首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Allosteric proteins transition between ‘inactive’ and ‘active’ states. In general, such proteins assume distinct conformational states at the level of secondary, tertiary and/or quaternary structure. Different conformers of an allosteric protein can be antigenically dissimilar and induce antibodies with a highly distinctive specificities and neutralizing functional effects. Here we summarize studies on various functional types of monoclonal antibodies obtained against different allosteric conformers of the mannose-specific bacterial adhesin FimH – the most common cell attachment protein of Escherichia coli and other enterobacterial pathogens. Included are types of antibodies that activate the FimH function via interaction with ligand-induced binding sites or by wedging between domains as well as antibodies that inhibit FimH through orthosteric, parasteric, or novel dynasteric mechanisms. Understanding the molecular mechanism of antibody action against allosteric proteins provides insights on how to design antibodies with a desired functional effect, including those with neutralizing activity against bacterial and viral cell attachment proteins.  相似文献   

4.
Effective proteome homeostasis is key to cellular and organismal survival, and cells therefore contain efficient quality control systems to monitor and remove potentially toxic misfolded proteins. Such general protein quality control to a large extent relies on the efficient and robust delivery of misfolded or unfolded proteins to the ubiquitin–proteasome system. This is achieved via recognition of so-called degradation motifs—degrons—that are assumed to become exposed as a result of protein misfolding. Despite their importance, the nature and sequence properties of quality-control degrons remain elusive. Here, we have used data from a yeast-based screen of 23,600 17-residue peptides to build a predictor of quality-control degrons. The resulting model, QCDPred (Quality Control Degron Prediction), achieves good accuracy using only the sequence composition of the peptides as input. Our analysis reveals that strong degrons are enriched in hydrophobic amino acids and depleted in negatively charged amino acids, in line with the expectation that they are buried in natively folded proteins. We applied QCDPred to the yeast proteome, enabling us to analyse more widely the potential effects of degrons. As an example, we show a correlation between cellular abundance and degron potential in disordered regions of proteins. Together with recent results on membrane proteins, our work suggest that the recognition of exposed hydrophobic residues is a key and generic mechanism for proteome homeostasis. QCDPred is freely available as open source code and via a web interface.  相似文献   

5.
Native molecular weight (MW) is one of the defining features of proteins. Denaturing gel electrophoresis (SDS-PAGE) is a very popular technique for separating proteins and determining their MW. Coupled with antibody-based detection, SDS-PAGE is widely applied for protein identification and quantitation. Yet, electrophoresis is poorly reproducible and the MWs obtained are often inaccurate. This hampers antibody validation and negatively impacts the reliability of western blot data, resulting worldwide in a considerable waste of reagents and labour. We argue that, to alleviate these problems there is a need to establish a database of reference MWs measured by SDS-PAGE. Using mass spectrometry as an orthogonal detection method, we acquired electrophoretic migration patterns for approximately 10′000 human proteins in five commonly used cell lines. We applied a robust internal calibration of migration to determine accurate and reproducible molecular weights. This in turn allows merging replicates to increase accuracy, but also enables comparing different cell lines. Mining of the data obtained highlights structural factors that affect migration of distinct classes of proteins. When combined with peptide coverage, the data produced recapitulates known post-translational modifications and differential splicing and can be used to formulate hypotheses on new or poorly known processing events. The full information is freely accessible as a web resource through a user friendly graphical interface (https://pumba.dcsr.unil.ch/). We anticipate that this database will be useful to investigators worldwide for troubleshooting western blot experiments, but could also contribute to the characterization of human proteoforms.  相似文献   

6.
BackgroundTo improve therapy outcome of Yttrium-90 selective internal radiation therapy (90Y SIRT), patient-specific post-therapeutic dosimetry is required. For this purpose, various dosimetric approaches based on different available imaging data have been reported. The aim of this work was to compare post-therapeutic 3D absorbed dose images using Technetium-99m (99mTc) MAA SPECT/CT, Yttrium-90 (90Y) bremsstrahlung (BRS) SPECT/CT, and 90Y PET/CT.MethodsTen SIRTs of nine patients with unresectable hepatocellular carcinoma (HCC) were investigated. The 99mTc SPECT/CT data, obtained from 99mTc-MAA-based treatment simulation prior to 90Y SIRT, were scaled with the administered 90Y therapy activity. 3D absorbed dose images were generated by dose kernel convolution with scaled 99mTc/90Y SPECT/CT, 90Y BRS SPECT/CT, and 90Y PET/CT data of each patient. Absorbed dose estimates in tumor and healthy liver tissue obtained using the two SPECT/CT methods were compared against 90Y PET/CT.ResultsThe percentage deviation of tumor absorbed dose estimates from 90Y PET/CT values was on average −2 ± 18% for scaled 99mTc/90Y SPECT/CT, whereas estimates from 90Y BRS SPECT/CT differed on average by −50 ± 13%. For healthy liver absorbed dose estimates, all three imaging methods revealed comparable values.ConclusionThe quantification capabilities of the imaging data influence 90Y SIRT tumor dosimetry, while healthy liver absorbed dose values were comparable for all investigated imaging data. When no 90Y PET/CT image data are available, the proposed scaled 99mTc/90Y SPECT/CT dosimetry method was found to be more appropriate for HCC tumor dosimetry than 90Y BRS SPECT/CT based dosimetry.  相似文献   

7.
Membranes form the first line of defence of bacteria against potentially harmful molecules in the surrounding environment. Understanding the protective properties of these membranes represents an important step towards development of targeted anti-bacterial agents such as sanitizers. Use of propanol, isopropanol and chlorhexidine can significantly decrease the threat imposed by bacteria in the face of growing anti-bacterial resistance via mechanisms that include membrane disruption. Here we have employed molecular dynamics simulations and nuclear magnetic resonance to explore the impact of chlorhexidine and alcohol on the S. aureus cell membrane, as well as the E. coli inner and outer membranes. We identify how sanitizer components partition into these bacterial membranes, and show that chlorhexidine is instrumental in this process.  相似文献   

8.
9.
The late-acting steps of the pathway responsible for the maturation of mitochondrial [4Fe-4S] proteins are still elusive. Three proteins ISCA1, ISCA2 and NFU1 were shown to be implicated in the assembly of [4Fe-4S] clusters and their transfer into mitochondrial apo proteins. We present here a NMR-based study showing a detailed molecular model of the succession of events performed in a coordinated manner by ISCA1, ISCA2 and NFU1 to make [4Fe-4S] clusters available to mitochondrial apo proteins. We show that ISCA1 is the key player of the [4Fe-4S] protein maturation process because of its ability to interact with both NFU1 and ISCA2, which, instead do not interact each other. ISCA1 works as the promoter of the interaction between ISCA2 and NFU1 being able to determine the formation of a transient ISCA1-ISCA2-NFU1 ternary complex. We also show that ISCA1, thanks to its specific interaction with the C-terminal cluster-binding domain of NFU1, drives [4Fe-4S] cluster transfer from the site where the cluster is assembled on the ISCA1-ISCA2 complex to a cluster binding site formed by ISCA1 and NFU1 in the ternary ISCA1-ISCA2-NFU1 complex. Such mechanism guarantees that the [4Fe-4S] cluster can be safely moved from where it is assembled on the ISCA1-ISCA2 complex to NFU1, thereby resulting the [4Fe-4S] cluster available for the mitochondrial apo proteins specifically requiring NFU1 for their maturation.  相似文献   

10.
11.
Cation-chloride cotransporters (CCCs) are responsible for the coupled co-transport of Cl- with K+ and/or Na+ in an electroneutral manner. They play important roles in myriad fundamental physiological processes––from cell volume regulation to transepithelial solute transport and intracellular ion homeostasis––and are targeted by medicines commonly prescribed to treat hypertension and edema. After several decades of studies into the functions and pharmacology of these transporters, there have been several breakthroughs in the structural determination of CCC transporters. The insights provided by these new structures for the Na+/K+/Cl- cotransporter NKCC1 and the K+/Cl- cotransporters KCC1, KCC2, KCC3 and KCC4 have deepened our understanding of their molecular basis and transport function. This focused review discusses recent advances in the structural and mechanistic understanding of CCC transporters, including architecture, dimerization, functional roles of regulatory domains, ion binding sites, and coupled ion transport.  相似文献   

12.
Two main types of endurance runners have been identified: aerial runners (AER), who have a larger flight time, and terrestrial runners (TER), who have a longer ground contact time. The purpose of this study was to assess the neuromuscular characteristics of plantar flexors between AER and TER runners. Twenty-four well-trained runners participated in the experiment. They were classified either in a TER or AER group according to the Volodalen® scale. Plantar flexors’ maximal rate of force development (RFD) and maximal voluntary contraction force (MVC) were assessed. Percutaneous electrical stimulation was delivered to the posterior tibial nerve to evoke maximal M-waves and H-reflexes of the triceps surae muscles. These responses, as well as voluntary activation, muscle potentiation, and V-waves, were recorded by superimposing stimulations to MVCs. RFD was significantly higher in AER than in TER, while MVC remained unchanged. This was accompanied by higher myoelectrical activity recorded in the soleus muscle. While M-waves and other parameters remained unchanged, maximal H-reflex was significantly higher in AER than in TER, still in soleus only. The present study raised the possibility of different plantar flexors’ neuromuscular characteristics according to running profile. These differences seemed to be focused on the soleus rather than on the gastrocnemii.  相似文献   

13.
Expansion of the polyglutamine tract in the N terminus of Ataxin-1 is the main cause of the neurodegenerative disease, spinocerebellar ataxia type 1 (SCA1). However, the C-terminal part of the protein – including its AXH domain and a phosphorylation on residue serine 776 – also plays a crucial role in disease development. This phosphorylation event is known to be crucial for the interaction of Ataxin-1 with the 14-3-3 adaptor proteins and has been shown to indirectly contribute to Ataxin-1 stability. Here we show that 14-3-3 also has a direct anti-aggregation or “chaperone” effect on Ataxin-1. Furthermore, we provide structural and biophysical information revealing how phosphorylated S776 in the intrinsically disordered C terminus of Ataxin-1 mediates the cytoplasmic interaction with 14-3-3 proteins. Based on these findings, we propose that 14-3-3 exerts the observed chaperone effect by interfering with Ataxin-1 dimerization through its AXH domain, reducing further self-association. The chaperone effect is particularly important in the context of SCA1, as it was previously shown that a soluble form of mutant Ataxin-1 is the major driver of pathology.  相似文献   

14.
Carnitine is a medically needful nutrient that contributes in the production of energy and the metabolism of fatty acids. Bioavailability is higher in vegetarians than in people who eat meat. Deficits in carnitine transporters occur as a result of genetic mutations or in combination with other illnesses such like hepatic or renal disease. Carnitine deficit can arise in diseases such endocrine maladies, cardiomyopathy, diabetes, malnutrition, aging, sepsis, and cirrhosis due to abnormalities in carnitine regulation. The exogenously provided molecule is obviously useful in people with primary carnitine deficits, which can be life-threatening, and also some secondary deficiencies, including such organic acidurias: by eradicating hypotonia, muscle weakness, motor skills, and wasting are all improved l-carnitine (LC) have reported to improve myocardial functionality and metabolism in ischemic heart disease patients, as well as athletic performance in individuals with angina pectoris. Furthermore, although some intriguing data indicates that LC could be useful in a variety of conditions, including carnitine deficiency caused by long-term total parenteral supplementation or chronic hemodialysis, hyperlipidemias, and the prevention of anthracyclines and valproate-induced toxicity, such findings must be viewed with caution.  相似文献   

15.
Improving grain filling in the presernt farming systems is crucial where grain filling is a concern due to the extreme use of chemical fertilizers (CF). A field experiment was conducted at the experimental station of Guangxi University, China in 2019 to test the hypothesis that cattle manure (CM) and poultry manure (PM) combined with CF could improve rice grain filling rate, yield, biochemical and qualitative attributes. A total of six treatments, i.e., no fertilizer (T1), 100% CF (T2), 60% CM + 40% CF (T3), 30% CM + 70% CF (T4), 60% PM + 40% CF (T5), and 30% PM + 70% CF (T6) were used in this study. Results showed that the combined treatment T6increased starch metabolizing enzymes activity (SMEs), such as ADP-glucose phosphorylase (ADGPase) by 8 and 12%, soluble starch synthase (SSS) by 7 and 10%, granule bound starch synthesis (GBSS) by 7 and 9%, and starch branching enzyme (SBE) by 14 and 21% in the early and late seasons, respectively, compared with T2. Similarly, higher rice grain yield, grain filling rate, starch, and amylose content were also recorded in combined treatments. In terms of seasons, higher activity of SMEs , grain starch, and amylose content was noted in the late-season compared to the early season. The increment in these traits was mainly attributed to a lower temperature in the late season during the grain filling period. Furthermore, our results suggested that an increment in starch accumulation and grain filling rate were mainly associated with the enhanced sink capacity by regulating key enzyme activities involved in Suc-to-starch conversion. In-addition, RT-qPCR analysis showed higher expression levels of AGPS2b, SSS1, GBSS1, and GBSE11b genes, which resultantly increased the activities of SMEs during the grain filling period under combined treatments. Linear regression analysis revealed that the activity of ADGPase, SSS, GBSS, and SBE were highly positively correlated with starch and amylose accumulation. Thus, we concluded that a combination of 30% N from PM or CM with 70% N from CF is a promising option in terms of improving rice grain yield and quality. Our study provides a sustainable fertilizer management strategy to enhance rice grain yield and quality at the lowest environmental cost.  相似文献   

16.
α-Synuclein (α-Syn) amyloids in synucleinopathies are suggested to be structurally and functionally diverse, reminiscent of prion-like strains. The mechanism of how the aggregation of the same precursor protein results in the formation of fibril polymorphs remains elusive. Here, we demonstrate the structure–function relationship of two polymorphs, pre-matured fibrils (PMFs) and helix-matured fibrils (HMFs), based on α-Syn aggregation intermediates. These polymorphs display the structural differences as demonstrated by solid-state NMR and mass spectrometry studies and also possess different cellular activities such as seeding, internalization, and cell-to-cell transfer of aggregates. HMFs, with a compact core structure, exhibit low seeding potency but readily internalize and transfer from one cell to another. The less structured PMFs lack transcellular transfer ability but induce abundant α-Syn pathology and trigger the formation of aggresomes in cells. Overall, the study highlights that the conformational heterogeneity in the aggregation pathway may lead to fibril polymorphs with distinct prion-like behavior.  相似文献   

17.
Due to unique features, proline residues may control protein structure and function. Here, we investigated the role of 52PPQ54 residues, indicated by the recently established experimental 3D structure of bovine herpesvirus 1-encoded UL49.5 protein as forming a characteristic proline hinge motif in its N-terminal domain. UL49.5 acts as a potent inhibitor of the transporter associated with antigen processing (TAP), which alters the antiviral immune response. Mechanisms employed by UL49.5 to affect TAP remain undetermined on a molecular level. We found that mutations in the 52PPQ54 region had a vast impact on its immunomodulatory function, increasing cell surface MHC class I expression, TAP levels, and peptide transport efficiency. This inhibitory effect was specific for UL49.5 activity towards TAP but not towards the viral glycoprotein M. To get an insight into the impact of proline hinge modifications on structure and dynamics, we performed all-atom and coarse-grained molecular dynamics studies on the native protein and PPQ mutants. The results demonstrated that the proline hinge sequence with its highly rigid conformation served as an anchor into the membrane. This anchor was responsible for the structural and dynamical behavior of the whole protein, constraining the mobility of the C-terminus, increasing the mobility of the transmembrane region, and controlling the accessibility of the C-terminal residues to the cytoplasmic environment. Those features appear crucial for TAP binding and inhibition. Our findings significantly advance the structural understanding of the UL49.5 protein and its functional regions and support the importance of proline motifs for the protein structure.  相似文献   

18.
Introduction and aimConsidering the magnitude of giardiasis problem, the side-effects of the used anti-giardia drugs and the resistance posed against them, the current study aimed to evaluate the in-vivo giardicidal effect of Psidium guajava leaf extract (PGLE).MethodsFor fulfilling this aim, five Swiss-albino mice groups were included; GI: non-infected, GII: Giardia-infected and non-treated, GIII: Giardia-infected and metronidazole-treated, GIV: Giardia-infected and PGLE-treated, and GV: Giardia-infected and treated with both metronidazole and PGLE. Treatment efficacy was assessed via; Giardia cyst viability and trophozoite count, trophozoite electron microscopic ultrastructure, duodenal histopathological scoring, immunohistochemistry for TNF-α and duodenal scanning electron microscopy. Moreover, mice serum liver enzymes, total bilirubin, albumin, lipid profile including; total cholesterol, HDL, LDL and triglycerides were assessed. Additionally, hepatic oxidative stress markers including; malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH) and superoxide dismutase (SOD) were measured.ResultsResults showed that PGLE whether alone or combined with metronidazole has induced significant trophozoite count reduction and major architectural changes. Duodenal histological improvement, and local protective anti-inflammatory effect were confirmed. PGLE has also helped in healing of Giardia-induced gut atrophy. Thus, offered a comprehensive therapy for both the pathogen and the resultant pathological sequalae. Serum markers showed favorable hepatoprotective effect. Total cholesterol, LDL and triglycerides levels were less in PGLE-treated group than in metronidazole-treated group. Hepatic oxidative stress markers revealed the promising extract antioxidant effect. This study highlights, the promising in-vivo giardicidal PGLE activity, that was comparable to metronidazole, thus, the extract would be an ideal strongly recommended treatment for giardiasis. When combined with metronidazole, the extract potentiated its therapeutic effect. Besides, having hepatoprotective, anti-inflammatory, and antioxidant properties, the extract can combat the major side effects of metronidazole therapy.  相似文献   

19.
Therapeutic reduction of hydrophobic bile acids exposure is considered beneficial in cholestasis. The Cyp2c70 KO mice lack hydrophilic muricholic acids and have a human-like hydrophobic bile acid pool resulting in hepatobiliary injury. This study investigates if combining an apical sodium-dependent bile acid transporter inhibitor GSK2330672 (GSK) and fibroblast growth factor-15 (FGF15) overexpression, via simultaneous inhibition of bile acid synthesis and gut bile acid uptake, achieves enhanced therapeutic efficacy in alleviating hepatobiliary injury in Cyp2c70 KO mice. The effects of GSK, adeno-associated virus (AAV)-FGF15, and the combined treatment on bile acid metabolism and cholangiopathy were compared in Cyp2c70 KO mice. In female Cyp2c70 KO mice with more severe cholangiopathy than male Cyp2c70 KO mice, the combined treatment was more effective in reversing portal inflammation, ductular reaction, and fibrosis than AAV-FGF15, while GSK was largely ineffective. The combined treatment reduced bile acid pool by ~80% compared to ~50% reduction by GSK or AAV-FGF15, and enriched tauro-conjugated ursodeoxycholic acid in the bile. Interestingly, the male Cyp2c70 KO mice treated with AAV-FGF15 or GSK showed attenuated cholangiopathy and portal fibrosis but the combined treatment was ineffective despite reducing bile acid pool. Both male and female Cyp2c70 KO mice showed impaired gut barrier integrity. AAV-FGF15 and the combined treatment, but not GSK, reduced gut exposure to lithocholic acid and improved gut barrier function. In conclusion, the combined treatment improved therapeutic efficacy against cholangiopathy than either single treatment in the female but not male Cyp2c70 KO mice by reducing bile acid pool size and hydrophobicity.  相似文献   

20.
Fluoroquinolones (FQ) are antibiotics widely used in clinical practise, but the development of bacterial resistance to these drugs is currently a critical public health problem. In this context, ternary copper complexes of FQ (CuFQPhen) have been studied as a potential alternative. In this study, we compared the passive diffusion across the lipid bilayer of one of the most used FQ, ciprofloxacin (Cpx), and its ternary copper complex, CuCpxPhen, that has shown previous promising results regarding antibacterial activity and membrane partition. A combination of spectroscopic studies and molecular dynamics simulations were used and two different model membranes tested: one composed of anionic phospholipids, and the other composed of zwitterionic phospholipids. The obtained results showed a significantly higher membrane permeabilization activity, larger partition, and a more favourable free energy landscape for the permeation of CuCpxPhen across the membrane, when compared to Cpx. Furthermore, the computational results indicated a more favourable translocation of CuCpxPhen across the anionic membrane, when compared to the zwitterionic one, suggesting a higher specificity towards the former. These findings are important to decipher the influx mechanism of CuFQPhen in bacterial cells, which is crucial for the ultimate use of CuFQPhen complexes as an alternative to FQ to tackle multidrug-resistant bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号