首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

The deposition of aggregated β-amyloid peptide senile plaques and the accumulation of arginine within the astrocytes in the brain of an Alzheimer's patient are classic observations in the neuropathology of the disease. It would be logical, in the aetiology and pathogenesis, to investigate arginine-metabolising enzymes and their intimate association with amyloid peptides.

Methods

Neuronal nitric oxide synthase (nNOS) was isolated, purified and shown, through fluorescence quenching spectroscopy and fluorescence resonance energy transfer (FRET), to interact with structural fragments of Aβ1–40 and be catalytic towards amyloid fibril formation.

Results

Only one binding site on the enzyme was available for binding. Two amyloid peptide fragments of Aβ1–40 (Aβ17–28 and Aβ25–35) had Stern–Volmer values (KSV) of 0.111 μM−1 and 0.135 μM−1 indicating tight binding affinity to nNOS and easier accessibility to fluor molecules during binding. The polarity of this active site precludes binding of the predominantly hydrophobic amyloid peptide fragments contained within Aβ17–28 and within two glycine zipper motifs [G-X-X-X-G-X-X-X-G] [Aβ29–37] and bind to the enzyme at a site remote to the active region.

Conclusions

The interaction and binding of Aβ17–28 and Aβ25–35 to nNOS causes the movement of two critical tryptophan residues of 0.77 nm and 0.57 nm respectively towards the surface of the enzyme.

General significance

The binding of Aβ-peptide fragments with nNOS has been studied by spectrofluorimetry. The information and data presented should contribute towards understanding the mechanism for deposition of aggregated Aβ-peptides and fibrillogenesis in senile plaques in an AD brain.  相似文献   

2.
The oligomerization and aggregation of the amyloid-β (Aβ) peptide, a cleavage product of the amyloid precursor protein predominantly 40 or 42 amino acids in length, has been implicated in the pathogenesis of Alzheimer's disease. The identification of Aβ-binding agents, e.g., antibodies or peptides, constitutes a promising therapeutic approach. However, the amount of structural and biophysical data on the underlying Aβ interactions is currently very limited. We have earlier determined the structure of Aβ(1-40) in complex with the affibody protein ZAβ3, a selected binding protein based on a three-helix bundle scaffold (Z domain). ZAβ3 is a dimer of affibody subunits linked via a disulfide bridge involving a selected cysteine mutation at position 28. ZAβ3 binds to the central and C-terminal part of Aβ (residues 17-36), which adopts a β-hairpin conformation in the complex. Here we present a detailed biophysical analysis of the ZAβ3:Aβ(1-40) interaction, employing NMR, circular dichroism spectroscopy, 8-anilino-1-naphthalenesulfonic acid and tyrosine fluorescence, size-exclusion chromatography, thermal denaturation profiles and isothermal titration calorimetry. We conclude that (i) free ZAβ3 is characterized by conformational exchange and the loss of helix 1 of the three-helix bundle scaffold; (ii) a high-energy barrier is associated with the conversion of an initial ZAβ3:Aβ(1-40) recognition complex into the native complex structure, entailing slow binding kinetics; (iii) both Aβ and ZAβ3 fold upon binding, which, e.g., becomes manifest in the binding thermodynamics that feature a large negative change in heat capacity; (iv) the C28-disulfide does not merely afford dimerization, but its impact on the binding interfaces of the affibody subunits and Aβ is a prerequisite for tight binding. The extensive folding coupled to binding observed here likely constitutes an obligate feature of biomolecular interactions involving the central and C-terminal part of Aβ. Options for improvement of Z binding proteins are discussed.  相似文献   

3.
The very amino-terminal domain of the huntingtin protein is directly located upstream of the protein’s polyglutamine tract, plays a decisive role in several important properties of this large protein and in the development of Huntington’s disease. This huntingtin 1–17 domain is on the one hand known to markedly increase polyglutamine aggregation rates and on the other hand has been shown to be involved in cellular membrane interactions. Here, we determined the high-resolution structure of huntingtin 1–17 in dodecyl phosphocholine micelles and the topology of its helical domain in oriented phosphatidylcholine bilayers. Using two-dimensional solution NMR spectroscopy the low-energy conformations of the polypeptide were identified in the presence of dodecyl phosphocholine detergent micelles. In a next step a set of four solid-state NMR angular restraints was obtained from huntingtin 1–17 labeled with 15N and 2H at selected sites. Of the micellar ensemble of helical conformations only a limited set agrees in quantitative detail with the solid-state angular restraints of huntingtin 1–17 obtained in supported planar lipid bilayers. Thereby, the solid-state NMR data were used to further refine the domain structure in phospholipid bilayers. At the same time its membrane topology was determined and different motional regimes of this membrane-associated domain were explored. The pronounced structural transitions of huntingtin 1–17 upon membrane-association result in a α-helical conformation from K6 to F17, i.e., up to the very start of the polyglutamine tract. This amphipathic helix is aligned nearly parallel to the membrane surface (tilt angle ∼77°) and is characterized by a hydrophobic ridge on one side and an alternation of cationic and anionic residues that run along the hydrophilic face of the helix. This arrangement facilitates electrostatic interactions between huntingtin 1–17 domains and possibly with the proximal polyglutamine tract.  相似文献   

4.
Preparing reliable, seed-free stock solutions of the highly amyloidogenic peptides amyloid-β (Aβ) is difficult. Besides the formation of aggregates during synthesis and storage, dissolution of the peptide is a critical step because vortexing can induce aggregation. To overcome this, synthesis of the more water-soluble depsi-Aβ1–42 peptide, from which the native sequence is easily obtained, has been suggested. We further refined this technique, including a cutoff filtration step and switching the depsipeptide in basic conditions, to stabilize the formed native peptide. The obtained solutions of native Aβ1–40 and Aβ1–42 peptides were homogeneous and aggregate free, as indicated by thioflavin T and circular dichroism analysis.  相似文献   

5.
The navel orangeworm, Amyelois transitella (Walker), is an agricultural insect pest that can be controlled by disrupting male–female communication with sex pheromones, a technique known as mating disruption. Insect pheromone-binding proteins (PBPs) provide fast transport of hydrophobic pheromones through aqueous sensillar lymph and promote sensitive delivery of pheromones to receptors. Here we present a mutational analysis on a PBP from A. transitella (AtraPBP1) to evaluate how the C-terminal helix in this protein controls pheromone binding as a function of pH. Pheromone binds tightly to AtraPBP1 at neutral pH, but the binding is much weaker at pH below 5. Deletion of the entire C-terminal helix (residues 129–142) causes more than 100-fold increase in pheromone-binding affinity at pH 5 and only a 1.5-fold increase at pH 7. A similar pH-dependent increase in pheromone binding is also seen for the H80A/H95A double mutant that promotes extrusion of the C-terminal helix by disabling salt bridges at each end of the helix. The single mutants (H80A and H95A) also exhibit pheromone binding at pH below 5, but with ∼2-fold weaker affinity. NMR and circular dichroism data demonstrate a large overall structural change in each of these mutants at pH 4.5, indicating an extrusion of the C-terminal helix that profoundly affects the overall structure of the low pH form. Our results confirm that sequestration of the C-terminal helix at low pH as seen in the recent NMR structure may serve to block pheromone binding. We propose that extrusion of these C-terminal residues at neutral pH (or by the mutations in this study) exposes a hydrophobic cleft that promotes high affinity pheromone binding.  相似文献   

6.
Aggregated β-amyloid peptides (Aβ) are neurotoxic and responsible for neuronal death both in vitro and in vivo. From the structural point of view, Aβ self-aggregation involves a conformational change in the peptide. Here, we investigated the relationship between conformational changes and amino acid residues of Aβ40. Urea unfolding in combination with NMR spectroscopy was applied to probe the stabilization of Aβ40 conformation. L17 and F19 residues were found more sensitive to environmental changes than the other residues. Replacement of these two residues with alanine could stabilize the conformation of Aβ40. Further analysis indicated that the Aβ40(L17A/F19A) mutant could diminish the aggregation and reduce the neurotoxicity. These results suggest that L17 and F19 are the critical residues responsible for conformational changes which may trigger neurotoxic cascade of Aβ40.  相似文献   

7.
The aggregates of amyloid beta peptides (Aβs) are regarded as one of the main pathological hallmarks of Alzheimer’s disease (AD). An imbalance between the rates of synthesis and clearance of Aβs is considered to be a possible cause for the onset of AD. Dipeptidyl peptidases II and IV (DPPII and DPPIV) are serine proteases removing N-terminal dipeptides from polypeptides and proteins with proline or alanine on the penultimate position. Alanine is an N-terminal penultimate residue in Аβs, and we presumed that DPPII and DPPIV could cleave them. The results of present in vitro research demonstrate for the first time the ability of DPPIV to truncate the commercial Aβ40 and Aβ42 peptides, to hinder the fibril formation by them and to participate in the disaggregation of preformed fibrils of these peptides. The increase of absorbance at 334 nm due to complex formation between primary amines with o-phtalaldehyde was used to show cleaving of Aβ40 and Aβ42. The time-dependent increase of the quantity of primary amines during incubation of peptides in the presence of DPPIV suggested their truncation by DPPIV, but not by DPPII. The parameters of the enzymatic breakdown by DPPIV were determined for Aβ40 (Km = 37.5 μM, kcat/Km = 1.7 × 103 M−1sec−1) and Aβ42 (Km = 138.4 μM, kcat/Km = 1.90 × 102 M−1sec−1). The aggregation-disaggregation of peptides was controlled by visualization on transmission electron microscope and by Thioflavin-T fluorescence on spectrofluorimeter and fluorescent microscope. DPPIV hindered the peptide aggregation/fibrillation during 3-4 days incubation in 20 mM phosphate buffer, pH 7.4, 37 °C by 50–80%. Ovalbumin, BSA and DPPII did not show this effect. In the presence of DPPIV, the preformed fibrils were disaggregated by 30–40%. Conclusion: for the first time it was shown that the Aβ40 and Aβ42 are substrates of DPPIV. DPPIV prohibits the fibrillation of peptides and promotes disaggregation of their preformed aggregates.  相似文献   

8.
As is typical for S100-target protein interactions, a Ca2+-dependent conformational change in S100A1 is required to bind to a 12-residue peptide (TRTK12) derived from the actin-capping protein CapZ. In addition, the Ca2+-binding affinity of S100A1 is found to be tightened (greater than threefold) when TRTK12 is bound. To examine the biophysical basis for these observations, we determined the solution NMR structure of TRTK12 in a complex with Ca2+-loaded S100A1. When bound to S100A1, TRTK12 forms an amphipathic helix (residues N6 to S12) with several favorable hydrophobic interactions observed between W7, I10, and L11 of the peptide and a well-defined hydrophobic binding pocket in S100A1 that is only present in the Ca2+-bound state. Next, the structure of S100A1-TRTK12 was compared to that of another S100A1-target complex (i.e., S100A1-RyRP12), which illustrated how the binding pocket in Ca2+-S100A1 can accommodate peptide targets with varying amino acid sequences. Similarities and differences were observed when the structures of S100A1-TRTK12 and S100B-TRTK12 were compared, providing insights regarding how more than one S100 protein can interact with the same peptide target. Such comparisons, including those with other S100-target and S100-drug complexes, provide the basis for designing novel small-molecule inhibitors that could be specific for blocking one or more S100-target protein interactions.  相似文献   

9.
Using homonuclear 1H NOESY spectra, with chemical shifts, 3JHNHα scalar couplings, residual dipolar couplings, and 1H-15N NOEs, we have optimized and validated the conformational ensembles of the amyloid-β 1–40 (Aβ40) and amyloid-β 1–42 (Aβ42) peptides generated by molecular dynamics simulations. We find that both peptides have a diverse set of secondary structure elements including turns, helices, and antiparallel and parallel β-strands. The most significant difference in the structural ensembles of the two peptides is the type of β-hairpins and β-strands they populate. We find that Aβ42 forms a major antiparallel β-hairpin involving the central hydrophobic cluster residues (16–21) with residues 29–36, compatible with known amyloid fibril forming regions, whereas Aβ40 forms an alternative but less populated antiparallel β-hairpin between the central hydrophobic cluster and residues 9–13, that sometimes forms a β-sheet by association with residues 35–37. Furthermore, we show that the two additional C-terminal residues of Aβ42, in particular Ile-41, directly control the differences in the β-strand content found between the Aβ40 and Aβ42 structural ensembles. Integrating the experimental and theoretical evidence accumulated over the last decade, it is now possible to present monomeric structural ensembles of Aβ40 and Aβ42 consistent with available information that produce a plausible molecular basis for why Aβ42 exhibits greater fibrillization rates than Aβ40.  相似文献   

10.
β-Amyloid peptide 1 1These authors contributed equally to this work. Communicated by Ramaswamy H. Sarma (Aβ) aggregates are toxic to neuron and the main cause of Alzheimer’s disease (AD). The role of congo red (CR) on Aβ aggregation is controversial in aqueous solution. Both prevention and promotion of Aβ aggregation have been proposed, suggesting that CR may interact with Aβ of different structural conformations resulting in different effects on Aβ aggregation behavior. CR with these characteristics can be applied to probe the molecular mechanism of Aβ aggregation. Therefore, in the present study, we used CR as a probe to study the Aβ aggregation behavior in sodium dodecyl sulfate (SDS) condition. Our results show that Aβ40 adopts two short helices at Q15-S26 and K28-L34 in the SDS environment. CR can interact with the helical form of Aβ40, and the main interaction site is located at the first helical and hydrophobic core region, residues 17–25, which is assigned as a discordant helix region. Furthermore, CR may prevent Aβ40 undergoing α-helix to β-strand conversion, and therefore aggregation through stabilizing the helical conformation of discordant helix in SDS environment, suggesting that the discordant helix plays a key role on the conformational stabilization of Aβ. Our present study implies that any factors or molecules that can stabilize the discordant helical conformation may also prevent the Aβ aggregation in membrane associated state. This leads to a new therapeutic strategy for the development of lead compounds to AD.  相似文献   

11.
Alzheimer’s disease (AD), which is characterized by progressive cognitive impairment, is the most common neurodegenerative disease. Here, we investigated the preventive effect of a phosphodiesterase III inhibitor, cilostazol against cognitive decline in AD mouse model. In vitro studies using N2a cells stably expressing human amyloid precursor protein Swedish mutation (N2aSwe) showed that cilostazol decreased the amyloid β (Aβ) levels in the conditioned medium and cell lysates. Cilostazol attenuated the expression of ApoE, which is responsible for Aβ aggregation, in N2aSwe. Intracerebroventricular injection of Aβ25–35 in C57BL/6J mice resulted in increased immunoreactivity of Aβ and p-Tau, and microglia activation in the brain. Oral administration of cilostazol for 2 weeks before Aβ administration and once a day for 4 weeks post-surgery almost completely prevented the Aβ-induced increases of Aβ and p-Tau immunoreactivity, as well as CD11b immunoreactivity. However, post-treatment with cilostazol 4 weeks after Aβ administration, when Aβ was already accumulated, did not prevent the Aβ-induced neuropathological responses. Furthermore, cilostazol did not affect the neprilysin and insulin degrading enzymes involved in the degradation of the Aβ peptide, but decreased ApoE levels in Aβ-injected brain. In addition, cilostazol significantly improved spatial learning and memory in Aβ-injected mice. The findings suggest that a phosphodiesterase III inhibitor, cilostazol significantly decreased Aβ accumulation and improved memory impairment induced by Aβ25–35. The beneficial effects of cilostazol might be explained by the reduction of Aβ accumulation and tau phosphorylation, not through an increase in Aβ degradation but via a significant decrease in ApoE-mediated Aβ aggregation. Cilostazol may be the basis of a novel strategy for the therapy of AD.  相似文献   

12.
Aggregation of Aβ peptides is a seminal event in Alzheimer's disease. Detailed understanding of the Aβ assembly process would facilitate the targeting and design of fibrillogenesis inhibitors. Here, conformational studies using FTIR spectroscopy are presented. As a model peptide, the 11–28 fragment of Aβ was used. This model peptide is known to contain the core region responsible for Aβ aggregation. The structural behavior of the peptide during aggregation provoked by the addition of water to Aβ(11–28) solution in hexafluoroisopropanol was compared with the properties of its variants corresponding to natural, clinically relevant mutants at positions 21–23 (A21G, E22K, E22G, E22Q and D23N). The results showed that the aggregation of the peptides proceeds via a helical intermediate, and it is possible that the formation of α‐helical structures is preceded by creation of 310‐helix/310‐turn structures. Copyright © 2008 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

13.
N-terminal domain of HIV-1 p24 capsid protein is a globular fold composed of seven helices and two β-strands with a flexible structure including the α4–5 loop and both N- and C-terminal ends. However, the protein shows a high tendency (48%) for an intrinsically disordered structure based on the PONDR VL-XT prediction from the primary sequence. To assess the possibility of marginally stabilized structure under physiological conditions, the N-terminal domain of p24 was destabilized by the addition of an artificial flexible tag to either N- or C-terminal ends, and it was analyzed using T1, T2, hetero-nuclear NOE, and amide-proton exchange experiments. When the C-terminal tag (12 residues) was attached, the regions of the α3–4 loop and helix 6 as well as the α4–5 loop attained the flexible structures. Furthermore, in the protein containing the N-terminal tag (27 residues), helix 4 in addition to the above-mentioned area including α3–4 and α4–5 loops as well as helix 6 exhibited highly disordered structures. Thus, the long-range effects of the existence of tag sequence was observed in the stepwise manner of the appearance of disordered structures (step 1: α4–5 loop, step 2: α3–4 loop and helix 6, and step 3: helix 4). Furthermore, the disordered regions in tagged proteins were consistent with the PONDR VL-XT disordered prediction. The dynamic structure located in the middle part (α3–4 loop to helix 6) of the protein shown in this study may be related to the assembly of the viral particle.  相似文献   

14.

Background

Alzheimer's disease (AD) is a progressive neurodegenerative disorder. There is a consensus that Aβ is a pathologic agent and that its toxic effects, which are at present incompletely understood, may occur through several potential mechanisms. Polyphenols are known to have wide-ranging properties with regard to health and for helping to prevent various diseases like neurodegenerative disorders. Thus inhibiting the formation of toxic Aβ assemblies is a reasonable hypothesis to prevent and perhaps treat AD

Methods

Solution NMR and molecular modeling were used to obtain more information about the interaction between the Aβ1–40 and the polyphenol ε-viniferin glucoside (EVG) and particularly the Aβ residues involved in the complex.

Results

The study demonstrates the formation of a complex between two EVG molecules and Aβ1–40 in peptide characteristic regions that could be in agreement with the inhibition of aggregation. Indeed, in previous studies, we reported that EVG strongly inhibited in vitro the fibril formation of the full length peptides Aβ1–40 and Aβ1–42, and had a strong protective effect against PC12 cell death induced by these peptides.

Conclusion

For the full length peptide Aβ1–40, the binding sites observed could explain the EVG inhibitory effect on fibrillization and thus prevent amyloidogenic neurotoxicity.

General significance

Even though this interaction might be important at the biological level to explain the protective effect of polyphenols in neurodegenerative diseases, caution is required when extrapolating this in vitro model to human physiology.  相似文献   

15.
16.
Oligosaccharyltransferase (OST) is a membrane associated enzyme complex that mediates transfer of an oligosaccharide onto asparagine residue of a protein. Human Ost4 is a small membrane protein and belongs to one of the seven subunits of human OST. This study determined the solution structure of human Ost4 in solvent system using NMR spectroscopy. Ost4 was demonstrated that the residues 5–30 adopt an α-helical structure. A kink structure was observed in the transmembrane domain, which may be important for its function.  相似文献   

17.
GABAB receptor is a G protein-coupled receptor for GABA and drug target for neurological and psychiatric disorders. From the analysis of GTPγS binding assay, we found that a synthesized peptide (GABAb: ETKSVSTEKINDHR) corresponding to the intracellular third loop region of metabotropic GABAB receptor could activate Gi protein α subunit directly. The three dimensional molecular structure of the peptide in SDS-d25 micelles was determined by 2D 1H-NMR spectroscopy. GABAb peptide formed an α helical structure and a positive charge cluster at the C-terminal site. These structural features were also found in several other G protein activating peptides. From the comparison among these peptides, we found that peptides with high helical content show the high activity.  相似文献   

18.
Human Raf-1 kinase inhibitor protein (hRKIP) is a small multi-functional protein of 187 residues. It contains a conserved pocket, which binds a wide range of ligands from various small molecules to distinct proteins. To provide a structural basis for the ligand diversity of RKIP, we herein determined the solution structure of hRKIP, and analyzed its structural dynamics. In solution, hRKIP mainly comprises two antiparallel β sheets, two α helices and two 310 helices. NMR dynamic analysis reveals that the overall structure of hRKIP is rigid, but its C-terminal helix which is close to the ligand-binding site is mobile. In addition, residues around the ligand-binding pocket exhibit significant conformational exchange on the μs–ms timescale. Conformational flexibility may allow the ligand-binding pocket and the C-terminal helix to adopt various conformations to interact with different substrates. This work may shed light on the underlying molecular mechanisms of how hRKIP recognizes and binds diverse substrate ligands.  相似文献   

19.
Misfolded protein aggregates, characterized by a canonical amyloid fold, play a central role in the pathobiology of neurodegenerative diseases. Agents that bind and sequester neurotoxic intermediates of amyloid assembly, inhibit the assembly or promote the destabilization of such protein aggregates are in clinical testing. Here, we show that the gene 3 protein (g3p) of filamentous bacteriophage mediates potent generic binding to the amyloid fold. We have characterized the amyloid binding and conformational remodeling activities using an array of techniques, including X-ray fiber diffraction and NMR. The mechanism for g3p binding with amyloid appears to reflect its physiological role during infection of Escherichia coli, which is dependent on temperature-sensitive interdomain unfolding and cistrans prolyl isomerization of g3p. In addition, a natural receptor for g3p, TolA-C, competitively interferes with Aβ binding to g3p. NMR studies show that g3p binding to Aβ fibers is predominantly through middle and C-terminal residues of the Aβ subunit, indicating β strand–g3p interactions. A recombinant bivalent g3p molecule, an immunoglobulin Fc (Ig) fusion of the two N-terminal g3p domains, (1) potently binds Aβ fibers (fAβ) (KD = 9.4 nM); (2); blocks fAβ assembly (IC50 ~ 50 nM) and (3) dissociates fAβ (EC50 = 40–100 nM). The binding of g3p to misfolded protein assemblies is generic, and amyloid-targeted activities can be demonstrated using other misfolded protein systems. Taken together, our studies show that g3p(N1N2) acts as a general amyloid interaction motif.  相似文献   

20.
Alzheimer's disease (AD), a neurodegenerative disorder, is directly related to the aggregation of Aβ peptides. These peptides can self-assemble from monomers to higher oligomeric or fibrillar structures in a highly ordered and efficient manner. This self-assembly process is accompanied by a structural transition of the aggregated proteins from their normal fold into a predominantly β-sheet secondary structure. 14 ns molecular dynamics simulation revealed that fulvic acid interrupted the dimer formation of Aβ17–42 peptide while in its absence Aβ17–42 dimer formation occurred at ~ 12 ns. Additionally, fulvic acid disrupted the preformed Aβ17–42 trimer in a very short time interval (12 ns). These results may provide an insight in the drug design against Aβ17–42 peptide aggregation using fulvic acid as lead molecule against Aβ17–42 mediated cytotoxicity and neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号