首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
《Developmental cell》2023,58(11):951-966.e5
  1. Download : Download high-res image (246KB)
  2. Download : Download full-size image
  相似文献   

2.
Wnt/β‐catenin signals are important regulators of embryonic and adult stem cell self‐renewal and differentiation and play causative roles in tumorigenesis. Purified recombinant Wnt3a protein, or Wnt3a‐conditioned culture medium, has been widely used to study canonical Wnt signaling in vitro or ex vivo. To study the role of Wnt3a in embryogenesis and cancer models, we developed a Cre recombinase activatable Rosa26Wnt3a allele, in which a Wnt3a cDNA was inserted into the Rosa26 locus to allow for conditional, spatiotemporally defined expression of Wnt3a ligand for gain‐of‐function (GOF) studies in mice. To validate this reagent, we ectopically overexpressed Wnt3a in early embryonic progenitors using the T‐Cre transgene. This resulted in up‐regulated expression of a β‐catenin/Tcf‐Lef reporter and of the universal Wnt/β‐catenin pathway target genes, Axin2 and Sp5. Importantly, T‐Cre; Rosa26Wnt3a mutants have expanded presomitic mesoderm (PSM) and compromised somitogenesis and closely resemble previously studied T‐Cre; Ctnnb1ex3 (β‐cateninGOF) mutants. These data indicate that the exogenously expressed Wnt3a stimulates the Wnt/β‐catenin signaling pathway, as expected. The Rosa26Wnt3a mouse line should prove to be an invaluable tool to study the function of Wnt3a in vivo.  相似文献   

3.
Because of their capacity to give rise to various types of cells in vitro, embryonic stem and embryonal carcinoma (EC) cells have been used as convenient models to study the mechanisms of cell differentiation in mammalian embryos. In this study, we explored the mouse P19 EC cell line as an effective tool to investigate the factors that may play essential roles in mesoderm formation and axial elongation morphogenesis. We first demonstrated that aggregated P19 cells not only exhibited gene expression patterns characteristic of mesoderm formation but also displayed elongation morphogenesis with a distinct anterior–posterior body axis as in the embryo. We then showed by RNA interference that these processes were controlled by various regulators of Wnt signaling pathways, namely β‐catenin, Wnt3, Wnt3a, and Wnt5a, in a manner similar to normal embryo development. We further showed by inhibitor treatments that the axial elongation morphogenesis was dependent on the activity of Rho‐associated kinase. Because of the convenience of these experimental manipulations, we propose that P19 cells can be used as a simple and efficient screening tool to assess the potential functions of specific molecules in mesoderm formation and axial elongation morphogenesis. genesis 47:93–106, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号