首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Successful cell therapy will depend on the ability to monitor transplanted cells. With cell labeling, it is important to demonstrate efficient long term labeling without deleterious effects on cell phenotype and differentiation capacity. We demonstrate long term (7 weeks) retention of superparamagnetic iron oxide particles (SPIO) by mesenchymal stem cells (MSCs) in vivo, detectable by MRI. In vitro, multilineage differentiation (osteogenic, chondrogenic and adipogenic) was demonstrated by histological evaluation and molecular analysis in SPIO labeled and unlabeled cells. Gene expression levels were comaparable to unlabeled controls in adipogenic and chondrogenic conditions however not in the osteogenic condition. MSCs seeded into a scaffold for 21 days and implanted subcutaneously into nude mice for 4 weeks, showed profoundly altered phenotypes in SPIO labeled samples compared to implanted unlabeled control scaffolds, indicating chondrogenic differentiation. This study demonstrates long term MSC traceability using SPIO and MRI, uninhibited multilineage MSC differentiation following SPIO labeling, though with subtle but significant phenotypical alterations.  相似文献   

2.
Mesenchymal stem cells (MSCs) have received considerable attention in recent years. Particularly exciting is the prospect that MSCs could be differentiated into specialized cells of interest, which could then be used for cell therapy and tissue engineering. MSCs derived from nonhuman primates could be a powerful tool for investigating the differentiation potential in vitro and in vivo for preclinical research. The purpose of this study was to isolate cynomolgus mesenchymal stem cells (cMSCs) from adult bone marrow and characterize their growth properties and multipotency. Mononuclear cells were isolated from cynomolgus monkey bone marrow by density-gradient centrifugation, and adherent fibroblast-like cells grew well in the complete growth medium with 10 μM Tenofovir. cMSCs expressed mesenchymal markers, such as CD29, CD105, CD166 and were negative for hematopoietic markers such as CD34, CD45. Furthermore, the cells were capable of differentiating into osteogenic, chondrogenic, and adipogenic lineages under certain conditions, maintaining normal karyotype throughout extended culture. We also compared different methods (lipofection, nucleofection and lentivirus) for genetic modification of cMSCs and found lentivirus proved to be the most effective method with transduction efficiency of up to 44.6% and lowest level of cell death. The cells after transduction stably expressed green fluorescence protein (GFP) and maintained the abilities to differentiate down osteogenic and adipogenic lineages. In conclusion, these data showed that cMSCs isolated from cynomolgus bone marrow shared similar characteristics with human MSCs and might provide an attractive cell type for cell-based therapy in higher-order mammalian species disorder models.  相似文献   

3.
4.
Human adipose tissue is a source of multipotent stem cells   总被引:209,自引:0,他引:209       下载免费PDF全文
Much of the work conducted on adult stem cells has focused on mesenchymal stem cells (MSCs) found within the bone marrow stroma. Adipose tissue, like bone marrow, is derived from the embryonic mesenchyme and contains a stroma that is easily isolated. Preliminary studies have recently identified a putative stem cell population within the adipose stromal compartment. This cell population, termed processed lipoaspirate (PLA) cells, can be isolated from human lipoaspirates and, like MSCs, differentiate toward the osteogenic, adipogenic, myogenic, and chondrogenic lineages. To confirm whether adipose tissue contains stem cells, the PLA population and multiple clonal isolates were analyzed using several molecular and biochemical approaches. PLA cells expressed multiple CD marker antigens similar to those observed on MSCs. Mesodermal lineage induction of PLA cells and clones resulted in the expression of multiple lineage-specific genes and proteins. Furthermore, biochemical analysis also confirmed lineage-specific activity. In addition to mesodermal capacity, PLA cells and clones differentiated into putative neurogenic cells, exhibiting a neuronal-like morphology and expressing several proteins consistent with the neuronal phenotype. Finally, PLA cells exhibited unique characteristics distinct from those seen in MSCs, including differences in CD marker profile and gene expression.  相似文献   

5.
6.
Melatonin’s therapeutic potential has been highly underestimated because its biological functional roles are diverse and relevant mechanisms are complicated. Among the numerous biological activities of melatonin, its regulatory effects on pluripotent mesenchymal stem cells (MSCs), which are found in bone marrow stem cells (BMSCs) and adipose tissue (AD-MSC), have been recently proposed, which has received increasingly more attention in recent studies. Moreover, receptor-dependent and receptor-independent responses to melatonin are identified to occur in these cells by regulating signaling pathways, which drive the commitment and differentiation of MSCs into osteogenic, chondrogenic, or adipogenic lineages. Therefore, the aim of our current review is to summarize the evidence related to the utility of melatonin as a regulatory agent by focusing on its relationship with the differentiation of MSCs. In particular, we aimed to review its roles in promoting osteogenic and chondrogenic differentiation and the relevant signaling cascades involved. Also, the roles that melatonin and, particularly, its receptors play in these processes are highlighted.  相似文献   

7.
The current study was undertaken with the goal being isolation, cultivation, and characterization of ovine mesenchymal stem cells (oMSC). Furthermore, the objective was to determine whether biological active polycaprolactone-co-lactide (trade name PCL) scaffolds support the growth and differentiation of oMSC in vitro. The oMSC were isolated from the iliac crest of six merino sheep. Three factors were used to demonstrate the MSC properties of the isolated cells in detail. (1) Their ability to proliferate in culture with a spindle-shaped morphology, (2) presence of specific surface marker proteins, and (3) their capacity to differentiate into the three classical mesenchymal pathways, osteoblastic, adipogenic, and chondrogenic lineages. Furthermore, embroidered PCL scaffolds were coated with collagen I (coll I) and chondroitin sulfate (CS). The porous structure of the scaffolds and the coating with coll I/CS allowed the oMSC to adhere, proliferate, and to migrate into the scaffolds. The coll I/CS coating on the PCL scaffolds induced osteogenic differentiation of hMSC, without differentiation supplements, indicating that the scaffold also has an osteoinductive character. In conclusion, the isolated cells from the ovine bone marrow have similar morphologic, immunophenotypic, and functional characteristics as their human counterparts. These cells were also found to differentiate into multiple mesenchymal cell types. This study demonstrates that embroidered PCL scaffolds can act as a temporary matrix for cell migration, proliferation, and differentiation of oMSC. The data presented will provide a reliable model system to assess the translation of MSC-based therapy into a variety of valuable ovine experimental models under autologous settings.  相似文献   

8.
9.
Human mesenchymal stem cells (MSCs) reside under hypoxic conditions in vivo, between 4% and 7% oxygen. Differentiation of MSCs under hypoxic conditions results in inhibited osteogenesis, while chondrogenesis is unaffected. The reasons for these results may be associated with the inherent metabolism of the cells. The present investigation measured the oxygen consumption, glucose consumption and lactate production of MSCs during proliferation and subsequent differentiation towards the osteogenic and chondrogenic lineages. MSCs expanded under normoxia had an oxygen consumption rate of ~98 fmol/cell/h, 75% of which was azide-sensitive, suggesting that these cells derive a significant proportion of ATP from oxidative phosphorylation in addition to glycolysis. By contrast, MSCs differentiated towards the chondrogenic lineage using pellet culture had significantly reduced oxygen consumption after 24 h in culture, falling to ~12 fmol/cell/h after 21 days, indicating a shift towards a predominantly glycolytic metabolism. By comparison, MSCs retained an oxygen consumption rate of ~98 fmol/cell/h over 21 days of osteogenic culture conditions, indicating that these cells had a more oxidative energy metabolism than the chondrogenic cultures. In conclusion, osteogenic and chondrogenic MSC cultures appear to adopt the balance of oxidative phosphorylation and glycolysis reported for the respective mature cell phenotypes. The addition of TGF-β to chondrogenic pellet cultures significantly enhanced glycosaminoglycan accumulation, but caused no significant effect on cellular oxygen consumption. Thus, the differences between the energy metabolism of chondrogenic and osteogenic cultures may be associated with the culture conditions and not necessarily their respective differentiation.  相似文献   

10.
Embryonic stem cells (ESCs) and mesenchymal stem cells (MSCs) have been studied for years as primary cell sources for regenerative biology and medicine. MSCs have been derived from cell and tissue sources, such as bone marrow (BM), and more recently from ESCs. This study investigated MSCs derived from BM, H1- and H9-ESC lines in terms of morphology, surface marker and growth factor receptor expression, proliferative capability, modulation of immune cell growth and multipotency, in order to evaluate ESC-MSCs as a cell source for potential regenerative applications. The results showed that ESC-MSCs exhibited spindle-shaped morphology similar to BM-MSCs but of various sizes, and flow cytometric immunophenotyping revealed expression of characteristic MSC surface markers on all tested cell lines except H9-derived MSCs. Differences in growth factor receptor expression were also shown between cell lines. In addition, ESC-MSCs showed greater capabilities for cell proliferation, and suppression of leukocyte growth compared to BM-MSCs. Using standard protocols, induction of ESC-MSC differentiation along the adipogenic, osteogenic, or chondrogenic lineages was less effective compared to that of BM-MSCs. By adding bone morphogenetic protein 7 (BMP7) into transforming growth factor beta 1 (TGFβ1)-supplemented induction medium, chondrogenesis of ESC-MSCs was significantly enhanced. Our findings suggest that ESC-MSCs and BM-MSCs show differences in their surface marker profiles and the capacities of proliferation, immunomodulation, and most importantly multi-lineage differentiation. Using modified chondrogenic medium with BMP7 and TGFβ1, H1-MSCs can be effectively induced as BM-MSCs for chondrogenesis.  相似文献   

11.
In addition to traditional osteogenic, chondrogenic, and adipogenic differentiation, mesenchymal stem cells are considered to be capable of also giving rise to neural lineage. We overview the transgenic approach for the neurogenic differentiation of MSCs, including the expression of neurotrophic factors, signaling molecules, and other transgenes with neurogenic properties.  相似文献   

12.
Tissue engineering (TE) has emerged as a promising new therapy for the treatment of damaged tissues and organs. Adult stem cells are considered as an attractive candidate cell type for cell-based TE. Mesenchymal stem cells (MSC) have been isolated from a variety of tissues and tested for differentiation into different cell lineages. While clinical trials still await the use of human MSC, horse tendon injuries are already being treated with autologous bone marrow-derived MSC. Given that the bone marrow is not an optimal source for MSC due to the painful and risk-containing sampling procedure, isolation of stem cells from peripheral blood would bring an attractive alternative. Adherent fibroblast-like cells have been previously isolated from equine peripheral blood. However, their responses to the differentiation conditions, established for human bone marrow MSC, were insufficient to fully confirm their multilineage potential. In this study, differentiation conditions were optimized to better evaluate the multilineage capacities of equine peripheral blood-derived fibroblast-like cells (ePB-FLC) into adipogenic, osteogenic, and chondrogenic pathways. Adipogenic differentiation using rabbit serum resulted in a high number of large-size lipid droplets three days upon induction. Cells' expression of alkaline phosphatase and calcium deposition upon osteogenic induction confirmed their osteogenic differentiation capacities. Moreover, an increase of dexamethasone concentration resulted in faster osteogenic differentiation and matrix mineralization. Finally, induction of chondrogenesis in pellet cultures resulted in an increase in cartilage-specific gene expression, namely collagen II and aggrecan, followed by protein deposition after a longer induction period. This study therefore demonstrates that ePB-FLC have the potential to differentiate into adipogenic, osteogenic, and chondrogenic mesenchymal lineages. The presence of cells with confirmed multilineage capacities in peripheral blood has important clinical implications for cell-based TE therapies in horses.  相似文献   

13.
Cumulative evidence indicates that bone marrow mesenchymal stem cells (MSCs) are multipotent cells capable of differentiating to osteogenic and adipogenic lineages when stimulated under appropriate conditions. Whether OGP(10-14) directly regulates the progenitor cells differentiating into osteoblasts or adipocytes remains unknown. In the present study, we investigated the roles of OGP(10-14) in differentiation along these separate lineages using rat bone marrow MSCs. Our results showed that OGP(10-14) promoted osteogenic differentiation of the stem cells and concurrently inhibited adipocyte formation. OGP(10-14) increased alkaline phosphatase (ALP) activity and mineralized nodule formation, and stimulated osteoblast-specific mRNA expression of core-binding factor 1 (cbfa1). In contrast, OGP(10-14) decreased adipocyte numbers and inhibited adipocyte-specific mRNA expression of peroxisome proliferator-activated receptor-gamma 2 (PPARgamma2). These observations suggest that commitment of MSCs into osteogenic or adipogenic lineages is regulated by OGP(10-14).  相似文献   

14.
The bone marrow represents the most common source from which to isolate mesenchymal stem cells (MSCs). MSCs are capable of differentiating into tissues of the three primary lineages and have the potential to enhance repair in damaged organs through the principals of regenerative medicine. Given the ease with which MSCs may be isolated from different species the aim of this study was to isolate and characterize putative bone marrow derived MSCs from the spiny mouse, Acomys cahirinus. MSCs were isolated from the spiny mouse in a traditional manner, and based on plastic adherence, morphology, colony forming unit-fibroblast assays and functional assessment (adipogenic, osteogenic and chondrogenic differentiation potential) a population of putative mesenchymal stem cells from the compact bone of the spiny mouse have been isolated and characterized. Such methodological approaches overcome the lack of species-specific antibodies for the spiny mouse and could be employed for other species where the cost of generating species-specific antibodies is not warranted.  相似文献   

15.
Pluripotent mesenchymal stem cells (MSCs) are bone marrow stromal progenitor cells that can differentiate into osteogenic, chondrogenic, adipogenic, and myogenic lineages. We previously demonstrated that bone morphogenetic protein (BMP) 9 is one of the most potent and yet least characterized BMPs that are able to induce osteogenic differentiation of MSCs both in vitro and in vivo. Here, we conducted gene expression-profiling analysis and identified that Hey1 of the hairy/Enhancer of split-related repressor protein basic helix-loop-helix family was among the most significantly up-regulated early targets in BMP9-stimulated MSCs. We demonstrated that Hey1 expression was up-regulated at the immediate early stage of BMP9-induced osteogenic differentiation. Chromatin immunoprecipitation analysis indicated that Hey1 may be a direct target of the BMP9-induced Smad signaling pathway. Silencing Hey1 expression diminished BMP9-induced osteogenic differentiation both in vitro and in vivo and led to chondrogenic differentiation. Likewise, constitutive Hey1 expression augmented BMP9-mediated bone matrix mineralization. Hey1 and Runx2 were shown to act synergistically in BMP9-induced osteogenic differentiation, and Runx2 expression significantly decreased in the absence of Hey1, suggesting that Runx2 may function downstream of Hey1. Accordingly, the defective osteogenic differentiation caused by Hey1 knockdown was rescued by exogenous Runx2 expression. Thus, our findings suggest that Hey1, through its interplay with Runx2, may play an important role in regulating BMP9-induced osteoblast lineage differentiation of MSCs.  相似文献   

16.
BACKGROUND: The human cysteine rich protein 61 (CYR61, CCN1) as well as the other members of the CCN family of genes play important roles in cellular processes such as proliferation, adhesion, migration and survival. These cellular events are of special importance within the complex cellular interactions ongoing in bone remodeling. Previously, we analyzed the role of CYR61/CCN1 as an extracellular signaling molecule in human osteoblasts. Since mesenchymal stem cells of bone marrow are important progenitors for various differentiation pathways in bone and possess increasing potential for regenerative medicine, here we aimed to analyze the expression of CCN family members in bone marrow-derived human mesenchymal stem cells and along the osteogenic, the adipogenic and the chondrogenic differentiation. RESULTS: Primary cultures of human mesenchymal stem cells were obtained from the femoral head of patients undergoing total hip arthroplasty. Differentiation into adipocytes and osteoblasts was done in monolayer culture, differentiation into chondrocytes was induced in high density cell pellet cultures. For either pathway, established differentiation markers and CCN-members were analyzed at the mRNA level by RT-PCR and the CYR61/CCN1 protein was analyzed by immunocytochemistry.RT-PCR and histochemical analysis revealed the appropriate phenotype of differentiated cells (Alizarin-red S, Oil Red O, Alcian blue, alkaline phosphatase; osteocalcin, collagen types I, II, IX, X, cbfa1, PPARgamma, aggrecan). Mesenchymal stem cells expressed CYR61/CCN1, CTGF/CCN2, CTGF-L/WISP2/CCN5 and WISP3/CCN6. The CYR61/CCN1 expression decreased markedly during osteogenic differentiation, adipogenic differentiation and chondrogenic differentiation. These results were confirmed by immuncytochemical analyses. WISP2/CCN5 RNA expression declined during adipogenic differentiation and WISP3/CCN6 RNA expression was markedly reduced in chondrogenic differentiation. CONCLUSION: The decrease in CYR61/CCN1 expression during the differentiation pathways of mesenchymal stem cells into osteoblasts, adipocytes and chondrocytes suggests a specific role of CYR61/CCN1 for maintenance of the stem cell phenotype. The differential expression of CTGF/CCN2, WISP2/CCN5, WISP3/CCN6 and mainly CYR61/CCN1 indicates, that these members of the CCN-family might be important regulators for bone marrow-derived mesenchymal stem cells in the regulation of proliferation and initiation of specific differentiation pathways.  相似文献   

17.
OBJECTIVE: To test the hypothesis that dedifferentiated adult human cartilage chondrocytes (HAC) are a true multipotent primitive population. METHODS: Studies to characterize dedifferentiated HAC included cell cycle and quiescence analysis, cell fusion, flow-FISH telomere length assays, and ABC transporter analysis. Dedifferentiated HAC were characterized by flow cytometry, in parallel with bone marrow mesenchymal stem cells (MSC) and processed lipoaspirate (PLA) cells. The in vitro differentiation potential of dedifferentiated HAC was studied by cell culture under several inducing conditions, in multiclonal and clonal cell populations. RESULTS: Long-term HAC cultures were chromosomically stable and maintained cell cycle dynamics while showing telomere shortening. The phenotype of dedifferentiated HAC was quite similar to that of human bone marrow MSC. In addition, this population expressed human embryonic stem cell markers. Multiclonal populations of dedifferentiated HAC differentiated to chondrogenic, osteogenic, adipogenic, myogenic, and neurogenic lineages. Following VEGF induction, dedifferentiated HAC expressed characteristics of endothelial cells, including AcLDL uptake. A total of 53 clonal populations of dedifferentiated HAC were efficiently expanded; 17 were able to differentiate to chondrogenic, osteogenic, and adipogenic lineages. No correlation was observed between telomere length or quiescent population and differentiation potential in the clones assayed. CONCLUSION: Dedifferentiated HAC should be considered a human multipotent primitive population.  相似文献   

18.
A double-chamber bioreactor has been developed to generate a tissue-engineered osteochondral composite (TEOC). However, a TEOC generally requires two types of cells (i.e. chondrogenic and osteogenic cells). Therefore, the capacity of mesenchymal stem cells (MSCs) as a single-cell source to work within a double-chamber bioreactor and biphasic scaffolds for generating TEOC was investigated. Compared with static culture, the double-chamber bioreactor not only can promote faster cellular proliferation, indicated by the PicoGreen dsDNA assay, SEM and confocal imaging, but also can trigger efficient chondrogenic and osteogenic differentiation of MSCs in biphasic scaffolds simultaneously, evidenced by gene expression. Thus MSCs are promising as the ideal single-cell source and the double-chamber bioreactor is an advanced culture system to generate TEOC.  相似文献   

19.

Relatively less is known about the interactions that tightly regulate the mesenchymal stem cells (MSCs) to maintain their pluripotency. Recent studies reports that Wnt proteins might play an important role in governing the MSC cell fate. In this study, we tested the hypothesis that Wnt proteins differentially regulate in vitro differentiation of human umbilical cord derived MSCs. Stromal cells from human umbilical cord (hUCMSCs) were isolated and treated with Wnt inhibitor/activator. FACS analysis of hUCMSCs for CD29, CD90, CD73, CD44, CD45 marker expression and gene expression of Wnt target genes and lineage specific genes were performed after Lithium Chloride (LiCl) and Quercetin treatment for 6 days. The cultured primary hUCMSCs demonstrated elevated MSC surface marker expression with clonogenic properties and differentiation potentials towards osteogenic, adipogenic and chondrogenic lineages. Downregulation in the expression of Wnt with Quercetin treatment was noted. LiCl treatment increased cellular proliferation but did not influence differentiation suggesting that the cells retain pluripotency whereas Quercetin treatment downregulated stemness markers, Wnt target gene expression and promoted osteogenesis as demonstrated by FACS analysis, calcium estimation and gene expression studies. Shift of differentiation potential after the inhibition of Wnt signaling by Quercetin was evident from the gene expression data and elevated calcium production, driving MSCs towards probable osteogenic lineage. The findings in particular are likely to open an interesting avenue of biomedical research, summarizing the impact of Wnt signaling on lineage commitment of MSCs.

  相似文献   

20.
Adipose-derived stem cells are an attractive alternative as a source of stem cells that can easily be extracted from adipose tissue. Isolation, characterization, and multi-lineage differentiation of adipose-derived stem cells have been described for human and a number of other species. Here we aimed to isolate and characterize camel adipose-derived stromal cell frequency and growth characteristics and assess their adipogenic, osteogenic, and chondrogenic differentiation potential. Samples were obtained from five adult dromedary camels. Fat from abdominal deposits were obtained from each camel and adipose-derived stem cells were isolated by enzymatic digestion as previously reported elsewhere for adipose tissue. Cultures were kept until confluency and subsequently were subjected to differentiation protocols to evaluate adipogenic, osteogenic, and chondrogenic potential. The morphology of resultant camel adipose-derived stem cells appeared to be spindle-shaped fibroblastic morphology, and these cells retained their biological properties during in vitro expansion with no sign of abnormality in karyotype. Under inductive conditions, primary adipose-derived stem cells maintained their lineage differentiation potential into adipogenic, osteogenic, and chondrogenic lineages during subsequent passages. Our observation showed that like human lipoaspirate, camel adipose tissue also contain multi-potent cells and may represent an important stem cell source both for veterinary cell therapy and preclinical studies as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号