首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The PSMD14 (POH1, also known as Rpn11/MPR1/S13/CepP1) protein within the 19S complex (19S cap; PA700) is responsible for substrate deubiquitination during proteasomal degradation. The role of PSMD14 in cell proliferation and senescence was explored using siRNA knockdown in carcinoma cell lines. Our results reveal that down-regulation of PSMD14 by siRNA transfection had a considerable impact on cell viability causing cell arrest in the G0-G1 phase, ultimately leading to senescence. The molecular events associated with decreased cell proliferation, cell cycle arrest and senescence include down-regulation of cyclin B1-CDK1-CDC25C, down-regulation of cyclin D1 and up-regulation of p21/Cip and p27/Kip1. Most notably, phosphorylation of the retinoblastoma protein was markedly reduced in PSMD14 knockdown cells. A comparative study with PSMB5, a subunit of the 20S proteasome, revealed that PSMB5 and PSMD14 have different effects on cell cycle, senescence and associated molecular events. These data support the view that the 19S and 20S subunits of the proteasome have distinct biological functions and imply that targeting 19S and 20S would have distinct molecular consequences on tumor cells.  相似文献   

2.
Resveratrol (3,4′,5-trihydroxy-trans-stilbene), a polyphenol naturally occurring in grapes and other plants, has cancer chemo-preventive effects and therapeutic potential. Although resveratrol modulates multiple pathways in tumor cells, how resveratrol or its affected pathways converge on chromatin to mediate its effects is not known. Using glioma cells as a model, we showed here that resveratrol inhibited cell proliferation and induced cellular hypertrophy by transforming spindle-shaped cells to enlarged, irregular and flatten-shaped ones. We further showed that resveratrol-induced hypertrophic cells expressed senescence-associated-β-galactosidase, suggesting that resveratrol-induced cellular senescence in glioma cells. Consistent with these observations, we demonstrated that resveratrol inhibited clonogenic efficiencies in vitro and tumor growth in a xenograft model. Furthermore, we found that acute treatment of resveratrol inhibited mono-ubiquitination of histone H2B at K120 (uH2B) in breast, prostate, pancreatic, lung, brain tumor cells as well as primary human cells. Chronic treatment with low doses of resveratrol also inhibited uH2B in the resveratrol-induced senescent glioma cells. Moreover, we showed that depletion of RNF20, a ubiquitin ligase of histone H2B, inhibited uH2B and induced cellular senescence in glioma cells in vitro, thereby recapitulated the effects of resveratrol. Taken together, our results suggest that uH2B is a novel direct or indirect chromatin target of resveratrol and RNF20 plays an important role in inhibiting cellular senescence programs that are intact in glioma cells.  相似文献   

3.

Background

HuR (human antigen R) is a ubiquitously expressed member of the Hu/ELAV family of proteins that is involved in diverse biological processes. HuR has also been shown to play an important role in cell cycle arrest during replicative senescence in both human and mouse cells. Senescent cells not only halt their proliferation, but also activate the secretion of proinflammatory cytokines. A persistent DNA damage response is essential for the senescence-associated secretory phenotype (SASP), and increasing evidence has suggested that the SASP is associated with malignancy.

Methods

Senescence-associated phenotypes were analyzed in MEFs and other cell line in which HuR expression is inhibited by sh-RNA-mediated knockdown.

Results

RNAi-mediated HuR inhibition resulted in an increase in SASP-related cytokines. The induction of SASP factors did not depend on ARF–p53 pathway-mediated cell cycle arrest, but required NF-κB activity. In the absence of HuR, cells were defective in the DNA-damage response, and single strand DNA breaks accumulated, which may have caused the activation of NF-κB and subsequent cytokine induction.

Conclusions

In the absence of HuR, cells exhibit multiple senescence-associated phenotypes. Our findings suggest that HuR regulates not only the replicative lifespan, but also the expression of SASP-related cytokines in mouse fibroblasts.

General significance

RNA-binding protein HuR protects cells from undergoing senescence. Senescence-associated phenotypes are accelerated in HuR-deficient cells.  相似文献   

4.
The AMP-activated protein kinase (AMPK) is a critical regulator of energy homeostasis, and is a potential target for treatment of metabolic diseases as well as cancer. AMPK can be phosphorylated and activated by the tumor suppressor LKB1 or the Ca2+/CaM-dependent protein kinase kinase β (CaMKKβ). We previously identified a physical complex between CaMKKβ and AMPK (Anderson, K. A., Ribar, T. J., Lin, F., Noeldner, P. K., Green, M. F., Muehlbauer, M. J., Witters, L. A., Kemp, B. E., and Means, A. R. (2008) Cell Metabolism 7, 377–388). Here we expand our analysis of the CaMKKβ–AMPK signaling complex and show that whereas CaMKKβ can form a complex with and activate AMPK, CaMKKα cannot. In addition, we show that CaMKKβ and AMPK associate through their kinase domains, and CaMKKβ must be in an active conformation in order to bind AMPK but not to associate with an alternative substrate, Ca2+/Calmodulin-dependent protein kinase IV (CaMKIV). Our results demonstrate that CaMKKβ and AMPK form a unique signaling complex. This raises the possibility that the CaMKKβ–AMPK complex can be specifically targeted by small molecule drugs to treat disease.  相似文献   

5.
The Hsp90 chaperone has become the attractive pharmacological target to inhibit tumor cell proliferation. However, tumor cells can evolve with mechanisms to overcome Hsp90 inhibition. Using human neuroblastoma, we have investigated one such limitation. Here, we demonstrate that neuroblastoma cells overcome the interference of tumor suppressor p16INK4a in cell proliferation, which is due to its latent interaction with CDK4 and CDK6. Cells also displayed impedance to the pharmacological inhibition of cancer chaperone Hsp90 inhibition with respect to induced cytotoxicity. However, the p16INK4a knockdown has triggered the activation of cyclin-CDK6 axis and enhanced the cell proliferation. These cells are eventually sensitized to Hsp90 inhibition by activating the DNA damage response mediated through p53-p21WAF-1 axis and G1 cell cycle exit. While both CDK4 and CDK6 have exhibited low affinity to p16INK4a, CDK6 has exhibited high affinity to Hsp90. Destabilizing the CDK6 interaction with Hsp90 has prolonged G2/M cell cycle arrest fostering to premature cellular senescence. The senescence driven cells exhibited compromised metastatic potential both in vitro as well as in mice xenografts. Our study unravels that cancer cells can be adapted to the constitutive expression of tumor suppressors to overcome therapeutic interventions. Our findings display potential implication of Hsp90 inhibitors to overcome such adaptations.  相似文献   

6.
Calmodulin (CaM) is a ubiquitous Ca2 + receptor protein mediating a large number of signaling processes in all eukaryotic cells. CaM plays a central role in regulating a myriad of cellular functions via interaction with multiple target proteins. This review focuses on the action of CaM and CaM-dependent signaling systems in the control of vertebrate cell proliferation, programmed cell death and autophagy. The significance of CaM and interconnected CaM-regulated systems for the physiology of cancer cells including tumor stem cells, and processes required for tumor progression such as growth, tumor-associated angiogenesis and metastasis are highlighted. Furthermore, the potential targeting of CaM-dependent signaling processes for therapeutic use is discussed.  相似文献   

7.
8.
Seven-in-absentia homolog (SIAH) proteins are evolutionary conserved RING type E3 ubiquitin ligases responsible for the degradation of key molecules regulating DNA damage response, hypoxic adaptation, apoptosis, angiogenesis, and cell proliferation. Many studies suggest a tumorigenic role for SIAH2. In breast cancer patients SIAH2 expression levels correlate with cancer aggressiveness and overall patient survival. In addition, SIAH inhibition reduced metastasis in melanoma. The role of SIAH1 in breast cancer is still ambiguous; both tumorigenic and tumor suppressive functions have been reported. Other studies categorized SIAH ligases as either pro- or antimigratory, while the significance for metastasis is largely unknown. Here, we re-evaluated the effects of SIAH1 and SIAH2 depletion in breast cancer cell lines, focusing on migration and invasion. We successfully knocked down SIAH1 and SIAH2 in several breast cancer cell lines. In luminal type MCF7 cells, this led to stabilization of the SIAH substrate Prolyl Hydroxylase Domain protein 3 (PHD3) and reduced Hypoxia-Inducible Factor 1α (HIF1α) protein levels. Both the knockdown of SIAH1 or SIAH2 led to increased apoptosis and reduced proliferation, with comparable effects. These results point to a tumor promoting role for SIAH1 in breast cancer similar to SIAH2. In addition, depletion of SIAH1 or SIAH2 also led to decreased cell migration and invasion in breast cancer cells. SIAH knockdown also controlled microtubule dynamics by markedly decreasing the protein levels of stathmin, most likely via p27Kip1. Collectively, these results suggest that both SIAH ligases promote a migratory cancer cell phenotype and could contribute to metastasis in breast cancer.  相似文献   

9.
10.
Mitochondria play central roles in cell life as a source of energy and in cell death by inducing apoptosis. Many important functions of mitochondria change in cancer, and these organelles can be a target of chemotherapy. The widely used anticancer drug doxorubicin (DOX) causes cell death, inhibition of cell cycle/proliferation and mitochondrial impairment. However, the mechanism of such impairment is not completely understood. In our study we used confocal and two-photon fluorescence imaging together with enzymatic and respirometric analysis to study short- and long-term effects of doxorubicin on mitochondria in various human carcinoma cells. We show that short-term (< 30 min) effects include i) rapid changes in mitochondrial redox potentials towards a more oxidized state (flavoproteins and NADH), ii) mitochondrial depolarization, iii) elevated matrix calcium levels, and iv) mitochondrial ROS production, demonstrating a complex pattern of mitochondrial alterations. Significant inhibition of mitochondrial endogenous and uncoupled respiration, ATP depletion and changes in the activities of marker enzymes were observed after 48 h of DOX treatment (long-term effects) associated with cell cycle arrest and death.  相似文献   

11.
Circular RNAs (circRNAs) have been established to be involved in numerous processes in the human genome, but their function in vascular aging remains largely unknown. In this study, we aimed to characterize and analyze the function of a circular intronic RNA, ciPVT1, in endothelial cell senescence. We observed significant downregulation of ciPVT1 in senescent endothelial cells. In proliferating endothelial cells, ciPVT1 knockdown induced a premature senescence‐like phenotype, inhibited proliferation, and led to an impairment in angiogenesis. An in vivo angiogenic plug assay revealed that ciPVT1 silencing significantly inhibited endothelial tube formation and decreased hemoglobin content. Conversely, overexpression of ciPVT1 in old endothelial cells delayed senescence, promoted proliferation, and increased angiogenic activity. Mechanistic studies revealed that ciPVT1 can sponge miR‐24‐3p to upregulate the expression of CDK4, resulting in enhanced Rb phosphorylation. Moreover, enforced expression of ciPVT1 reversed the senescence induction effect of miR‐24‐3p in endothelial cells. In summary, the present study reveals a pivotal role for ciPVT1 in regulating endothelial cell senescence and may have important implications in the search of strategies to counteract the development of age‐associated vascular pathologies.  相似文献   

12.
Epithelial ovarian cancer (EOC) is the leading cause of gynecological-related cancer deaths in the United States. There is, therefore, an urgent need to develop novel therapeutic strategies for this devastating disease. Cellular senescence is a state of stable cell growth arrest that acts as an important tumor suppression mechanism. Ribonucleotide reductase M2 (RRM2) plays a key role in regulating the senescence-associated cell growth arrest by controlling biogenesis of 2'-deoxyribonucleoside 5′-triphosphates (dNTPs). The role of RRM2 in EOC remains poorly understood. Here we show that RRM2 is expressed at higher levels in EOCs compared with either normal ovarian surface epithelium (P &lt; 0.001) or fallopian tube epithelium (P &lt; 0.001). RRM2 expression significantly correlates with the expression of Ki67, a marker of cell proliferation (P &lt; 0.001). Moreover, RRM2 expression positively correlates with tumor grade and stage, and high RRM2 expression independently predicts a shorter overall survival in EOC patients (P &lt; 0.001). To delineate the functional role of RRM2 in EOC, we knocked down RRM2 expression in a panel of EOC cell lines. Knockdown of RRM2 expression inhibits the growth of human EOC cells. Mechanistically, RRM2 knockdown triggers cellular senescence in these cells. Notably, this correlates with the induction of the DNA damage response, a known mediator of cellular senescence. These data suggest that targeting RRM2 in EOCs by suppressing its activity is a novel pro-senescence therapeutic strategy that has the potential to improve survival of EOC patients.  相似文献   

13.
Rn7SK is a conserved small nuclear noncoding RNA which its function in aging has not been studied. Recently, we have demonstrated that Rn7SK overexpression reduces cell viability and is significantly downregulated in stem cells, human tumor tissues, and cell lines. In this study, we analyzed the role of Rn7SK on senescence in adipose tissue-derived mesenchymal stem cells (AD-MSCs). For this purpose, Rn7SK expression was downregulated and upregulated via transfection and transduction, respectively, in AD-MSCs and subsequently, various distinct characteristics of senescence including cell viability, proliferation, colony formation, senescence-associated β galactosidase activity, and differentiation potency was analyzed. Our results demonstrated the transient knockdown of Rn7SK in MSCs leads to delayed senescence, while its overexpressions shows opposite effects. When osteogenic differentiation was started, however, they exhibited a greater differentiation potential than the original MSCs, suggesting a potential tool for stem cell-based regenerative medicine.  相似文献   

14.
15.
H-Ras oncogene requires deregulation of additional oncogenes or inactivation of tumor suppressor proteins to increase cell proliferation rate and transform cells. In fact, the expression of the constitutively activated H-RasV12 induces cell growth arrest and premature senescence, which act like barriers in pre-neoplastic lesions. In our experimental model, human fibroblasts transfected with H-RasV12 show a dramatic modification of morphology. H-RasV12 expressing cells also show premature senescence followed by cell death, induced by autophagy and apoptosis. In this context, we provide evidence that in H-RasV12 expressing cells, the premature senescence is associated with cellular redox imbalance as well as with altered post-translation protein modification. In particular, redox imbalance is due to a strong reduction of total antioxidant capacity, and significant decrease of glutathione level. As the reversible addition of glutathione to cysteinyl residues of proteins is an important post-translational regulative modification, we investigated S-glutathionylation in cells expressing active H-Ras. In this contest we observed different S-glutathionylation patterns in control and H-RasV12 expressing cells. Particularly, the GAPDH enzyme showed S-glutathionylation increase and significant enzyme activity depletion in H-Ras V12 cells. In conclusion, we proposed that antioxidant defense reduction, glutathione depletion and subsequent modification of S-glutathionylation of target proteins contribute to arrest cell growth, leading to death of fibroblasts expressing constitutively active H-Ras oncogene, thus acting as oncogenic barriers that obstacle the progression of cell transformation.  相似文献   

16.
17.
18.
AMP-activated kinase is a cellular energy sensor which is activated in stages of increased ATP consumption. Its activation has been associated with a number of beneficial effects such as decreasing inflammatory processes and the disease progress of diabetes and obesity, respectively. Furthermore, AMPK activation has been linked with induction of cell cycle arrest and apoptosis in cancer and vascular cells, indicating that it might have a therapeutic impact for the treatment of cancer and atherosclerosis. However, the impact of AMPK on the proliferation of macrophages, which also play a key role in the formation of atherosclerotic plaques and in inflammatory processes, has not been focused so far. We have assessed the influence of AICAR- and metformin-induced AMPK activation on cell viability of macrophages with and without inflammatory stimulation, respectively. In cells without inflammatory stimulation, we found a strong induction of caspase 3-dependent apoptosis associated with decreased mTOR levels and increased expression of p21. Interestingly, these effects could be inhibited by co-stimulation with bacterial lipopolysaccharide (LPS) but not by other proinflammatory cytokines suggesting that AICAR induces apoptosis via AMPK in a TLR4-pathway dependent manner.  相似文献   

19.
The nucleolus is a subnuclear compartment, which governs ribosome biogenesis. Moreover, it functions as hub in the stress response by orchestrating a variety of processes, such as regulation of cell cycle progression, senescence and apoptosis. Emerging evidence links the nucleolus also to the control of genomic stability and the development of human malignancies. Peter Pan (PPAN) is an essential ribosome biogenesis factor localized to nucleoli and mitochondria. We earlier showed that PPAN depletion triggers p53-independent nucleolar stress and apoptosis. In this study we investigated the precise localization of nucleolar PPAN during cell cycle and its function in cell cycle regulation. We show that PPAN knockdown impairs cell proliferation and induces G0/G1 as well as later G2/M cell cycle arrest in cancer cells. Although PPAN knockdown stabilizes the tumor suppressor p53 and induces CDKN1A/p21, the proliferation defects occur largely in a p53/p21-independent manner. We noticed a reduced number of knockdown cells entering cytokinesis and an elevation of binucleation. PPAN knockdown is also associated with increased H2A.X phosphorylation (γH2A.X) in cancer cells. We evaluated a potential signaling axis through the DNA damage response kinases ATM and ATR and alternatively apoptosis as a potent driver of γH2A.X. Interestingly, PPAN knockdown does not involve activation of ATM/ATR. Instead, γH2A.X is generated as a consequence of apoptosis induction in cancer cells. Strikingly, PPAN depletion in human fibroblasts did neither provoke apoptosis nor H2A.X phosphorylation, but recapitulated p53 stabilization. In summary, our data underline the notion that the PPAN-mediated, p53-independent nucleolar stress response has multiple facets.  相似文献   

20.
The progression of prostate cancer is associated with escape from cell cycle arrest and apoptosis under androgen-depleted conditions. Here, we found that geraniol, a naturally occurring monoterpene, induces cell cycle arrest and apoptosis in cultured cells and tumor grafted mice using PC-3 prostate cancer cells. Geraniol modulated the expression of various cell cycle regulators and Bcl-2 family proteins in PC-3 cells in vitro and in vivo. Furthermore, we showed that the combination of sub-optimal doses of geraniol and docetaxel noticeably suppresses prostate cancer growth in cultured cells and tumor xenograft mice. Therefore, our findings provide insight into unraveling the mechanisms underlying escape from cell cycle arrest and apoptosis and developing therapeutic strategies against prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号