首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed a screen for the isolation of mutations that produce neural defects in adult Drosophila melanogaster. In this screen, we identify mutants as flies unable to remove a light coating of applied dust in a 2-hr period. We have recovered and characterized six mutations and have found that they produce coordination defects and some have reduced levels of reflex responsiveness to the stimulation of single tactile sensory bristles. The grooming defects produced by all six of the mutations are recessive, and each of the mutations has been genetically mapped. We have also used our assay to test the grooming ability of stocks containing mutations that produce known neural defects.  相似文献   

2.
The nematode C. elegans exhibits a variety of reponses to touch. When specific sets of mechanosensory neurons are killed with a laser, specific touch responses are abolished. Many mutations that result in defective mechanosensation have been identified. Some of the mutations define genes that specify the fate of a set of mechanoreceptors called the touch cells, which mediate response to light touch to the body of the worm. Genes specifying touch cell fate appear to regulate genes that encode touch-cell differentiation proteins, including apparent subunits of a touch-cell-specific ion channel, rare mutant forms of which lead to swelling and lysis of the touch cells. Molecular attachments of the ion channel, both to extracellular matrix components and, intracellularly, to a special large-diameter microtubule, may be required for mechanical gating of the channel. A mechanoreceptor-interneuron-motorneuron reflex circuit for response to light touch has been proposed.  相似文献   

3.
Fruit flies (Drosophila melanogaster) are an established model for both alcohol research and circadian biology. Recently, we showed that the circadian clock modulates alcohol sensitivity, but not the formation of tolerance. Here, we describe our protocol in detail. Alcohol is administered to the flies using the FlyBar. In this setup, saturated alcohol vapor is mixed with humidified air in set proportions, and administered to the flies in four tubes simultaneously. Flies are reared under standardized conditions in order to minimize variation between the replicates. Three-day old flies of different genotypes or treatments are used for the experiments, preferably by matching flies of two different time points (e.g., CT 5 and CT 17) making direct comparisons possible. During the experiment, flies are exposed for 1 hr to the pre-determined percentage of alcohol vapor and the number of flies that exhibit the Loss of Righting reflex (LoRR) or sedation are counted every 5 min. The data can be analyzed using three different statistical approaches. The first is to determine the time at which 50% of the flies have lost their righting reflex and use an Analysis of the Variance (ANOVA) to determine whether significant differences exist between time points. The second is to determine the percentage flies that show LoRR after a specified number of minutes, followed by an ANOVA analysis. The last method is to analyze the whole times series using multivariate statistics. The protocol can also be used for non-circadian experiments or comparisons between genotypes.  相似文献   

4.
Flies transport specific bacteria with their larvae that provide a wider range of nutrients for those bacteria. Our hypothesis was that this symbiotic interaction may depend on interkingdom signaling. We obtained Proteus mirabilis from the salivary glands of the blow fly Lucilia sericata; this strain swarmed significantly and produced a strong odor that attracts blow flies. To identify the putative interkingdom signals for the bacterium and flies, we reasoned that as swarming is used by this bacterium to cover the food resource and requires bacterial signaling, the same bacterial signals used for swarming may be used to communicate with blow flies. Using transposon mutagenesis, we identified six novel genes for swarming (ureR, fis, hybG, zapB, fadE and PROSTU_03490), then, confirming our hypothesis, we discovered that fly attractants, lactic acid, phenol, NaOH, KOH and ammonia, restore swarming for cells with the swarming mutations. Hence, compounds produced by the bacterium that attract flies also are utilized for swarming. In addition, bacteria with the swarming mutation rfaL attracted fewer blow flies and reduced the number of eggs laid by the flies. Therefore, we have identified several interkingdom signals between P. mirabilis and blow flies.  相似文献   

5.
6.
Metabolic disorders are a frequent problem affecting human health. Therefore, understanding the mechanisms that regulate metabolism is a crucial scientific task. Many disease causing genes in humans have a fly homologue, making Drosophila a good model to study signaling pathways involved in the development of different disorders. Additionally, the tractability of Drosophila simplifies genetic screens to aid in identifying novel therapeutic targets that may regulate metabolism. In order to perform such a screen a simple and fast method to identify changes in the metabolic state of flies is necessary. In general, carbon dioxide production is a good indicator of substrate oxidation and energy expenditure providing information about metabolic state. In this protocol we introduce a simple method to measure CO2 output from flies. This technique can potentially aid in the identification of genetic perturbations affecting metabolic rate.  相似文献   

7.
There is unanimous consensus that insects are important vectors of foodborne pathogens. However, linking insects as vectors of the pathogen causing a particular foodborne illness outbreak has been challenging. This is because insects are not being aseptically collected as part of an environmental sampling program during foodborne outbreak investigations and because there is not a standardized method to detect foodborne bacteria from individual insects. To take a step towards solving this problem, we adapted a protocol from a commercially available PCR-based system that detects foodborne pathogens from food and environmental samples, to detect foodborne pathogens from individual flies.Using this standardized protocol, we surveyed 100 wild-caught flies for the presence of Cronobacter spp., Salmonella enterica, and Listeria monocytogenes and demonstrated that it was possible to detect and further isolate these pathogens from the body surface and the alimentary canal of a single fly. Twenty-two percent of the alimentary canals and 8% of the body surfaces from collected wild flies were positive for at least one of the three foodborne pathogens. The prevalence of Cronobacter spp. on either body part of the flies was statistically higher (19%) than the prevalence of S. enterica (7%) and L.monocytogenes (4%). No false positives were observed when detecting S. enterica and L. monocytogenes using this PCR-based system because pure bacterial cultures were obtained from all PCR-positive results. However, pure Cronobacter colonies were not obtained from about 50% of PCR-positive samples, suggesting that the PCR-based detection system for this pathogen cross-reacts with other Enterobacteriaceae present among the highly complex microbiota carried by wild flies. The standardized protocol presented here will allow laboratories to detect bacterial foodborne pathogens from aseptically collected insects, thereby giving public health officials another line of evidence to find out how the food was contaminated when performing foodborne outbreak investigations.  相似文献   

8.
Aggressive behavior in Drosophila melanogaster is composed of the sequential expression of stereotypical behavioral patterns (for analysis see 1). This complex behavior is influenced by genetic, hormonal and environmental factors. As in many organisms, previous fighting experience influences the fighting strategy of flies and the outcome of later contests: losing a fight increases the probability of losing later contests, revealing "loser" effects that likely involve learning and memory 2-4. The learning and memory that accompanies expression of complex social behaviors like aggression, is sensitive to pre-test handling of animals 5,6. Many experimental procedures are used in different laboratories to study aggression 7-9, however, no routinely used protocol that excludes handling of flies is currently available. Here, we report a new behavioral apparatus that eliminates handling of flies, using instead their innate negative geotactic responses to move animals into or out of fighting chambers. In this protocol, small circular fight arenas containing a food cup are divided into two equal halves by a removable plastic slider prior to introduction of flies. Flies enter chambers from their home isolation vials via sliding chamber doors and geotaxis. Upon removal of plastic sliders, flies are free to interact. After specified time periods, flies are separated again by sliders for subsequent experimentation. All of this is done easily without handling of individual flies. This apparatus offers a novel approach to study aggression and the associated learning and memory, including the formation of "loser" effects in fly fights. In addition, this new general-purpose behavioral apparatus can be employed to study other social behaviors of flies and should, in general, be of interest for investigating experience-related changes in fundamental behavioral processes.  相似文献   

9.
10.
Saccharomyces cerevisiae has been an excellent model system for examining mechanisms and consequences of genome instability. Information gained from this yeast model is relevant to many organisms, including humans, since DNA repair and DNA damage response factors are well conserved across diverse species. However, S. cerevisiae has not yet been used to fully address whether the rate of accumulating mutations changes with increasing replicative (mitotic) age due to technical constraints. For instance, measurements of yeast replicative lifespan through micromanipulation involve very small populations of cells, which prohibit detection of rare mutations. Genetic methods to enrich for mother cells in populations by inducing death of daughter cells have been developed, but population sizes are still limited by the frequency with which random mutations that compromise the selection systems occur. The current protocol takes advantage of magnetic sorting of surface-labeled yeast mother cells to obtain large enough populations of aging mother cells to quantify rare mutations through phenotypic selections. Mutation rates, measured through fluctuation tests, and mutation frequencies are first established for young cells and used to predict the frequency of mutations in mother cells of various replicative ages. Mutation frequencies are then determined for sorted mother cells, and the age of the mother cells is determined using flow cytometry by staining with a fluorescent reagent that detects bud scars formed on their cell surfaces during cell division. Comparison of predicted mutation frequencies based on the number of cell divisions to the frequencies experimentally observed for mother cells of a given replicative age can then identify whether there are age-related changes in the rate of accumulating mutations. Variations of this basic protocol provide the means to investigate the influence of alterations in specific gene functions or specific environmental conditions on mutation accumulation to address mechanisms underlying genome instability during replicative aging.  相似文献   

11.
Development times of eggs, larvae and pupae of vectors of onchocerciasis (Simulium spp.) and of Onchocerca volvulus larvae within the adult females of the vectors decrease with increasing temperature. At and above 25°C, the parasite could reach its infective stage in less than 7 days when vectors could transmit after only two gonotrophic cycles. After incorporating exponential functions for vector development into a novel blackfly population model, it was predicted that fly numbers in Liberia and Ghana would peak at air temperatures of 29°C and 34°C, about 3°C and 7°C above current monthly averages, respectively; parous rates of forest flies (Liberia) would peak at 29°C and of savannah flies (Ghana) at 30°C. Small temperature increases (less than 2°C) might lead to changes in geographical distributions of different vector taxa. When the new model was linked to an existing framework for the population dynamics of onchocerciasis in humans and vectors, transmission rates and worm loads were projected to increase with temperature to at least 33°C. By contrast, analyses of field data on forest flies in Liberia and savannah flies in Ghana, in relation to regional climate change predictions, suggested, on the basis of simple regressions, that 13–41% decreases in fly numbers would be expected between the present and before 2040. Further research is needed to reconcile these conflicting conclusions.  相似文献   

12.
Friedreich's ataxia (FRDA), the most common inherited ataxia, is a neurodegenerative disease caused by a reduction in the levels of the mitochondrial protein frataxin, the function of which remains a controversial matter. Several therapeutic approaches are being developed to increase frataxin expression and reduce the intramitochondrial iron aggregates and oxidative damage found in this disease. In this study, we tested separately the response of a Drosophila RNAi model of FRDA ( Llorens et al., 2007) to treatment with the iron chelator deferiprone (DFP) and the antioxidant idebenone (IDE), which are both in clinical trials. The FRDA flies have a shortened life span and impaired motor coordination, and these phenotypes are more pronounced in oxidative stress conditions. In addition, under hyperoxia, the activity of the mitochondrial enzyme aconitase is strongly reduced in the FRDA flies. This study reports that DFP and IDE improve the life span and motor ability of frataxin-depleted flies. We show that DFP eliminates the excess of labile iron in the mitochondria and thus prevents the toxicity induced by iron accumulation. IDE treatment rescues aconitase activity in hyperoxic conditions. These results validate the use of our Drosophila model of FRDA to screen for therapeutic molecules to treat this disease.  相似文献   

13.
The giant freshwater prawn, Macrobrachium rosenbergii, is a large shrimp extensively used in aquaculture whose grooming behaviors were analyzed in this study. Macrobrachium rosenbergii exhibits three unique male morphotypes that differ in their behavior, morphology and physiology: small-clawed males (SM), orange-clawed males (OC) and blue-clawed males (BC). The largest and most dominant males, BC males, are predicted to have significantly different grooming behaviors compared to females and the other two male morphotypes. These BC males may be too large and bulky to efficiently groom and may dedicate more time to mating and agonistic interactions than grooming behaviors. Observations were conducted to look at the prevalence of grooming behaviors in the absence and presence of conspecifics and to determine if any differences in grooming behavior exist among the sexes and male morphotypes. Significant differences in the grooming behaviors of all individuals (females and male morphotypes) were found. BC males tended to have the highest grooming time budget (percent of time spent grooming) while SM males had a relatively low grooming time budget. The grooming behaviors of the male morphotypes differed, indicating while these males play distinct, separate roles in the social hierarchy, they also have different grooming priorities. The conditions in which Macrobrachium rosenbergii are cultured may result in increased body fouling, which may vary, depending on the grooming efficiencies and priorities of these male morphotypes. Overall, grooming behaviors were found to be a secondary behavior which only occurred when primary behaviors such as mating, feeding or fighting were not present.  相似文献   

14.
【目的】明确柑橘大实蝇Bactrocera minax成虫梳理行为规律,为挖掘防控柑橘大实蝇的新靶标,制订有效的害虫绿色防控策略提供理论依据。【方法】采用录像技术和基于计算机视觉识别技术的柑橘大实蝇成虫梳理行为检测与统计系统,对柑橘大实蝇成虫梳理行为的特征图谱、单次平均耗时和频次占比进行分析。【结果】结果表明,柑橘大实蝇雌雄成虫的梳理行为类型可以分别分为9和8种,雌雄成虫均有前足、后足、复眼、触角、口器、腹部、翅和中足的梳理, 雌成虫还有产卵器梳理行为。柑橘大实蝇成虫可以从非梳理行为随意转入所有类型的梳理行为,或者从任一类型梳理行为转入非梳理行为。在柑橘大实蝇成虫的各类型梳理行为之间的频次占比和单次平均耗时均存在显著差异。其中雌雄成虫梳理前足的频次占比(♀: 33.70%±2.53%; ♂: 33.89%±2.43%)和梳理翅的单次平均耗时(♀:15.58±2.55 s; ♂: 24.76±4.12 s)均为最高。【结论】柑橘大实蝇成虫各类型梳理行为的时间序列并不固定,但这些梳理行为之间具有一定的内在联系。  相似文献   

15.
Fergusobia nematodes and Fergusonina flies are mutualists that cause a variety of gall types on myrtaceous plant buds and young leaves. The biology of an isolate of the gall complex was studied in its native range in Australia for possible use in southern Florida as a biological control agent against the invasive broad-leaved paperbark tree, Melaleuca quinquenervia. Timed studies with caged Fergusonina flies on young branches of M. quinquenervia revealed that females are synovigenic with lifetime fecundities of 183 ± 42 (standard error; SE) eggs and longevities of 17 ± 2 days. None of the male flies but all dissected female flies contained parasitic female nematodes (range = 3-15), nematode eggs (12-112), and nematode juveniles (78-1,750). Female flies deposited eggs (34 ± 6; 8-77 per bud) and nematode juveniles (114 ± 15; 44-207 per bud) into bud apices within 15 days. Histological sections of shoot buds suggested that nematodes induce the formation of hypertrophied, uninucleate plant cells prior to fly larval eclosion. Enlarged size, granular cytoplasm, and enlarged nucleus and nucleolus characterized these cells, which appeared similar to those of other species galled by nematodes in the Anguinidae. Observations of ovipositional behavior revealed that female Fergusonina sp. create diagnostic oviposition scars. The presence of these scars may facilitate recognition of host use during specificity screening.  相似文献   

16.
17.
Mutation of the human gene superoxide dismutase (hSOD1) is associated with the fatal neurodegenerative disease familial amyotrophic lateral sclerosis (Lou Gehrig’s disease). Selective overexpression of hSOD1 in Drosophila motorneurons increases lifespan to 140% of normal. The current study was designed to determine resistance to lifespan decline and failure of sensorimotor functions by overexpressing hSOD1 in Drosophila‘s motorneurons. First, we measured the ability to maintain continuous flight and wingbeat frequency (WBF) as a function of age (5 to 50 days). Flies overexpressing hSOD1 under the D42-GAL4 activator were able to sustain flight significantly longer than controls, with the largest effect observed in the middle stages of life. The hSOD1-expressed line also had, on average, slower wingbeat frequencies in late, but not early life relative to age-matched controls. Second, we examined locomotor (exploratory walking) behavior in late life when flies had lost the ability to fly (age ≥ 60 d). hSOD1-expressed flies showed significantly more robust walking activity relative to controls. Findings show patterns of functional decline dissimilar to those reported for other life-extended lines, and suggest that the hSOD1 gene not only delays death but enhances sensorimotor abilities critical to survival even in late life.  相似文献   

18.
For many animals, hunger promotes changes in the olfactory system in a manner that facilitates the search for appropriate food sources. In this video article, we describe an automated assay to measure the effect of hunger or satiety on olfactory dependent food search behavior in the adult fruit fly Drosophila melanogaster. In a light-tight box illuminated by red light that is invisible to fruit flies, a camera linked to custom data acquisition software monitors the position of six flies simultaneously. Each fly is confined to walk in individual arenas containing a food odor at the center. The testing arenas rest on a porous floor that functions to prevent odor accumulation. Latency to locate the odor source, a metric that reflects olfactory sensitivity under different physiological states, is determined by software analysis. Here, we discuss the critical mechanics of running this behavioral paradigm and cover specific issues regarding fly loading, odor contamination, assay temperature, data quality, and statistical analysis.  相似文献   

19.
Animals use a number of different mechanisms to acquire crucial information. During social encounters, animals can pass information from one to another but, ideally, they would only use information that benefits survival and reproduction. Therefore, individuals need to be able to determine the value of the information they receive. One cue can come from the behaviour of other individuals that are already using the information. Using a previous extended dataset, we studied how individual decision-making is influenced by the behaviour of conspecifics in Drosophila melanogaster. We analysed how uninformed flies acquire and later use information about oviposition site choice they learn from informed flies. Our results suggest that uninformed flies adjust their future choices based on how coordinated the behaviours of the informed individuals they encounter are. Following social interaction, uninformed flies tended either to collectively follow the choice of the informed flies or to avoid it. Using social network analysis, we show that this selective information use seems to be based on the level of homogeneity of the social network. In particular, we found that the variance of individual centrality parameters among informed flies was lower in the case of a ‘follow’ outcome compared with the case of an ‘avoid’ outcome.  相似文献   

20.
Wu JS  Luo L 《Nature protocols》2006,1(6):2583-2589
Mosaic analysis with a repressible cell marker (MARCM) is a genetic technique used in Drosophila to label single cells or multiple cells sharing a single progenitor. Labeled homozygous mutant cells can be generated in an otherwise unlabeled heterozygous animal. Mutant or wild-type labeled cells can also be made to express one or more transgenes. Major applications of MARCM include (i) lineage analysis, (ii) investigating gene function in single or small populations of cells and (iii) neuronal circuit tracing. Our laboratory uses MARCM primarily to label and genetically manipulate neurons; however, this protocol can be adapted to any cell of interest. The protocol involves generating two fly stocks with the necessary genetic elements for MARCM analysis and subsequently generating MARCM clones. Labeled clones can be followed in live and fixed tissues for high-resolution analysis of wild-type or genetically manipulated cells.NOTE: In the PDF version of this article initially published online, the first "FRT" and the "Mutation" labels in Figure 1b were transposed. In both the PDF and HTML versions, "mutant" was omitted from the label on the right, which should read "Labeled homozygous mutant daughter cell". The figure has been corrected in all versions of the article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号