methyl resonances for the selenium compound as compared to the sulfur compound, confirming previous observations. The mass spectra of these compounds showed molecular ions for 2, 3, and 8. The u.v. spectra of the X-As (X = S, Se) chromophore are discussed in terms of a simplified MO model. 1,2:3,4-Di-O-isopropylidene-6-S-dimethylarsino-6-thio-α-D-galactopyranose (2) showed carcinostatic activity in the P388 system (mouse lymphocytic leukemia).  相似文献   

3.
Reaction of 2,3-di-O-acetyl-1,6-anhydro-β-D-galactopyranose (2) with 2,3,4,6-tetra- O-acetyl-α-D-galactopyranosyl bromide in the presence of mercuric cyanide and subsequent acetolysis gave 1,2,3,6-tetra-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl)-α-D-galactopyranose (4, 40%) and 1,2,3,6-tetra-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-α-D-galactopyranose (5, 30%). Similarly, reaction of 2,4-di-O-acetyl-1,6-anhydro-β-D-galactopyranose (3) gave 1,2,4,6-tetra-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl)-α-D-galactopyranose (6, 46%) and 1,2,4,6-tetra-O-acetyl-3-O-(2,3,4,6-tetra-O-acetyl-β-D-galactopyranosyl)-α-D-galactopyranose (7, 14%). The anomeric configurations of 4-7 were assigned by n.m.r. spectroscopy. Deacetylation of 4-7 afforded 4-O-α-D-galactopyranosyl-D-galactose (8), 4-O-β-D-galactopyranosyl-D-galactose (9), 3-O-α-D-galactopyranosyl-D-galactose (10), and 3-O-β-D-galactopyranosyl-D-galactose (11), respectively.  相似文献   

4.
2-(6-Aminohexanamido)ethyl 1-thio-β-d-galactopyranoside (5) and 1-thio-β-d-glucopyranoside (9) were prepared by the following scheme: 2,3,4,6-tetra-O-acetyl-1-thio-β-d-aldopyranoses, generated from 2-S-(2,3,4,6-tetra-O-acetyl-β-d-aldopyranosyl)-2-thiopseudourea hydrobromides, were aminoethylated with ethylenimine, followed by N-acylation of the products with 6-(trifluoroacetamido)hexanoic acid (1), and O-deacylation. These reactions could be carried out consecutively without isolation of intermediates, and the products obtained after gel chromatography were de(trifluoroacetyl)ated to obtain the final products. The chain lengths of the aglycons were further extended by repeating the acylation and the de(trifluoroacetyl)ation. An analog containing glycerol in lieu of a sugar was prepared by a similar reaction-scheme.  相似文献   

5.
《Carbohydrate research》1987,162(2):199-207
The 2,1′-O-isopropylidene derivative (1) of 3-O-acetyl-4,6-O-isopropylidene-α-d-glucopyranosyl 6-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside and 2,3,4-tri-O-acetyl-6-O-trityl-α-d-glucopyranosyl 3,4-anhydro-1,6-di-O-trityl-β-d-lyxo-hexulofuranoside have been synthesised and 1 has been converted into 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside (2). The SN2 reactions of 2 with azide and chloride nucleophiles gave the corresponding 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-azido-4-deoxy-β-d-fructofuranoside (6) and 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-chloro-4-deoxy-β-d-fructofuranoside (8), respectively. The azide 6 was catalytically hydrogenated and the resulting amine was isolated as 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 4-acetamido-1,3,6-tri-O-acetyl-4-deoxy-β-d-fructofuranoside. Treatment of 5 with hydrogen bromide in glacial acetic acid followed by conventional acetylation gave 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-bromo-4-deoxy-β-d-fructofuranoside. Similar SN2 reactions with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-ribo-hexulofuranoside (12) resulted in a number of 4′-derivatives of α-d-glucopyranosyl β-d-sorbofuranoside. The regiospecific nucleophilic substitution at position 4′ in 2 and 12 has been explained on the basis of steric and polar factors.  相似文献   

6.
Treatment of tetra-O-acetyl-β-d-glucopyranosyl N,N-dimethyldithiocarbamate (1) with phenylmercury(II) acetate gives tetra-O-acetyl-1-phenylmercury(II)thio-β-d-glucopyranose (3), which can also be made in high yield from other dithiocarbamates, from tetra-O-acetyl-1-thio-β-d-glucopyranose, and from its S-acetyl derivative. The p-diethylamino derivative (7) of compound 3 displays significantly different properties and is readily convertible into bis(tetra-O-acetyl-1-thio-β-d-glucopyranosyl)mercury(II) (8), which is also obtainable by treatment of tetra-O-acetyl-1-thio-β-d-glucopyranose with mercury(II) acetate. Aspects of the chemistry of compounds 3, 7, and 8 are reported; demercuration of 3 affords a convenient synthesis of 2,3,4,6-tetra-O-acetyl-1-thio-β-d-glucose.  相似文献   

7.
Condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-benzyl-1-O-(N-methyl)acetimidoyl-β-D-glucopyranose gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-α-D-glucopyranoside which was catalytically hydrogenolysed to crystalline 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranose (N-acetylmaltosamine). In an alternative route, the aforementioned imidate was condensed with 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose, and the resulting disaccharide was catalytically hydrogenolysed, acetylated, and acetolysed to give 2-acetamido-1,3,6-tri-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)-α-D-glucopyranose Deacetylation gave N-acetylmaltosamine. The synthesis of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose involved condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide in the presence of mercuric bromide, followed by deacetylation and catalytic hydrogenolysis of the condensation product.  相似文献   

8.
2,3,4,6-Tetra-O-acetyl-β-d-mannopyranosyl chloride (2) was obtained in 70% yield by the action of lithium chloride on 2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl bromide (1) in hexamethylphosphoric triamide. p-Nitrobenzenethiol reacted with 1 and 2 as well as with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide (9) or its β-d-chloro analog (10), giving exclusively and in good yield the corresponding p-nitrophenyl 1-thioglycosides of inverted anomeric configuration. The 1,2-cis-d-manno and -glucop-nitrophenylglycosides were likewise prepared. α-d-Glucopyranosyl 1-thio-α-d-glucopyranoside was similarly obtained by the action of the sodium salt of 1-thio-α-d-glucopyranose on the β-chloride 10 in hexamethylphosphoric triamide, or by treatment of 10 with sodium sulfide, with subsequent deacetylation. Analogous procedures allowed the preparation of β-d-mannopyranosyl 1-thio-β-d-mann opyranoside, the corresponding α,β anomer and α-d-glucopyranosyl 1-thio-α-d-mannopyranoside, starting from bromide 1, 1-thio-α-d-mannopyranose (8),and chloride 10, respectively. When acetone was used as solvent, the reaction between 1 and 8 led instead to the α,α anomer. The thio disaccharides that are interglycosidic 4-thio analogs of methyl 4-O-(β-d-galactopyranosyl)-α-d-galactopyranoside, methyl α-cellobioside, and methyl α-maltoside, respectively, were obtained by way of the peracetates of methyl 4-thio-α-d-galactopyranoside and -glucopyranoside by reaction of the corresponding thiolates with tetra-O-acetyl-α-d-galactopyranosyl bromide, bromide 9, or chloride 10, respectively, in hexamethylphosphoric triamide. These 1-thioglycosides, and (1→1)- and (1→4)-thiodisaccharides, were characterized by 1H- and 1 3C-n.m.r. spectroscopy. Correlations were established between the polarity of the sulfur atom and certain proton and carbon chemical-shifts in the 1-thioglycosides in comparison with the O-glycosyl analogs; these correlations permitted in particular the unambigous attribution of anomeric configuration.  相似文献   

9.
A number of novel, aryl and aralkyl d-mannopyranosides and 1-thio-d-mannopyranosides were synthesized for evaluation of insulin-like and insulin-antagonistic properties. The substituted-phenyl α-d-mannopyranosides were prepared by the general procedure of Helferich and Schmitz-Hillebrecht, the substituted-phenyl 1-thio-α-d-mannopyranosides by a method corresponding to the Michael synthesis of aromatic glycosides, and the aralkyl 1-thio-α-d-mannopyranosides by aralkylation of 2,3,4,6-tetra-O-acetyl-1-thio-α-d-mannopyranose (15) and subsequent O-deacetylation. Compound 15 was obtained by basic cleavage of the amidino group in 2-S-(tetra-O-acetyl-α-d-mannopyranosyl)-2-thiopseudourea hydrobromide, the product of the reaction of tetra-O-acetyl-α-d-mannosyl bromide with thiourea. Benzyl 1-thio-β-d-mannopyranoside, obtained by reaction of the sodium salt of 1-thio-β-d-mannopyranose with α-bromotoluene, and benzyl 1-thio-α-l-mannopyranoside were also synthesized, in order to assess the stereospecificity of the biological activities measured.  相似文献   

10.
Ammonium hydroxide treatment of 1,6:2,3-dianhydro-4-O-benzyl-β-D-mannopyranose, followed by acetylation, gave 2-acetamido-3-O-acetyl-1,6-anhydro-4-O-benzyl-2-deoxy-β-D-glucopyranose which was catalytically reduced to give 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose (6), the starting material for the synthesis of (1→4)-linked disaccharides bearing a 2-acetamido-2-deoxy-D-glucopyranose reducing residue. Selective benzylation of 2-acetamido-1,6-anhydro-2-deoxy-β-D-glucopyranose gave a mixture of the 3,4-di-O-benzyl derivative and the two mono-O-benzyl derivatives, the 4-O-benzyl being preponderant. The latter derivative was acetylated, to give a compound identical with that just described. For the purpose of comparison, 2-acetamido-4-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose has been prepared by selective acetylation of 2-acetamido-1,6-anhydro-2-deoxy-β-D-glucopyranose.Condensation between 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide and 6 gave, after acetolysis of the anhydro ring, the peracetylated derivative (17) of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose. A condensation of 6 with 3,4,6-tri-O-acetyl-2-deoxy-2-diphenoxyphosphorylamino-α-D-glucopyranosyl bromide likewise gave, after catalytic hydrogenation, acetylation, and acetolysis, the peracylated derivative (21) of di-N-acetylchitobiose.  相似文献   

11.
Reaction of 1,2-O-cyclopentylidene-α-d-glucofuranurono-6,3-lactone (2) with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide (1) gave 1,2-O-cyclopentylidene- 5-O-(2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl)-α-d-glucofuranurono-6,3-lactone (3, 45%) and 1,2-O-cyclopentylidene-5-O-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)-α-d-glucofuranurono-6,3-lactone (4, 38%). Reduction of 3 and 4 with lithium aluminium hydride, followed by removal of the cyclopentylidene group, afforded 5-O-α-(9) and -β-d-glucopyranosyl-d-glucofuranose (12), respectively. Base-catalysed isomerization of 9 yielded crystalline 5-O-α-d-glucopyranosyl-d-fructopyranose (leucrose, 53%).  相似文献   

12.
Methyl 2-acetamido-3-O-allyl-2-deoxy-4-O-methyl-α-D-glucopyranoside, methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside, and methyl 2-acetamido-3,4-di-O-allyl-2-deoxy-α-D-glucopyranoside, prepared from methyl 2-acetamido-2-deoxy-α-D-glucopyranoside, were coupled with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate (13), to give the phosphoric esters methyl 2-acetamido-3-O-allyl-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (16), methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (23), and methyl 2-acetamido-3,4-di-O-allyl-2-deoxy-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (17). Compound 13 was prepared from penta-O-acetyl-β-D-glucopyranose by the phosphoric acid procedure, or by acetylation of α-D-glucopyranosyl phosphate. Removal of the allyl groups from 16 and 17 gave 23 and methyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl phosphate) (19), respectively. O-Deacetylation of 23 gave methyl 2-acetamido-2-deoxy-4-O-methyl-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (26) and O-deacetylation of 19 gave methyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (24). Propyl 2-acetamido-2-deoxy-α-D-glucopyranoside 6-(α-D-glucopyranosyl phosphate) (25) was prepared by coupling 13 with allyl 2-acetamido-3,4-di-O-benzyl-2-deoxy-α-D-glucopyranoside, followed by catalytic hydrogenation of the product to give the propyl glycoside, which was then O-deacetylated. Compounds 24, 25, and 26 are being employed in structural studies of the Micrococcus lysodeikticus cell-wall.  相似文献   

13.
The reaction of ethyl vinyl ether and 2,3,4,6-tetra-O-acetyl-β-d-glucopyranose (1) in the presence of Hg-(OAc)2 and toluene-p-sulphonic acid as catalysts yielded the acetylated vinyl, l-ethoxyethyl, and l-ethoxybut-3-enyl glycosides in varying proportions. Crystalline l-ethoxybut-3-enyl 2,3,4,6-tetra-O-acetyl-β-d-glucopyranoside (2), vinyl 2,3,4,6-tetra-O-acetyl-α-d-glucopyranoside (3), and l-ethoxyethyl 2,3,4,6-tetra-O-acetyl-β-d-glucopyranoside (4) were isolated by chromatography. Compound 4 was also prepared by the reaction of 1 with cold acetaldehyde diethyl acetal containing a trace of acetic acid, and its α anomer (5) by the reaction of 1 with boiling acetaldehyde diethyl acetal containing a trace of acetic acid. Each deacetylated d-glucoside was cleaved by the corresponding d-glucosidase, to yield d-glucose and either acetaldehyde (from deacetylated 3-5) or but-3-enal (from deacetylated 2).  相似文献   

14.
The aminocyclitol antibiotic neamine has been chemically modified at the hydroxyl group on C-6 of the 2-deoxystreptamine moiety. The partially acetylated neamine derivatives, 6,3′,4′-tri-O-acetyl- (3) and 5,3′,4′-tri-O-acetyl-1,3,2′,6′-tetra-N-(ethoxycarbonyl)neamine (4), were prepared by random hydrolysis of the 5,6-O-ethoxyethylidene derivative (2), followed by chromatographic purification. Condensation of 4 and 2,3,5-tri-O-benzoyl-d-ribofuranosyl chloride led to 6-O-(β-d-ribofuranosyl)neamine (7). Analogous condensation of 4 with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide or 2,3,4,6-tetra-O-acetyl-α-d-galactopyranosyl bromide afforded the corresponding 6-O-(d-hexopyranosyl)neamines.  相似文献   

15.
Catalytic hydrogenation of the tetrabenzyl ethers of 1-O-acetamidoacyl- and 1-O-tert-butyloxycarbonylaminoacyl-α- and -β-D-glucopyranoses (1–6) afforded the corresponding 1-O-acylaminoacyl-D-glucopyranoses 8–13 which were fully characterised by physical methods and by conversion into the peracetylated derivatives 14–19. The α anomers of 1-O-tert-butyloxycarbonylaminoacyl-D-glucopyranoses underwent 1→2 acyl migration, and, in order to characterize the rearrangement product of 1-O-(tert-butyloxycarbonyl-L-alanyl)-α-D-glucopyranose (12α), 1,3,4,6-tetra-O-acetyl-2-O-(tert-butyloxycarbonyl-L-alanyl)-α- and -β-D-glucopyranoses (22 and 23) were synthesized by definitive methods. Initial studies of the simultaneous deprotection of the amino and hydroxyl functions were performed with D-glucose-amino acid 6-esters; catalytic hydrogenation of methyl 2,3,4-tri-O-benzyl-6-O-(N-benzyloxycarbonylglycyl)-β-D-glucopyranose (24) gave methyl 6-O-glycyl-β-D-glucopyranose (25) as the stable hydrochloride. Hydrogenolysis of the β anomer of 2,3,4,6-tetra-O-benzyl-1-O-[1-benzyl N-(benzyloxycarbonyl)-L-aspart-4-oyl]-D-glucopyranose (7) afforded 1-O-(L-β-aspartyl)-β-D-glucopyranose (27). The rates of hydrolysis of the unprotected D-glucose-amino acid 1-ester 27 in water and in 0.1M hydrochloric acid were compared with those of the D-glucose-amino acid 6-ester 25.  相似文献   

16.
The X-ray diffraction analysis of N-o-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamine (1), N-m-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamines, N-p-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamines, and their N-acetyl derivatives was performed. The sugar moieties always adopt 4C1 conformations, however, due to crystal packing forces they are always slightly distorted. It was found that except N-acetyl, N-m-nitrophenyl-2,3,4,6-tetra-O-acetyl-β-d-glucopyranosylamine (5), none of the glucopyranosylamines studied in this paper form strong hydrogen bonds in the crystal lattice. Additionally, (5) crystallizes with a molecule of water, which occupies a special crystallographic position (on the twofold axis) and links two sugar molecules by hydrogen bonds. The CP MAS NMR spectra confirmed the presence of the intermolecular hydrogen bond involving the molecule of water in (5). Moreover, it was proved that in (1) an intramolecular hydrogen bond is formed between the glycosidic linkage and the nitro group.  相似文献   

17.
p-Nitrophenyl and p-aminophenyl α-d-talopyranoside and 1-thio-α-d-talopyranosides were prepared for studies on specificity of glycosidases. Reaction of α-d-talopyranose pentaacetate with p-nitrophenol gave exclusively p-nitrophenyl 2,3,4,6-tetra-O-acetyl-α-d-talopyranoside (2) in 63% yield. A similar reaction with p-nitrobenzenethiol afforded the 1-thio analog (3) of 2 in 41.8% yield; the p-nitrophenyl 2,3,4,6-tetra-O-acetyl-1-thio-β-d-talopyranoside (6) was also obtained in low yield (6.7%). The two α-d-talosides 2 and 3 were catalytically deacetylated in near-quantitative yields by methanolic sodium methoxide. The p-nitrophenyl α-d-talopyranoside (4) and 1-thio-α-d-talopyranoside (5) were reduced with palladium on barium sulfate catalyst to the corresponding p-aminophenyl talosides. The acetylated p-nitrophenyl d-talosides 2, 3, and 6 were determined, from their 250-MHz n.m.r. spectra, to exist in the 4C1 (d) conformation in chloroform solution.  相似文献   

18.
2-Methyl-[3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d-glucopyrano]-[2,1-d]-2-oxazoline (4) was prepared from 2-acetamido-3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d- glucopyranosyl chloride. Condensation of 3,4:5,6-di-O-isopropylidene-d-mannose dimethyl acetal with 4 in the presence of a catalytic amount of p-toluenesulfonic acid afforded O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-(1 → 4)-O-(2-acetamido-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl)-(1 → 2)-3,4:5,6-di-O-isopropylidene-d-mannose dimethyl acetal (6) in 8.6% yield. Catalytic deacetylation of 6 with sodium methoxide, followed by hydrolysis with dilute sulfuric acid, gave O-β-d-galactopyranosyl-(1 → 4)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1 → 2)-d-mannose (7). The inhibitory activities of 7 and related sugars against the hemagglutinating activities of various lectins were assayed, and 7 was found to be a good inhibitor against Phaseolus vulgaris hemagglutinin.  相似文献   

19.
9-(2-S-Ethyl-2-thio- and α-D-mannofuranosyl)adenine ( and ) were synthesized from ethyl 3,5,6-tri-O-acetyl-2-S-ethyl-1,2-dithio-α-D-mannofuranoside (1) by bromination followed by coupling of the resultant bromide (2) with 6-benzamido-(chloromercuri)purine. The 2-chloro analogues (10α and 10β) of and were obtained by way of a fusion reaction between 1,3,5,6-tetra-O-acetyl-2-S- ethyl-2-thio-α-D-mannofuranose (5) and 2,6-dichloropurine. Fusion of the bromide 2 with 2,4-bis(trimethylsilyloxy)pyrimidine and its 5-methyl derivative led to 1-(2-S- ethyl-2-thio-β-D-mannofuranosyl)uracil (16) and its thymine analogue (15). The action of Raney nickel led to rapid dechlorination of 10α and 10β, and all of the 2′-thio-nucleosides underwent desulfurization to give the corresponding 2′-deoxynucleosides. Sequential periodate oxidation-borohydride reduction converted the hexofuranosyl nucleosides into their pentofuranosyl analogues. Thus prepared were 9-(2-deoxy-α-and β-D-arabino-hexofuranosyl)adenine (11α and 11β) and their 2-deoxy-D-threo-pentofuranosyl counterparts ( and 2′-deoxy-3′-epiadenosine, ), and 1-(2-deoxy- β-D-arabino-hexofuranosyl)-thymine (17) and -uracil (18) and their 2-deoxy-D-threo-pentofuranosyl counterparts (3′-epithymidine, 21, and 2′-deoxy-3′-epiuridine, 20). Detailed n.m.r.-spectral correlations are described for the series, and various derivatives of the nucleosides are reported.  相似文献   

20.
Photoirradiation of a solution of 1,2,4,6-tetra-O-acetyl-3-deoxy-β-D-erythro-hex-2-enopyranose (1) in 1:50 acetone-1,3-dioxolane with a high-pressure mercury-lamp, followed by chromatographic separation, gave 1,2,4,6-tetra-O-acetyl-3-deoxy-3-C-(1,3-dioxolan-2-yl)-β-D-glucopyranose (3) (44%) and-mannopyranose (4) (35%). Similar treatment of the α anomer (2) of 1 afforded 1,2,4,6-tetra-O-acetyl-3-deoxy-3-C-(1,3-dioxolan-2-yl)-α-D-glucopyranose (5) (38%), -mannopyranose (6) (31%), and -allopyranose (7) (21%).On the other hand, irradiation of 2 in 1:100 acetone-2-propanol gave 1,2,4,6-tetra-O-acetyl-3-deoxy-3-C-(1-hydroxy-1-methylethyl)-α-D-mannopyranose (8) (76%). Moreover, irradiation of 2 in 1:1 acetone-2-propanol yielded 1,4,6-tri-O-acetyl-3-deoxy-2,3-di-C-(1-hydroxy-1-methylethyl)-α-D-gluco- or -manno-pyranose 2,21,31-orthoacetate (10) (15%), in addition to 8 (44%).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号