首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Amyloid fibrils are polymeric structures originating from aggregation of misfolded proteins. In vivo, proteolysis may modulate amyloidogenesis and fibril stability. In light chain (AL) amyloidosis, fragmented light chains (LCs) are abundant components of amyloid deposits; however, site and timing of proteolysis are debated. Identification of the N and C termini of LC fragments is instrumental to understanding involved processes and enzymes. We investigated the N and C terminome of the LC proteoforms in fibrils extracted from the hearts of two AL cardiomyopathy patients, using a proteomic approach based on derivatization of N- and C-terminal residues, followed by mapping of fragmentation sites on the structures of native and fibrillar relevant LCs. We provide the first high-specificity map of proteolytic cleavages in natural AL amyloid. Proteolysis occurs both on the LC variable and constant domains, generating a complex fragmentation pattern. The structural analysis indicates extensive remodeling by multiple proteases, largely taking place on poorly folded regions of the fibril surfaces. This study adds novel important knowledge on amyloid LC processing: although our data do not exclude that proteolysis of native LC dimers may destabilize their structure and favor fibril formation, the data show that LC deposition largely precedes the proteolytic events documentable in mature AL fibrils.  相似文献   

2.
Light-chain amyloidosis (AL) is characterized by immunoglobulin light-chain fragments aggregating into amyloid fibrils that deposit extracellularly in vital organs such as the kidney, the heart, and the liver, resulting in tissue degeneration and organ failure, leading to death. Cardiac involvement is found in 50% of AL patients and presents the most severe cases with a life expectancy of less than a year after diagnosis. In this study, we have characterized the variable domain of a cardiac AL patient light chain called AL-09. AL-09 folds as a beta-sheet and is capable of forming amyloid fibrils both in the presence of sodium sulfate and in self-seeded reactions under physiological conditions. Glycosaminoglycans such as dermatan sulfate and heparin promote amyloid formation of self-seeded AL-09 reactions, while the glycosaminoglycan chondroitin sulfate A stabilized oligomeric intermediates and did not elongate the preformed fibrils (nucleus) present in the reaction. Finally, the histological dye Congo red, known to bind to the cross beta-sheet structure of amyloid fibrils, inhibits AL-09 amyloid fibril formation in the presence of sodium sulfate and in self-seeded reactions. This paper provides insight into the impact of different reagents on light-chain stability, structure, amyloid fibril formation, and inhibition.  相似文献   

3.
Amyloid diseases are characterized by the misfolding of a precursor protein that leads to amyloid fibril formation. Despite the fact that there are different precursors, some commonalities in the misfolding mechanism are thought to exist. In light chain amyloidosis (AL), the immunoglobulin light chain forms amyloid fibrils that deposit in the extracellular space of vital organs. AL proteins are thermodynamically destabilized compared to non-amyloidogenic proteins and some studies have linked this instability to increased fibril formation rates. Here we present the crystal structures of two highly homologous AL proteins, AL-12 and AL-103. This structural study shows that these proteins retain the canonical germ line dimer interface. We highlight important structural alterations in two loops flanking the dimer interface and correlate these results with the somatic mutations present in AL-12 and AL-103. We suggest that these alterations are informative structural features that are likely contributing to protein instability that leads to conformational changes involved in the initial events of amyloid formation.  相似文献   

4.
《朊病毒》2013,7(2):52-55
Amyloid fibrils share a structural motif consisting of highly ordered β-sheets aligned perpendicular to the fibril axis1, 2. At each fibril end, β-sheets provide a template for recruiting and converting monomers3. Various amyloid fibrils often occur in the same individual, yet whether distinct protein aggregates aid or inhibit the assembly of heterologous proteins is unclear. In prion disease, different amyloid-like prion aggregate structures, or strains, are thought to be the basis of disparate disease phenotypes in the same species expressing identical prion protein sequences4-7. Here we focus on the interactions reported to occur when two pre-existing amyloids or two distinct prion strains occur together in the central nervous system.  相似文献   

5.
Primary amyloidosis (AL) results from overproduction of unstable monoclonal immunoglobulin light chains (LCs) and the deposition of insoluble fibrils in tissues, leading to fatal organ disease. Glycosaminoglycans (GAGs) are associated with AL fibrils and have been successfully targeted in the treatment of other forms of amyloidosis. We investigated the role of GAGs in LC fibrillogenesis. Ex vivo tissue amyloid fibrils were extracted and examined for structure and associated GAGs. The GAGs were detected along the length of the fibril strand, and the periodicity of heparan sulfate (HS) along the LC fibrils generated in vitro was similar to that of the ex vivo fibrils. To examine the role of sulfated GAGs on AL oligomer and fibril formation in vitro, a κ1 LC purified from urine of a patient with AL amyloidosis was incubated in the presence or absence of GAGs. The fibrils generated in vitro at physiologic concentration, temperature, and pH shared morphologic characteristics with the ex vivo κ1 amyloid fibrils. The presence of HS and over-O-sulfated-heparin enhanced the formation of oligomers and fibrils with HS promoting the most rapid transition. In contrast, GAGs did not enhance fibril formation of a non-amyloidogenic κ1 LC purified from urine of a patient with multiple myeloma. The data indicate that the characteristics of the full-length κ1 amyloidogenic LC, containing post-translational modifications, possess key elements that influence interactions of the LC with HS. These findings highlight the importance of the variable and constant LC regions in GAG interaction and suggest potential therapeutic targets for treatment.  相似文献   

6.
Functional amyloids are a rapidly expanding class of fibrillar protein structures, with a core cross-β scaffold, where novel and advantageous biological function is generated by the assembly of the amyloid. The growing number of amyloid structures determined at high resolution reveal how this supramolecular template both accommodates a wide variety of amino acid sequences and also imposes selectivity on the assembly process. The amyloid fibril can no longer be considered a generic aggregate, even when associated with disease and loss of function. In functional amyloids the polymeric β-sheet rich structure provides multiple different examples of unique control mechanisms and structures that are finely tuned to deliver assembly or disassembly in response to physiological or environmental cues. Here we review the range of mechanisms at play in natural, functional amyloids, where tight control of amyloidogenicity is achieved by environmental triggers of conformational change, proteolytic generation of amyloidogenic fragments, or heteromeric seeding and amyloid fibril stability. In the amyloid fibril form, activity can be regulated by pH, ligand binding and higher order protofilament or fibril architectures that impact the arrangement of associated domains and amyloid stability. The growing understanding of the molecular basis for the control of structure and functionality delivered by natural amyloids in nearly all life forms should inform the development of therapies for amyloid-associated diseases and guide the design of innovative biomaterials.  相似文献   

7.
Pathological aggregation of amyloid-forming proteins is a hallmark of a number of human diseases, including Alzheimer's, type 2 diabetes, Parkinson's, and more. Despite having very different primary amino acid sequences, these amyloid proteins form similar supramolecular, fibril structures that are highly resilient to physical and chemical denaturation. To better understand the structural stability of disease-related amyloids and to gain a greater understanding of factors that stabilize functional amyloid assemblies, insights into tertiary and quaternary interactions are needed. We performed molecular dynamics simulations on human tau, amyloid-β, and islet amyloid polypeptide fibrils to determine key physicochemical properties that give rise to their unique characteristics and fibril structures. These simulations are the first of their kind in employing a polarizable force field to explore properties of local electric fields on dipole properties and other electrostatic forces that contribute to amyloid stability. Across these different amyloid fibrils, we focused on how the underlying forces stabilize fibrils to elucidate the driving forces behind the protein aggregation. The polarizable model allows for an investigation of how side-chain dipole moments, properties of structured water molecules in the fibril core, and the local environment around salt bridges contribute to the formation of interfaces essential for fibril stability. By systematically studying three amyloidogenic proteins of various fibril sizes for key structural properties and stabilizing forces, we shed light on properties of amyloid structures related to both diseased and functional states at the atomistic level.  相似文献   

8.
Amyloid light chain (AL) amyloidosis is a protein misfolding disease where immunoglobulin light chains sample partially folded states that lead to misfolding and amyloid formation, resulting in organ dysfunction and death. In vivo, amyloid deposits are found in the extracellular space and involve a variety of accessory molecules, such as glycosaminoglycans, one of the main components of the extracellular matrix. Glycosaminoglycans are a group of negatively charged heteropolysaccharides composed of repeating disaccharide units. In this study, we investigated the effect of glycosaminoglycans on the kinetics of amyloid fibril formation of three AL cardiac amyloidosis light chains. These proteins have similar thermodynamic stability but exhibit different kinetics of fibril formation. We also studied single restorative and reciprocal mutants and wild type germ line control protein. We found that the type of glycosaminoglycan has a different effect on the kinetics of fibril formation, and this effect seems to be associated with the natural propensity of each AL protein to form fibrils. Heparan sulfate accelerated AL-12, AL-09, κI Y87H, and AL-103 H92D fibril formation; delayed fibril formation for AL-103; and did not promote any fibril formation for AL-12 R65S, AL-103 delP95aIns, or κI O18/O8. Chondroitin sulfate A, on the other hand, showed a strong fibril formation inhibition for all proteins. We propose that heparan sulfate facilitates the formation of transient amyloidogenic conformations of AL light chains, thereby promoting amyloid formation, whereas chondroitin sulfate A kinetically traps partially unfolded intermediates, and further fibril elongation into fibrils is inhibited, resulting in formation/accumulation of oligomeric/protofibrillar aggregates.  相似文献   

9.
Immunoglobulin light chain (LC) amyloidosis (AL) is a life-threatening human disease wherein free mono-clonal LCs deposit in vital organs. To determine what makes some LCs amyloidogenic, we explored patient-based amyloidogenic and non-amyloidogenic recombinant LCs from the λ6 subtype prevalent in AL. Hydrogen-deuterium exchange mass spectrometry, structural stability, proteolysis, and amyloid growth studies revealed that the antigen-binding CDR1 loop is the least protected part in the variable domain of λ6 LC, particularly in the AL variant. N32T substitution in CRD1 is identified as a driver of amyloid formation. Substitution N32T increased the amyloidogenic propensity of CDR1 loop, decreased its protection in the native structure, and accelerated amyloid growth in the context of other AL substitutions. The destabilizing effects of N32T propagated across the molecule increasing its dynamics in regions ∼30 Å away from the substitution site. Such striking long-range effects of a conservative point substitution in a dynamic surface loop may be relevant to Ig function. Comparison of patient-derived and engineered proteins showed that N32T interactions with other substitution sites must contribute to amyloidosis. The results suggest that CDR1 is critical in amyloid formation by other λ6 LCs.  相似文献   

10.
The antibody light chain (LC) consists of two domains and is essential for antigen binding in mature immunoglobulins. The two domains are connected by a highly conserved linker that comprises the structurally important Arg108 residue. In antibody light chain (AL) amyloidosis, a severe protein amyloid disease, the LC and its N-terminal variable domain (VL) convert to fibrils deposited in the tissues causing organ failure. Understanding the factors shaping the architecture of the LC is important for basic science, biotechnology and for deciphering the principles that lead to fibril formation. In this study, we examined the structure and properties of LC variants with a mutated or extended linker. We show that under destabilizing conditions, the linker modulates the amyloidogenicity of the LC. The fibril formation propensity of LC linker variants and their susceptibility to proteolysis directly correlate implying an interplay between the two LC domains. Using NMR and residual dipolar coupling-based simulations, we found that the linker residue Arg108 is a key factor regulating the relative orientation of the VL and CL domains, keeping them in a bent and dense, but still flexible conformation. Thus, inter-domain contacts and the relative orientation of VL and CL to each other are of major importance for maintaining the structural integrity of the full-length LC.  相似文献   

11.
Structural classification of toxic amyloid oligomers   总被引:1,自引:0,他引:1  
Amyloid oligomers are believed to play important causal roles in many types of amyloid-related degenerative diseases. Many different laboratories have reported amyloid oligomers that differ in size, morphology, toxicity, and method of preparation or purification, raising the question of the structural relationships among these oligomer preparations. The structural plasticity that has been reported to occur in amyloids formed from the same protein sequence indicates that it is quite possible that different oligomer preparations may represent distinct structural variants. In view of the difficulty in determining the precise structure of amyloids, conformation- and epitope-specific antibodies may provide a facile means of classifying amyloid oligomer structures. Conformation-dependent antibodies that recognize generic epitopes that are specifically associated with distinct aggregation states of many different amyloid-forming sequences indicate that there are at least two fundamentally distinct types of amyloid oligomers: fibrillar and prefibrillar oligomers. Classification of amyloid oligomers according to their underlying structures may be a more useful and rational approach than relying on differences in size and morphology.  相似文献   

12.
Light chain-associated (AL) amyloidosis is a common and fatal systemic amyloidosis. AL amyloid fibrils (fAL) are composed of intact or fragmental monoclonal light chains (AL proteins). To elucidate the molecular mechanisms of fAL formation from AL proteins, we purified fAL and AL proteins from the amyloid-deposited organs of five AL amyloidosis patients. By electron microscopy and fluorometric thioflavin T method, we observed optimal fibril extension at pH 2.0-3.5 for the fibrils obtained from four patients, while at pH 7.5-8.0 for those obtained from one patient. Fragmental AL proteins were more efficient in the extension reaction than intact AL proteins. The fibrils obtained from all five patients showed clear fibril extension electron microscopically at pH 7.5. The extension of the fibrils obtained from all five patients could be explained by a first-order kinetic model, i.e., fibril extension proceeds via the consecutive association of AL proteins onto the ends of existing fibrils. Fibril extension was accelerated by dermatan sulfate proteoglycan, and inhibited by apolipoprotein E, alpha1-microglobulin, fibronectin, and an antioxidant nordihydroguaiaretic acid. These findings contribute to our understanding of the molecular mechanism underlying the pathogenesis of AL amyloidosis, and will be useful for developing a therapeutic strategy against the disease.  相似文献   

13.
Beta2microglobulin (beta2m) is the major protein component of the fibrillar amyloid deposits isolated from patients diagnosed with dialysis-related amyloidosis (DRA). While investigating the molecular mechanism of amyloid fibril formation by beta2m, we found that the beta2m C-terminal peptide of 28 residues (cbeta2m) itself forms amyloid fibrils. When viewed by electron microscopy, cbeta2m aggregates appear as elongated unbranched fibers, the morphology typical for amyloids. Cbeta2m fibers stain with Congo red and show apple-green birefringence in polarized light, characteristic of amyloids. The observation that the beta2m C-terminal fragment readily forms amyloid fibrils implies that beta2m amyloid fibril formation proceeds via interactions of amyloid forming segments, which become exposed when the beta2m subunit is partially unfolded.  相似文献   

14.
The infectious agent of transmissible spongiform encephalopathies (TSE) has been considered to be PrP(SC), a structural isoform of cellular prion protein PrP(C). PrP(SC) can exist as oligomers and/or as amyloid polymers. Nucleic acids induce structural conversion of recombinant prion protein PrP and PrP(C) to PrP(SC) form in solution and in vitro. Here, we report that nucleic acids, by interacting with PrP in solution, produce amyloid fibril and fibres of different morphologies, similar to those identified in the diseased brains. In addition, the same interaction produces polymer lattices and spherical amyloids of different dimensions (15-150 nm in diameters). The polymer lattices show apparent morphological similarity to the two-dimensional amyloid crystals obtained from linear amyloids isolated in vivo. The spherical amyloids structurally resemble "spherical particles" observed in natural spongiform encephalopathy (SE) and in scrapie-infected brains (TSE). We suggest that spherical amyloids, PrP(SC)-amylospheroids, are probable constituents of the coat of the spherical particles found in vivo and the latter can act as protective coats of the SE and TSE agents in vivo.  相似文献   

15.
AL amyloidosis is caused by deposition in target tissue of amyloid fibrils constituted by monoclonal immunoglobulin light chains. The amyloidogenic plasma cells derive from a transformed memory B cell that can be identified by anti-idiotype monoclonal antibodies. Comparison of the primary structures of amyloidogenic and nonamyloidogenic light chains does not show any common structural motif in the amyloidogenic variants but reveals peculiar replacements which can destabilize the folding state. Reduced folding stability now appears to be a unifying property of amyloidogenic light chains. The tendency of these proteins to populate a partially unfolded intermediate state is a key event in the self-association that progresses to the formation of oligomers and fibrils. The mechanism of organ damage caused by AL amyloid deposition is not known, but clinical findings suggest that the process of amyloid fibril formation itself exerts tissue toxic effects independently of the amount of amyloid deposited. Since the disease is caused by the neoplastic expansion of the plasma cell population synthesizing the amyloidogenic light chains, the clone represents the prime therapeutic target of conventional chemotherapy and experimental immunotherapy. In common with other types of amyloidosis the therapeutic strategy can take advantage of drugs able to improve the reabsorption of the amyloid deposits or able to bind and stabilize the light chain in the native-like folded state.  相似文献   

16.
Liquid–liquid phase separation (LLPS) is a biological phenomenon wherein a metastable and concentrated droplet phase of biomolecules spontaneously forms. A link may exist between LLPS of proteins and the disease-related process of amyloid fibril formation; however, this connection is not fully understood. Here, we investigated the relationship between LLPS and aggregation of the C-terminal domain of TAR DNA-binding protein 43, an amyotrophic lateral sclerosis–related protein known to both phase separate and form amyloids, by monitoring conformational changes during droplet aging using Raman spectroscopy. We found that the earliest aggregation events occurred within droplets as indicated by the development of β-sheet structure and increased thioflavin-T emission. Interestingly, filamentous aggregates appeared outside the solidified droplets at a later time, suggestive that amyloid formation is a heterogeneous process under LLPS solution conditions. Furthermore, the secondary structure content of aggregated structures inside droplets is distinct from that in de novo fibrils, implying that fibril polymorphism develops as a result of different environments (LLPS versus bulk solution), which may have pathological significance.  相似文献   

17.
Current concepts regarding the association between immunoglobulin (Ig) light chain structure and AL amyloidosis (AL) emphasize Ig variable region amino acid substitutions because the majority of light chain amyloid fibrils that have been sequenced contain amino termini of the variable region with only small amounts of the constant region. In this report, we describe a patient with rapidly progressive AL whose amyloid deposits contained primarily monoclonal kappa light chain constant region fragments. We sequenced and analyzed this AL protein, determining that it was an O18-O8 kappa1 variant and that the constant region possessed an unusual Ser-->Asn substitution at position 177. Using pre-mortem bone marrow cells, we cloned and sequenced the cDNA for this AL protein (HCAK1) and, using DNA from post-mortem somatic tissue, we cloned and sequenced the patient's kappa germline O18-O8 donor and kappa constant region (Ckappa) gene segments. The cDNA that coded for HCAK1 contained a variable region that was derived from O18-O8, showing 96.1% homology to germline, and a Ckappa that had a nucleotide substitution (AGC to AAC), resulting in the 177Ser-->Asn replacement. Two Ckappa genes were cloned from somatic tissue DNA, one identical to a known Ckappa sequence and another containing this substitution which likely is a new Ckappa allotype. Our findings indicate that further investigation is warranted into the contributions genetic polymorphisms and light chain constant regions may make to amyloidogenesis.  相似文献   

18.
Amyloid proteins are found in a wide range of organisms owing to the high stability of the β-sheet core of the amyloid fibrils. There are both pathological amyloids involved in various diseases and functional amyloids that play a beneficial role for the organism. The aggregation process is complex and often involves many different species. Full understanding of this process requires parallel acquisition of data by complementary techniques monitoring the time course of aggregation. This is not an easy task, given the often-stochastic nature of aggregation, which can lead to significant variations in lag time. Here, we investigate the aggregation process of the functional amyloid FapC by simultaneous use of four different techniques, namely dynamic light scattering, small-angle x-ray scattering (SAXS), circular dichroism, and Thioflavin T fluorescence. All these approaches are applied to the same FapC sample just after desalting. Our data allow us to construct a master time-course graph showing the same time-course of aggregation by all techniques. This allows us to integrate insights from approaches that report on different structural and length scales. During the lag phase, loosely aggregated oligomers with random-coil structure are formed, which subsequently transform to fibrils without accumulation of additional significant species. Subsequently, the loosely associated protofilaments/subfilaments, which form side by side, mature to more compact fibrils. Furthermore, we determine the mass per length of the mature fibrils, obtaining very similar results by SAXS (33 kDa/nm) and tilted-beam transmission electron microscopy (31 kDa/nm). Transmission electron microscopy showed that the fibrils consist of primarily two protofilaments and similar dimensions of the cross section of the fibrils as revealed by SAXS modeling when the number of protofilaments per fibril was taken into account. Mass per length information underscores the general usefulness of SAXS in fibrillation analysis and provides an important constraint for further modeling the fibril structures.  相似文献   

19.
Amyloid is a diverse group of unrelated peptides or proteins that have positive functionality or are associated with various pathologies. Despite vast differences, all amyloids share several features that together uniquely define the group. 1) All amyloids possess a characteristic cross-ß pattern with X-ray diffraction typical of ß-sheet secondary protein structures. 2) All amyloids are birefringent and dichroic under polarizing microscopy after staining with Congo red, which indicates a crystalline-like (ordered) structure. 3) All amyloids cause a spectral shift in the peak wavelength of Congo red with conventional light microscopy due to perturbation of π electrons of the dye. 4) All amyloids show heightened intensity of fluorescence with Congo red, which suggests an unusual degree of packing of the dye onto the substrate. The ß portion of amyloid molecules, the only logical substrate for specific Congo red staining under histochemical conditions, consists of a stack of ß-sheets laminated by hydrophilic and hydrophobic interactions between adjacent pairs. Only the first and last ß-sheets are accessible to dyes. Each sheet is composed of numerous identical peptides running across the width of the sheet and arranged in parallel with side chains in register over the length of the fibril. Two sets of grooves are bordered by side chains. X grooves run perpendicular to the long axis of the fibril; these grooves are short (the width of the sheet) and number in the hundreds or thousands. Y grooves are parallel with the long axis. Each groove runs the entire length of the fibril, but there are very few of them. While Congo red is capable of ionic bonding with proteins via two sulfonic acid groups, physical constraints on the staining solution preclude ionic interactions. Hydrogen bonding between dye amine groups and peptide carbonyls is the most likely primary bonding mechanism, because all ß-sheets possess backbone carbonyls. Various amino acid residues may form secondary bonds to the dye via any of three van der Waals forces. It is possible that Congo red binds within the Y grooves, but that would not produce the characteristic staining features that are the diagnostic hallmarks of amyloid. Binding in the X grooves would produce a tightly packed series of dye molecules over the entire length of the fibril. This would account for the signature staining of amyloid by Congo red: dichroic birefringence, enhanced intensity of fluorescence and a shift in visible absorption wavelength.  相似文献   

20.
The prediction of highly ordered three-dimensional structures of amyloid protein fibrils from the amino acid sequences of their monomeric self-assembly precursors constitutes a challenging and unresolved aspect of the classical protein folding problem. Because of the polymorphic nature of amyloid assembly whereby polypeptide chains of identical amino acid sequences under identical conditions are capable of self-assembly into a spectrum of different fibril structures, the prediction of amyloid structures from an amino acid sequence requires a detailed and holistic understanding of its assembly free energy landscape. The full extent of the structure space accessible to the cross-β molecular architecture of amyloid must also be resolved. Here, we review the current understanding of the diversity and the individuality of amyloid structures, and how the polymorphic landscape of amyloid links to biology and disease phenotypes. We present a comprehensive review of structural models of amyloid fibrils derived by cryo-EM, ssNMR and AFM to date, and discuss the challenges ahead for resolving the structural basis and the biological consequences of polymorphic amyloid assemblies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号