共查询到20条相似文献,搜索用时 0 毫秒
1.
《Bioorganic & medicinal chemistry》2020,28(2):115227
Aberrant hedgehog (Hh) pathway signaling is implicated in multiple cancer types and targeting the Smoothened (SMO) receptor, a key protein of the Hh pathway, has proven effective in treating metastasized basal cell carcinoma. Our lead optimization effort focused on a series of heteroarylamides. We observed that a methyl substitution ortho to the heteroaryl groups on an aniline core significantly improved the potency of this series of compounds. These findings predated the availability of SMO crystal structure in 2013. Here we retrospectively applied quantum mechanics calculations to demonstrate the o-Me substitution favors the bioactive conformation by inducing a dihedral twist between the heteroaryl rings and the core aniline. The o-Me also makes favorable hydrophobic interactions with key residue side chains in the binding pocket. From this effort, two compounds (AZD8542 and AZD7254) showed excellent pharmacokinetics across multiple preclinical species and demonstrated in vivo activity in abrogating the Hh paracrine pathway as well as anti- tumor effects. 相似文献
2.
3.
《Journal of molecular biology》2022,434(17):167681
The FimH protein of Escherichia coli is a model two-domain adhesin that is able to mediate an allosteric catch bond mechanism of bacterial cell attachment, where the mannose-binding lectin domain switches from an ‘inactive’ conformation with fast binding to mannose to an ‘active’ conformation with slow detachment from mannose. Because mechanical tensile force favors separation of the domains and, thus, FimH activation, it has been thought that the catch bonds can only be manifested in a fluidic shear-dependent mode of adhesion. Here, we used recombinant FimH variants with a weakened inter-domain interaction and show that a fast and sustained allosteric activation of FimH can also occur under static, non-shear conditions. Moreover, it appears that lectin domain conformational activation happens intrinsically at a constant rate, independently from its ability to interact with the pilin domain or mannose. However, the latter two factors control the rate of FimH deactivation. Thus, the allosteric catch bond mechanism can be a much broader phenomenon involved in both fast and strong cell-pathogen attachments under a broad range of hydrodynamic conditions. This concept that allostery can enable more effective receptor-ligand interactions is fundamentally different from the conventional wisdom that allostery provides a mechanism to turn binding off under specific conditions. 相似文献
4.
《Journal of molecular biology》2023,435(11):168026
Hyper-phosphorylated tau accumulates as insoluble fibrils in Alzheimer’s disease (AD) and related dementias. The strong correlation between phosphorylated tau and disease has led to an interest in understanding how cellular factors discriminate it from normal tau. Here, we screen a panel of chaperones containing tetratricopeptide repeat (TPR) domains to identify those that might selectively interact with phosphorylated tau. We find that the E3 ubiquitin ligase, CHIP/STUB1, binds 10-fold more strongly to phosphorylated tau than unmodified tau. The presence of even sub-stoichiometric concentrations of CHIP strongly suppresses aggregation and seeding of phosphorylated tau. We also find that CHIP promotes rapid ubiquitination of phosphorylated tau, but not unmodified tau, in vitro. Binding to phosphorylated tau requires CHIP’s TPR domain, but the binding mode is partially distinct from the canonical one. In cells, CHIP restricts seeding by phosphorylated tau, suggesting that it could be an important barrier in cell-to-cell spreading. Together, these findings show that CHIP recognizes a phosphorylation-dependent degron on tau, establishing a pathway for regulating the solubility and turnover of this pathological proteoform. 相似文献
5.
《Saudi Journal of Biological Sciences》2023,30(8):103736
Poultry production has been developing in Vietnam with challenges of disease. Thus, feed additive should be investigated not only growth but also health enhancement. Here, we aimed to determine the effects of Saccharomyces cerevisiae-fermented rice (FR) and β-glucan on turkey’s growth performance, carcass characteristics, immune and fatty acid (FA) profiles. A total of 180 turkey chicks aged 1–56 days were randomly assigned to five sextuplicate groups and the birds had ad libitum feed and water access throughout the experiment. The five treatment groups were given the same diet with different proportions of FR and β-glucan. Broilers supplemented with 4% β-glucan and 4% FR presented the highest and second-highest growth performance, respectively. The 4% β-glucan and 4% FR treatments resulted in the highest carcass characteristic values without significantly affecting the breast or thigh meat pH or cooking loss. The 4% β-glucan and 4% FR treatments maximally increased the Newcastle disease (ND) antibody titers at 28, 42 and 56 days, respectively as well as thymus organ index. The foregoing treatments did not significantly affect the blood profiles relative to the control. However, the 4% FR treatment lowered the blood cholesterol levels (p > 0.05). The total FA profiles did not significantly differ among treatments. Nevertheless, both the β-glucan and FR treatments increased the MUFA levels compared to that of the control (p > 0.05). Hence, the dietary administration of 4% β-glucan and FR to turkey broilers could effectively improve their growth performance and immunity. 相似文献
6.
7.
《Bioorganic & medicinal chemistry》2019,27(19):115032
Combretastatin A-4 (CA-4) is a highly cytotoxic natural product and several derivatives have been prepared which underwent clinical trial. These investigations revealed that the cis-stilbene moiety of the natural product is prone to undergo cis/trans isomerization under physiological conditions, reducing the overall activity of the drug candidates. Herein, we report the preparation of cis-restrained carbocyclic analogs of CA-4. The compounds, which differ by the size and hybridization of the carbocyclic ring have been evaluated for their cytotoxic properties and their ability to inhibit tubulin polymerization. Biological data, supported by molecular docking studies, identified cyclobutenyl and cyclobutyl derivatives of the natural product as highly promising drug candidates. 相似文献
8.
《Journal of molecular biology》2021,433(16):167056
Cation-chloride cotransporters (CCCs) are responsible for the coupled co-transport of Cl- with K+ and/or Na+ in an electroneutral manner. They play important roles in myriad fundamental physiological processes––from cell volume regulation to transepithelial solute transport and intracellular ion homeostasis––and are targeted by medicines commonly prescribed to treat hypertension and edema. After several decades of studies into the functions and pharmacology of these transporters, there have been several breakthroughs in the structural determination of CCC transporters. The insights provided by these new structures for the Na+/K+/Cl- cotransporter NKCC1 and the K+/Cl- cotransporters KCC1, KCC2, KCC3 and KCC4 have deepened our understanding of their molecular basis and transport function. This focused review discusses recent advances in the structural and mechanistic understanding of CCC transporters, including architecture, dimerization, functional roles of regulatory domains, ion binding sites, and coupled ion transport. 相似文献
9.
Khadija Ridaoui Ismail Guenaou Ikram Taouam Mounia Cherki Noureddine Bourhim Abdelaziz Elamrani Mostafa Kabine 《Saudi Journal of Biological Sciences》2022,29(3):1842-1852
The purpose of this work was to investigate the protective effect of five essential oils (EOs); Rosmarinus officinalis, Thymus vulgaris, Origanum compactum Benth., Eucalyptus globulus Labill. and Ocimum basilicum L.; against oxidative stress induced by hydrogen peroxide in Saccharomyces cerevisiae. The chemical composition of the EOs was analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). The in vitro antioxidant activity was evaluated and the protective effect of EOs was investigated. Yeast cells were pretreated with different concentrations of EOs (6.25–25 µg/ml) for an hour then incubated with H2O2 (2 mM) for an additional hour. Cell viability, antioxidants (Catalase, Superoxide dismutase and Glutathione reductase) and metabolic (Succinate dehydrogenase) enzymes, as well as the level of lipid peroxidation (LPO) and protein carbonyl content (PCO) were evaluated. The chemical composition of EOs has shown the difference qualitatively and quantitatively. Indeed, O. compactum mainly contained Carvacrol, O. basilicum was mainly composed of Linalool, T. vulgaris was rich in thymol, R. officinalis had high α-Pinene amount and for E. globulus, eucalyptol was the major compound. The EOs of basil, oregano and thyme were found to possess the highest amount of total phenolic compounds. Moreover, they have shown the best protective effect on yeast cells against oxidative stress induced by H2O2. In addition, in a dose dependent manner of EOs in yeast medium, treated cells had lower levels of LPO, lower antioxidant and metabolic enzymes activity than cells exposed to H2O2 only. The cell viability was also improved. It seems that the studied EOs are efficient natural antioxidants, which can be exploited to protect against damages and serious diseases related to oxidative stress. 相似文献
10.
The genera Raabena and Pararaabena (Ciliophora, Entodiniomorphida, Blepharocorythidae) were monospecific, and their type species are Raabena bella Wolska, 1967 and Pararaabena dentata Wolska, 1968. They have been found in Asian elephants and closely resemble each other: ovoid and laterally compressed body; non-retractable adoral ciliary zone; funnel-shaped vestibulum; three non-retractable somatic ciliary arches. Furthermore, the positional relationship between the vestibular ciliary zone and the anterior dorsal ciliary zone identifies Raabena and Pararaabena: these two ciliary zones are connected in Raabena while they are separated in Pararaabena. While investigating entodiniomorphid ciliates of Asian elephants, the author often encountered ciliates similar to Raabena bella but with a sinuous body or with a small body and ciliates similar to Pararaabena dentata but with a slender body or with no or two caudal lobes. In this study, their general morphology and infraciliature were compared to R. bella and P. dentata to know whether they are new species or morphological variations in a species. As a result, the present study redescribed R. bella and P. dentata, and described R. sinuosa n. sp., R. bellafilia n. sp., P. gracilis n. sp., and morphotypes of P. dentata. 相似文献
11.
The chemical transformation of phosphinic acid is a well-considered mature area of research on account of the historical significant reactions such as Kabachnik–Fields, Mannich, Arbuzov, Michaelis–Becker, etc. Considerable advances have been made over last years especially in metal-catalyzed, free-radical processes and asymmetric synthesis using catalytic enantioselective. As a result, the aim of this synopsis is to make the reader familiar with advances in the approaches of phosphinic acids toward the synthesis of highly functionalized and valuable buildings blocks. Another purpose of this survey is to provide the current status of the applications of phosphinic acids in the synthesis of drugs. 相似文献
12.
《Journal of molecular biology》2021,433(10):166947
The rod-outer-segment guanylyl cyclase 1 (ROS-GC1) is a key transmembrane protein for retinal phototransduction. Mutations of ROS-GC1 correlate with different retinal diseases that often lead to blindness. No structural data are available for ROS-GC1 so far. We performed a 3D-structural analysis of native ROS-GC1 from bovine retina by cross-linking/mass spectrometry (XL-MS) and computational modeling. Absolute quantification and activity measurements of native ROS-GC1 were performed by MS-based assays directly in bovine retina samples. Our data present the first 3D-structural analysis of active, full-length ROS-GC1 derived from bovine retina. We propose a novel domain organization for the intracellular domain ROS-GC1. Our XL-MS data of native ROS-GC1 from rod-outer-segment preparations of bovine retina agree with a dimeric architecture. Our integrated approach can serve as a blueprint for conducting 3D-structural studies of membrane proteins in their native environment. 相似文献
13.
B.M.M. Baharoon A.M. Shaik Salim M. El-Hamidy Rady Eid El-Araby Ashwaq H. Batawi Mohamed Abdel Salam 《Saudi Journal of Biological Sciences》2022,29(5):3626-3634
Herein, the impact of the halloysite nanotubes to suppress the side effects of Asparaginase (ANase) cellular proliferation was investigated. Methods: A total of 100 adult male mice was employed. These mice were divided into four equal groups; Group 1 (control), Group 2 (ESC group) of a single dose of 0.15 ml Ehrlich cells (2 × 106) intraperitoneal infusion(IP), Group 3 (ESC + ANase group) received six doses equal treatments of Intratumoral (IT) 0.07 ml Aspragnase (7 mg/kg) over two weeks. For two weeks, Group 4 (ESC + ASNase + HNTs) received an IT administration of 0.07 ml Asparaginase stocked on Halloysite nanotubes (HNTs) (30 mg/kg) three times per week. A blood specimen was collected, and the liver was removed to be investigated histologically. Results: TEM measurements for the Halloysite nanoclay showed their tubular cylindrical shape with a mean diameter of 50 nm and an average length of 1 μm, whereas The X-ray diffraction pattern of the Halloysite nanoclay showed their characteristic peaks. ESC increases the serum levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, and bilirubin than control and other groups, even as albumin and total protein were decreasing. After using Halloysite Nanotube, the rates of these variables were enhanced up to 75%. The hepatocytes histological studies showed protection against Ehrlich Solid carcinoma-induced degenerative, necrotic, and inflammatory changes up to 70%. In conclusion, halloysite nanotubes have demonstrated effective removal of Ehrlich solid carcinoma in mice using an ASNase delivery system. It promoted the ASNase to inhibit the adverse effect of ANase's on the liver and remove the tumour cells. 相似文献
14.
《Journal of molecular biology》2023,435(10):168085
Monoclonal antibody (mAb)-based biologics are well established treatments of cancer. Antibody discovery campaigns are typically directed at a single target of interest, which inherently limits the possibility of uncovering novel antibody specificities or functionalities. Here, we present a target-unbiased approach for antibody discovery that relies on generating mAbs against native target cell surfaces via phage display. This method combines a previously reported method for improved whole-cell phage display selections with next-generation sequencing analysis to efficiently identify mAbs with the desired target cell reactivity. Applying this method to multiple myeloma cells yielded a panel of >50 mAbs with unique sequences and diverse reactivities. To uncover the identities of the cognate antigens recognized by this panel, representative mAbs from each unique reactivity cluster were used in a multi-omic target deconvolution approach. From this, we identified and validated three cell surface antigens: PTPRG, ICAM1, and CADM1. PTPRG and CADM1 remain largely unstudied in the context of multiple myeloma, which could warrant further investigation into their potential as therapeutic targets. These results highlight the utility of optimized whole-cell phage display selection methods and could motivate further interest in target-unbiased antibody discovery workflows. 相似文献
15.
《Saudi Journal of Biological Sciences》2023,30(5):103649
The aim of this research is to analyze the potential impact of the COVID-19 infection on the serum biochemical concentration of children 6 months after recovery from the infection.The study included 72 children with a median age of 11 years. The case group consisted of 37 children who had contracted COVID-19 6 months prior to the analysis. They reported no other pre- or post-covid chronic or systemic diseases. The control group consisted of 35 children who had no prior record of COVID-19 infection.The analysis showed a substantial variation (P = 0.026) in the mean urea values (mmol/L) between the case group (4.513 ± 0.839) and the control group (5.425 ± 1.173). However, both groups' urea levels were within the normal range of their age group. No statistical differences were found analyzing the variations between the two groups in the levels of LDH, AST, ALT, BiliT, GGT, AlbBCG2, CRP, CK, AlKP, UA, Phos, Crea2, Gluc, Ca, Na, K, Cl, TP, TC, TG, and HDL (P > 0.05). The DMFT score was substantially greater (P < 0.002) in the infected team (5.38 ± 2.841) in comparison to the non-infected group (2.6 ± 2.257).The study indicates that COVID-19 infection does not leave biochemical alterations among children who did not have pre-existing conditions. The biochemical analysis suggests that children recover better than adults from COVID-19. Furthermore, it calls for investigating non-lethal COVID-19 infection as a tool to discover underlying conditions. The DMFT score shows a correlation between COVID-19 infection and caries. However, the nature of the correlation is yet to be investigated. 相似文献
16.
Safaa I. Khedr El Hassan M. Mokhamer Amal A.A. Hassan Asmaa S. El-Feki Gihan M. Elkhodary Mohamed S.A. El-Gerbed 《Saudi Journal of Biological Sciences》2021,28(1):427-439
Introduction and aimConsidering the magnitude of giardiasis problem, the side-effects of the used anti-giardia drugs and the resistance posed against them, the current study aimed to evaluate the in-vivo giardicidal effect of Psidium guajava leaf extract (PGLE).MethodsFor fulfilling this aim, five Swiss-albino mice groups were included; GI: non-infected, GII: Giardia-infected and non-treated, GIII: Giardia-infected and metronidazole-treated, GIV: Giardia-infected and PGLE-treated, and GV: Giardia-infected and treated with both metronidazole and PGLE. Treatment efficacy was assessed via; Giardia cyst viability and trophozoite count, trophozoite electron microscopic ultrastructure, duodenal histopathological scoring, immunohistochemistry for TNF-α and duodenal scanning electron microscopy. Moreover, mice serum liver enzymes, total bilirubin, albumin, lipid profile including; total cholesterol, HDL, LDL and triglycerides were assessed. Additionally, hepatic oxidative stress markers including; malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH) and superoxide dismutase (SOD) were measured.ResultsResults showed that PGLE whether alone or combined with metronidazole has induced significant trophozoite count reduction and major architectural changes. Duodenal histological improvement, and local protective anti-inflammatory effect were confirmed. PGLE has also helped in healing of Giardia-induced gut atrophy. Thus, offered a comprehensive therapy for both the pathogen and the resultant pathological sequalae. Serum markers showed favorable hepatoprotective effect. Total cholesterol, LDL and triglycerides levels were less in PGLE-treated group than in metronidazole-treated group. Hepatic oxidative stress markers revealed the promising extract antioxidant effect. This study highlights, the promising in-vivo giardicidal PGLE activity, that was comparable to metronidazole, thus, the extract would be an ideal strongly recommended treatment for giardiasis. When combined with metronidazole, the extract potentiated its therapeutic effect. Besides, having hepatoprotective, anti-inflammatory, and antioxidant properties, the extract can combat the major side effects of metronidazole therapy. 相似文献
17.
It has been very recently shown how naturally occurring oxyprenylated coumarins are effective modulators of melanogenesis. In this short communication we wish to generalize the potentialities as skin tanning or whitening agents of a wider panel of natural and semisynthetic aromatic compounds, including coumarins, cinnamic and benzoic acids, cinnamaldehydes, benzaldehyde, and anthraquinone derivatives. A total number of 43 compounds have been tested assaying their capacity to inhibit or stimulate melanin biosynthesis in cultured murine Melan A cells. The wider number of chemicals herein under investigation allowed to depict a detailed structure-activity relationship, as the following: (a) benzoic acid derivatives are slightly pigmenting agent, for which the effect is more pronounced in compounds with longer O-side chains; (b) independently from the type of substitution, cinnamic acids are able to increase melanin biosynthesis, while benzaldehydes are able to decrease it; (c) coumarins with a 3,3-dimethylallyl or shorter skeletons as substituents in position 7 are tanning agents, while coumarins with farnesyloxy groups are whitening ones; (d) double oxyprenylation in position 6 and 7 and 3,3-dimethylallyl or geranyl skeletons have slight depigmenting capacities, while farnesyl skeletons tend to marginally increase the tanning effect; (e) the presence of electron withdrawing groups (acetyl, COOH, and -Cl) and geranyl or farnesyl oxyprenylated chains respectively in positions 3 and 7 of the coumarin nucleus lead to a whitening effect, and finally (f) oxyprenylated anthraquinones have only a weak depigmenting capacity. 相似文献
18.
P-glycoprotein (P-gp)-mediated multidrug resistance (MDR) is a major impediment for clinical cancer therapy. 19 novel aromatic amides with triazole-core as MDR reversal agents were designed and synthesized via click chemistry to reverse MDR. Among them, compound 42 was identified as the most promising candidate with high potency (EC50 = 78.1 ± 5.4 nM), low cytotoxity (SI > 1282) and persistent duration in reversing doxorubicin (DOX) resistance in K562/A02 cells. 42 also enhanced the potency of other P-gp associated cytotoxic agents with different structures. In further study, remarkably increased intracellular accumulation of Rh123 and DOX in K562/A02 cells was achieved by compound 42, while CYP3A4 activity had no change by compound 42. These results indicate that compound 42 as a relatively safe modulator of P-gp-mediated MDR has good potential for further development. 相似文献
19.
《Journal of molecular biology》2022,434(23):167872
EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 μM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 μM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical “binding and functional folding (BFF)” physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function. 相似文献
20.
《Journal of molecular biology》2021,433(21):167223
Most eukaryotic transmembrane and secreted proteins contain N-terminal signal peptides that mediate insertion of the nascent translation products into the membrane of the endoplasmic reticulum. After membrane insertion, signal peptides typically are cleaved from the mature protein and degraded. Here, we tested whether a small hydrophobic protein selected for growth promoting activity in mammalian cells retained transforming activity while also acting as a signal peptide. We replaced the signal peptide of the PDGF β receptor (PDGFβR) with a previously described 29-residue artificial transmembrane protein named 9C3 that can activate the PDGFβR in trans. We showed that a modified version of 9C3 at the N-terminus of the PDGFβR can function as a signal peptide, as assessed by its ability to support high level expression, glycosylation, and cell surface localization of the PDGFβR. The 9C3 signal peptide retains its ability to interact with the transmembrane domain of the PDGFβR and cause receptor activation and cell proliferation. Cleavage of the 9C3 signal peptide from the mature receptor is not required for these activities. However, signal peptide cleavage does occur in some molecules, and the cleaved signal peptide can persist in cells and activate a co-expressed PDGFβR in trans. Our finding that a hydrophobic sequence can display signal peptide and transforming activity suggest that some naturally occurring signal peptides may also display additional biological activities by interacting with the transmembrane domains of target proteins. 相似文献